Finite-Dimensional Irreducible Representations of the Weyl Algebra in Characteristic p>0

Atonu Roy Chowdhury

BRAC University

at on ur oy chowdhury @gmail.com

7 August, 2025

Table of Contents

- What is Weyl Algebra?
- Representation of Algebra
- Representation of Weyl Algebra in characteristic 0
- 4 Representation of Weyl Algebra in characteristic p > 0

Table of Contents

- 1 What is Weyl Algebra?
- Representation of Algebra
- Representation of Weyl Algebra in characteristic 0
- 4 Representation of Weyl Algebra in characteristic p > 0

What is Weyl Algebra?

Let k be an algebraically closed field. Then $k \langle x, y \rangle$ is the free-algebra over k with formal symbols x and y.

What is Weyl Algebra?

Let k be an algebraically closed field. Then $k \langle x, y \rangle$ is the free-algebra over k with formal symbols x and y.

Then we quotient out $k\langle x,y\rangle$ by the ideal generated by the element yx-xy-1. This is the first Weyl algebra A_1 :

$$A_1 = k \langle x, y \rangle / \langle yx - xy - 1 \rangle$$
.

What is Weyl Algebra?

Let k be an algebraically closed field. Then $k \langle x, y \rangle$ is the free-algebra over k with formal symbols x and y.

Then we quotient out $k\langle x,y\rangle$ by the ideal generated by the element yx-xy-1. This is the first Weyl algebra A_1 :

$$A_1 = k \langle x, y \rangle / \langle yx - xy - 1 \rangle$$
.

Theorem 1

A basis for A_1 is $\{x^iy^j \mid i,j \geq 0\}$.

Because they show up very naturally in Quantum Mechanics.

Because they show up very naturally in Quantum Mechanics.

In
$$A_1$$
, $yx - xy = 1$.

Because they show up very naturally in Quantum Mechanics.

In
$$A_1$$
, $yx - xy = 1$.

In QM,
$$[\widehat{x}, \widehat{p}] = i\hbar \mathbb{1}$$
.

Because they show up very naturally in Quantum Mechanics.

In
$$A_1$$
, $yx - xy = 1$.

In QM,
$$[\widehat{x}, \widehat{p}] = i\hbar \mathbb{1}$$
.

So Weyl Algebra is the algebra generated by position and momentum operators!

Because they show up very naturally in Quantum Mechanics.

In
$$A_1$$
, $yx - xy = 1$.

In QM,
$$[\hat{x}, \hat{p}] = i\hbar \mathbb{1}$$
.

So Weyl Algebra is the algebra generated by position and momentum operators!

We can similarly define the n-th Weyl Algebra A_n by taking the "canonnical commutation relations" of n position and n momentum operators.

$$A_n = \frac{k \langle x_1, x_2, \dots, x_n, y_1 y_2, \dots, y_n \rangle}{\langle y_j x_i - x_i y_j - \delta_{ij} \mid 1 \leq i, j \leq n \rangle}.$$

Because they show up very naturally in Quantum Mechanics.

In
$$A_1$$
, $yx - xy = 1$.

In QM,
$$[\widehat{x}, \widehat{p}] = i\hbar \mathbb{1}$$
.

So Weyl Algebra is the algebra generated by position and momentum operators!

We can similarly define the n-th Weyl Algebra A_n by taking the "canonnical commutation relations" of n position and n momentum operators.

$$A_n = \frac{k \langle x_1, x_2, \dots, x_n, y_1 y_2, \dots, y_n \rangle}{\langle y_j x_i - x_i y_j - \delta_{ij} \mid 1 \leq i, j \leq n \rangle}.$$

But in this talk, we'll mainly focus on A_1 .

Table of Contents

- What is Weyl Algebra?
- Representation of Algebra
- Representation of Weyl Algebra in characteristic 0
- 4 Representation of Weyl Algebra in characteristic p > 0

Representation

A representation of an algebra A is a way of expressing algebra elements as linear operators on some vector space. Formally speaking,

Representation

A representation of an algebra A is a way of expressing algebra elements as linear operators on some vector space. Formally speaking,

Definition 1

A **representation** of an (associative) algebra A is a vector space V along with a homomorphism $\rho: A \to \operatorname{End}(V)$.

Representation

A representation of an algebra A is a way of expressing algebra elements as linear operators on some vector space. Formally speaking,

Definition 1

A **representation** of an (associative) algebra A is a vector space V along with a homomorphism $\rho: A \to \operatorname{End}(V)$.

Abuse of notation: for $a \in A$ and $\mathbf{v} \in V$, $\rho(a) : V \to V$ is a linear map, so that $\rho(a)\mathbf{v} \in V$. We shall often write $a\mathbf{v}$ instead of $\rho(a)\mathbf{v}$.

Definition 2

A **subrepresentation** of a representation V is a subspace $U \subseteq V$ such that $\rho(a)$ $U \subseteq U$ for every $a \in A$.

In such a case, we call U invariant under the action of A.

Definition 2

A **subrepresentation** of a representation V is a subspace $U \subseteq V$ such that ρ (a) $U \subseteq U$ for every $a \in A$.

In such a case, we call U invariant under the action of A.

Definition 3

We call a representation V **irreducible** if the only subrepresentations are 0 and V itself.

Definition 4

Let $\rho_1:A\to \operatorname{End}(V_1)$ and $\rho_2:A\to \operatorname{End}(V_2)$ be two representations of A. Then a **homomorphism of representations** is a linear map $\phi:V_1\to V_2$ such that

$$\phi \circ \rho_1(a) = \rho_2(a) \circ \phi,$$

for every $a \in A$. In other words, the following diagram commutes for every $a \in A$:

$$egin{array}{ccc} V_1 & \stackrel{\phi}{\longrightarrow} & V_2 \
ho_1(\mathsf{a}) & & & & \downarrow
ho_2(\mathsf{a}) \ V_1 & \stackrel{\phi}{\longrightarrow} & V_2 \end{array}$$

Definition 4

Let $\rho_1:A\to \operatorname{End}(V_1)$ and $\rho_2:A\to \operatorname{End}(V_2)$ be two representations of A. Then a **homomorphism of representations** is a linear map $\phi:V_1\to V_2$ such that

$$\phi \circ \rho_1(a) = \rho_2(a) \circ \phi,$$

for every $a \in A$. In other words, the following diagram commutes for every $a \in A$:

$$egin{array}{ccc} V_1 & \stackrel{\phi}{\longrightarrow} & V_2 \
ho_1(\mathsf{a}) & & & \downarrow
ho_2(\mathsf{a}) \ V_1 & \stackrel{\phi}{\longrightarrow} & V_2 \end{array}$$

An isomorphism of representations is an invertible homomorphism of representations.

Proposition 2

Let A be an algebra over a field k, and $\phi: V_1 \to V_2$ is a nonzero homomorphism of representations.

- **1** If V_1 is irreducible, ϕ is injective.
- ② If V_2 is irreducible, ϕ is surjective.
- \odot If both are irreducible, ϕ is an isomorphism.

Proposition 2

Let A be an algebra over a field k, and $\phi: V_1 \to V_2$ is a nonzero homomorphism of representations.

- **1** If V_1 is irreducible, ϕ is injective.
- ② If V_2 is irreducible, ϕ is surjective.

Proof.

Just look at Ker ϕ (or im ϕ), and they are subrepresentations. So irreducibility forces that Ker $\phi = 0$ (or im $\phi = V_2$).

Corollary 3

Let A be an algebra over an **algebraically closed** field k, and V is a finite dimensional irrep. If $\phi:V\to V$ is a homomorphism of representations, then $\phi=c\,\mathbbm{1}_V$ for some $c\in k$.

Corollary 3

Let A be an algebra over an **algebraically closed** field k, and V is a finite dimensional irrep. If $\phi:V\to V$ is a homomorphism of representations, then $\phi=c\,\mathbb{1}_V$ for some $c\in k$.

Proof.

If λ is an eigenvalue of ϕ , then $\phi - \lambda \mathbb{1}_V$ is a homomorphism of algebras, which is not an isomorphism. So it has to be 0.

Corollary 3

Let A be an algebra over an **algebraically closed** field k, and V is a finite dimensional irrep. If $\phi:V\to V$ is a homomorphism of representations, then $\phi=c\,\mathbb{1}_V$ for some $c\in k$.

Proof.

If λ is an eigenvalue of ϕ , then $\phi - \lambda \mathbb{1}_V$ is a homomorphism of algebras, which is not an isomorphism. So it has to be 0.

Corollary 4

Let A be an algebra over an algebraically closed field k, and V is a finite dimensional irrep. If $a \in Z(A)$, then $\rho(a) = c \mathbb{1}_V$ for some $c \in k$.

Table of Contents

- What is Weyl Algebra?
- Representation of Algebra
- 3 Representation of Weyl Algebra in characteristic 0
- 4 Representation of Weyl Algebra in characteristic p > 0

In QM, we work with the nicest field ever, \mathbb{C} , which is algebraically closed and has characteristic 0.

In QM, we work with the nicest field ever, \mathbb{C} , which is algebraically closed and has characteristic 0.

By Stone-Von Neumann theorem, every irreducible representation of the position and momentum operators are **unitarily equivalent** to the usual ones: position operator is multiplication by x, momentum operator is $\frac{\partial}{\partial x}$.

In QM, we work with the nicest field ever, \mathbb{C} , which is algebraically closed and has characteristic 0.

By Stone-Von Neumann theorem, every irreducible representation of the position and momentum operators are **unitarily equivalent** to the usual ones: position operator is multiplication by x, momentum operator is $\frac{\partial}{\partial x}$.

So the only irrep of $A_1 = k \langle x, y \rangle / \langle yx - xy - 1 \rangle$ looks like

$$\rho(y) = \frac{\mathrm{d}}{\mathrm{d}t}, \quad \rho(x) = t \tag{1}$$

acting on an infinite dimensional space, maybe k[t].

Is there any finite dimensional irreps?

Is there any finite dimensional irreps?

Let V be a finite dimensional irrep. Since yx - xy = 1 in A_1 ,

$$\rho(y)\rho(x) - \rho(x)\rho(y) = \mathbb{1}_V.$$
 (2)

Taking trace on both sides, we get $0 = \dim V$.

Is there any finite dimensional irreps?

Let V be a finite dimensional irrep. Since yx - xy = 1 in A_1 ,

$$\rho(y)\rho(x) - \rho(x)\rho(y) = \mathbb{1}_V.$$
 (2)

Taking trace on both sides, we get $0 = \dim V$.

So, the finite dimensional irreps are 0-dimensional.

Is there any finite dimensional irreps?

Let V be a finite dimensional irrep. Since yx - xy = 1 in A_1 ,

$$\rho(y)\rho(x) - \rho(x)\rho(y) = \mathbb{1}_V.$$
 (2)

Taking trace on both sides, we get $0 = \dim V$.

So, the finite dimensional irreps are 0-dimensional.

Unless, a positive number is **EQUAL TO** 0.

Table of Contents

- What is Weyl Algebra?
- Representation of Algebra
- Representation of Weyl Algebra in characteristic 0
- 4 Representation of Weyl Algebra in characteristic p > 0

As before, $0 = \dim V$ indicates that $p \mid \dim V$, i.e. $\dim V \ge p$.

As before, $0 = \dim V$ indicates that $p \mid \dim V$, i.e. $\dim V \ge p$.

Let's now look at the Center of A_1 .

Proposition 5

$$[x^{i}y^{j}, x] = jx^{i}y^{j-1} [x^{i}y^{j}, y] = -ix^{i-1}y^{j}$$
 (3)

Proof.

Induction on i and j.

As before, $0 = \dim V$ indicates that $p \mid \dim V$, i.e. $\dim V \ge p$.

Let's now look at the Center of A_1 .

Proposition 5

$$\begin{aligned}
[x^i y^j, x] &= j x^i y^{j-1} \\
[x^i y^j, y] &= -i x^{i-1} y^j
\end{aligned} \tag{3}$$

Proof.

Induction on i and j.

So $k[x^p, y^p] \in Z(A_1)$. In fact, $Z(A_1) = k[x^p, y^p]$.

Definition 5

Let $V \neq 0$ be a representation of A. We say that a vector $\mathbf{v} \in V$ is **cyclic** if it generates V, i.e. $A\mathbf{v} = \{\rho(a)\mathbf{v} \mid a \in A\} = V$.

Definition 5

Let $V \neq 0$ be a representation of A. We say that a vector $\mathbf{v} \in V$ is **cyclic** if it generates V, i.e. $A\mathbf{v} = \{\rho(a)\mathbf{v} \mid a \in A\} = V$.

Theorem 6

A representation V of A is irreducible if and only if every nonzero vector $\mathbf{v} \in V$ is cyclic.

Definition 5

Let $V \neq 0$ be a representation of A. We say that a vector $\mathbf{v} \in V$ is **cyclic** if it generates V, i.e. $A\mathbf{v} = \{\rho(a)\mathbf{v} \mid a \in A\} = V$.

Theorem 6

A representation V of A is irreducible if and only if every nonzero vector $\mathbf{v} \in V$ is cyclic.

Proof.

If **v** is not cyclic, then A**v** := { ρ (a) **v** | $a \in A$ } is a proper subrepresentation.

Definition 5

Let $V \neq 0$ be a representation of A. We say that a vector $\mathbf{v} \in V$ is **cyclic** if it generates V, i.e. $A\mathbf{v} = \{\rho(a)\mathbf{v} \mid a \in A\} = V$.

Theorem 6

A representation V of A is irreducible if and only if every nonzero vector $\mathbf{v} \in V$ is cyclic.

Proof.

If \mathbf{v} is not cyclic, then $A\mathbf{v}:=\{\rho\left(a\right)\mathbf{v}\mid a\in A\}$ is a proper subrepresentation. Conversely, if $W\subseteq V$ is a subrepresentation, then for $\mathbf{w}\in W,\ V=A\mathbf{w}\subseteq W$, proving that W=V.

 $\rho(y^p) = c \, \mathbb{1}_V$ since $y^p \in Z(A_1)$. Let **v** be an eigenvector of $\rho(y)$ with the eigenvalue λ (where $\lambda^p = c$). Then **v** is cyclic!

 $\rho\left(y^{p}\right)=c\,\mathbb{1}_{V}$ since $y^{p}\in Z\left(A_{1}\right)$. Let \mathbf{v} be an eigenvector of $\rho\left(y\right)$ with the eigenvalue λ (where $\lambda^{p}=c$). Then \mathbf{v} is cyclic! Therefore,

$$\operatorname{span}\left\{\rho\left(x^{i}y^{j}\right)\mathbf{v}\mid i,j\geq0\right\}=V$$

 $\rho\left(y^{p}\right)=c\,\mathbb{1}_{V}$ since $y^{p}\in Z\left(A_{1}\right)$. Let \mathbf{v} be an eigenvector of $\rho\left(y\right)$ with the eigenvalue λ (where $\lambda^{p}=c$). Then \mathbf{v} is cyclic! Therefore,

$$\operatorname{span}\left\{\rho\left(x^{i}y^{j}\right)\mathbf{v}\mid i,j\geq0\right\} = V \\ \Longrightarrow \operatorname{span}\left\{\lambda^{j}\rho\left(x^{i}\right)\mathbf{v}\mid i,j\geq0\right\} = V$$

 $\rho\left(y^{\rho}\right)=c\,\mathbb{1}_{V}$ since $y^{\rho}\in Z\left(A_{1}\right)$. Let \mathbf{v} be an eigenvector of $\rho\left(y\right)$ with the eigenvalue λ (where $\lambda^{\rho}=c$). Then \mathbf{v} is cyclic! Therefore,

$$\begin{aligned} \operatorname{span}\left\{\rho\left(x^{i}y^{j}\right)\mathbf{v}\mid i,j\geq0\right\} &=V\\ \Longrightarrow &\operatorname{span}\left\{\lambda^{j}\rho\left(x^{i}\right)\mathbf{v}\mid i,j\geq0\right\} &=V\\ \Longrightarrow &\operatorname{span}\left\{\rho\left(x^{i}\right)\mathbf{v}\mid i\geq0\right\} &=V \end{aligned}$$

 $\rho\left(y^{p}\right)=c\,\mathbb{1}_{V}$ since $y^{p}\in Z\left(A_{1}\right)$. Let \mathbf{v} be an eigenvector of $\rho\left(y\right)$ with the eigenvalue λ (where $\lambda^{p}=c$). Then \mathbf{v} is cyclic! Therefore,

$$\begin{aligned} &\operatorname{span}\left\{\rho\left(x^{i}y^{j}\right)\mathbf{v}\mid i,j\geq0\right\}=V\\ &\Longrightarrow &\operatorname{span}\left\{\lambda^{j}\rho\left(x^{i}\right)\mathbf{v}\mid i,j\geq0\right\}=V\\ &\Longrightarrow &\operatorname{span}\left\{\rho\left(x^{i}\right)\mathbf{v}\mid i\geq0\right\}=V\\ &\Longrightarrow &\operatorname{span}\left\{\rho\left(x^{i}\right)\mathbf{v}\mid 0\leq i\leq p-1\right\}=V \end{aligned}$$

Because $\rho\left(x^{p}\right)$ acts like a scalar, since $x^{p}\in Z\left(A_{1}\right)$

 $\rho\left(y^{p}\right)=c\,\mathbb{1}_{V}$ since $y^{p}\in Z\left(A_{1}\right)$. Let \mathbf{v} be an eigenvector of $\rho\left(y\right)$ with the eigenvalue λ (where $\lambda^{p}=c$). Then \mathbf{v} is cyclic! Therefore,

$$\begin{aligned} &\operatorname{span}\left\{\rho\left(x^{i}y^{j}\right)\mathbf{v}\mid i,j\geq0\right\}=V\\ &\Longrightarrow &\operatorname{span}\left\{\lambda^{j}\rho\left(x^{i}\right)\mathbf{v}\mid i,j\geq0\right\}=V\\ &\Longrightarrow &\operatorname{span}\left\{\rho\left(x^{i}\right)\mathbf{v}\mid i\geq0\right\}=V\\ &\Longrightarrow &\operatorname{span}\left\{\rho\left(x^{i}\right)\mathbf{v}\mid 0\leq i\leq p-1\right\}=V \end{aligned}$$

Because $\rho\left(x^{p}\right)$ acts like a scalar, since $x^{p}\in Z\left(A_{1}\right)$

Therefore, dim V = p.

As stated earlier, $\rho(y)$ has eigenvalue λ , where $\lambda^p = c$. p-th roots are unique in characteristic p, so $\rho(y)$ has just one eigenvalue.

As stated earlier, $\rho(y)$ has eigenvalue λ , where $\lambda^p = c$. p-th roots are unique in characteristic p, so $\rho(y)$ has just one eigenvalue. Say v_1 and v_2 are two eigenvectors for the eigenvalue λ . Then

$$\mathbf{v}_2 = \rho\left(P(x)\right)\mathbf{v}_1,\tag{4}$$

for a polynomial P(x) of degree at most p-1.

As stated earlier, $\rho(y)$ has eigenvalue λ , where $\lambda^p = c$. p-th roots are unique in characteristic p, so $\rho(y)$ has just one eigenvalue. Say v_1 and v_2 are two eigenvectors for the eigenvalue λ . Then

$$\mathbf{v}_2 = \rho\left(P(x)\right)\mathbf{v}_1,\tag{4}$$

for a polynomial P(x) of degree at most p-1. Then

$$[y, P(x)] = P'(x). \tag{5}$$

$$\rho\left(P'(x)\right)\mathbf{v}_{1} = \rho(y)\rho\left(P(x)\right)\mathbf{v}_{1} - \rho\left(P(x)\right)\rho(y)\mathbf{v}_{1}$$

$$\rho(P'(x)) \mathbf{v}_1 = \rho(y) \rho(P(x)) \mathbf{v}_1 - \rho(P(x)) \rho(y) \mathbf{v}_1$$

= \rho(y) \mathbf{v}_2 - \rho(P(x)) \lambda \mathbf{v}_1

$$\rho(P'(x)) \mathbf{v}_1 = \rho(y)\rho(P(x)) \mathbf{v}_1 - \rho(P(x))\rho(y)\mathbf{v}_1$$

$$= \rho(y)\mathbf{v}_2 - \rho(P(x))\lambda\mathbf{v}_1$$

$$= \lambda\mathbf{v}_2 - \lambda\mathbf{v}_2$$

$$= \mathbf{0}.$$

$$\rho(P'(x)) \mathbf{v}_1 = \rho(y)\rho(P(x)) \mathbf{v}_1 - \rho(P(x))\rho(y)\mathbf{v}_1$$

$$= \rho(y)\mathbf{v}_2 - \rho(P(x))\lambda\mathbf{v}_1$$

$$= \lambda\mathbf{v}_2 - \lambda\mathbf{v}_2$$

$$= \mathbf{0}.$$

Therefore, $\rho(P'(x)) = 0$, so that \mathbf{v}_2 is a constant multiple of \mathbf{v}_1 .

Therefore, not only does $\rho(y)$ have only one eigenvalue, it has only one linearly independent eigenvector.

Therefore, not only does $\rho(y)$ have only one eigenvalue, it has only one linearly independent eigenvector. So in a suitable basis, it looks like a Jordan block:

$$\rho(y) = \begin{bmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \cdots & 0 \\ 0 & 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda \end{bmatrix}$$
 (6)

So all that is left is to compute is $\rho(x)$. But we don't quite know what the basis is yet. So we're gonna stick to the previous basis that we showed earlier:

$$B = \left\{ \rho\left(x^{i}\right)\mathbf{v} \mid 0 \leq i \leq p-1 \right\} = \left\{\mathbf{v}, \rho(x)\mathbf{v}, \rho\left(x^{2}\right)\mathbf{v}, \dots, \rho\left(x^{p-1}\right)\mathbf{v} \right\}.$$

How $\rho(x)$ acts on these basis vectors is pretty simple. Since $\rho(x^p)$ is a scalar, say $\rho(x^p) = \mu \mathbb{1}_V$,

$$\rho(x) \left[\rho(x^{i}) \mathbf{v}\right] = \begin{cases} \rho(x^{i+1}) \mathbf{v} & \text{if } i \neq p-1\\ \mu \mathbf{v} & \text{if } i = p-1 \end{cases}$$
 (7)

How $\rho(x)$ acts on these basis vectors is pretty simple. Since $\rho(x^p)$ is a scalar, say $\rho(x^p) = \mu \mathbb{1}_V$,

$$\rho(x) \left[\rho(x^{i}) \mathbf{v}\right] = \begin{cases} \rho(x^{i+1}) \mathbf{v} & \text{if } i \neq p-1\\ \mu \mathbf{v} & \text{if } i = p-1 \end{cases}$$
 (7)

So $\rho(x)$ shifts all the basis vectors once to the next, and for the final one, it scales by μ .

How $\rho(x)$ acts on these basis vectors is pretty simple. Since $\rho(x^p)$ is a scalar, say $\rho(x^p) = \mu \mathbb{1}_V$,

$$\rho(x) \left[\rho(x^{i}) \mathbf{v} \right] = \begin{cases} \rho(x^{i+1}) \mathbf{v} & \text{if } i \neq p-1 \\ \mu \mathbf{v} & \text{if } i = p-1 \end{cases}$$
 (7)

So $\rho(x)$ shifts all the basis vectors once to the next, and for the final one, it scales by μ . So the matrix representation of $\rho(x)$ in this (ordered) basis $B = \{\mathbf{v}, \rho(x)\mathbf{v}, \rho(x^2)\mathbf{v}, \dots, \rho(x^{p-1})\mathbf{v}\}$ is

$$\begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & \mu \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \end{bmatrix}$$

(8)

Finally, we just need to compute $\rho(y)$'s action on these basis vectors. Since $[y,x^i]=ix^{i-1}$,

$$\rho(y) \left[\rho(x^{i}) \mathbf{v} \right] = \rho\left(\left[y, x^{i} \right] \right) \mathbf{v} + \rho(x^{i}) \rho(y) \mathbf{v}$$
$$= i\rho(x^{i-1}) \mathbf{v} + \lambda \rho(x^{i}) \mathbf{v}. \tag{9}$$

Finally, we just need to compute $\rho(y)$'s action on these basis vectors. Since $[y,x^i]=ix^{i-1}$,

$$\rho(y) \left[\rho(x^{i}) \mathbf{v} \right] = \rho\left(\left[y, x^{i} \right] \right) \mathbf{v} + \rho(x^{i}) \rho(y) \mathbf{v}$$
$$= i\rho(x^{i-1}) \mathbf{v} + \lambda \rho(x^{i}) \mathbf{v}. \tag{9}$$

So the matrix representation of $\rho(x)$ in this (ordered) basis $B = \{\mathbf{v}, \rho(x)\mathbf{v}, \rho(x^2)\mathbf{v}, \dots, \rho(x^{p-1})\mathbf{v}\}$ is

$$\begin{bmatrix}
\lambda & 1 & 0 & \cdots & 0 & 0 \\
0 & \lambda & 2 & \cdots & 0 & 0 \\
0 & 0 & \lambda & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \lambda & p-1 \\
0 & 0 & 0 & \cdots & 0 & \lambda
\end{bmatrix}$$
(10)

So in characteristic p, the irreducible representations of A_1 are p-dimensional, and they look like

$$\rho(x) = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & \mu \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \end{bmatrix}, \quad \rho(y) = \lambda \, \mathbb{1} + \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 2 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & p-1 \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{bmatrix}$$

Looks familiar?

Consider the space $\mathbb{C}[t]$ of all polynomials over \mathbb{C} . In this infinite dimensional space, the matrix representation of $\frac{\mathrm{d}}{\mathrm{d}t}$ in the ordered basis $\{1,t,t^2,t^3,\ldots\}$ looks like this

```
\begin{bmatrix} 0 & 1 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 2 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 3 & 0 & \cdots \\ 0 & 0 & 0 & 0 & 4 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}
```

Consider the space $\mathbb{C}[t]$ of all polynomials over \mathbb{C} . In this infinite dimensional space, the matrix representation of $\frac{\mathrm{d}}{\mathrm{d}t}$ in the ordered basis $\{1,t,t^2,t^3,\ldots\}$ looks like this

and the "matrix" representation of multiplication by t looks like this

```
\begin{bmatrix} 0 & 0 & 0 & 0 & \cdots \\ 1 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 0 & 0 & \cdots \\ 0 & 0 & 1 & 0 & \cdots \\ 0 & 0 & 0 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}
```

$$\rho(x) = \begin{bmatrix}
0 & 0 & 0 & \cdots & 0 & \mu \\
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0
\end{bmatrix}$$
(11)

So $\rho(x)$ looks exactly like multiplication by t on k[t], except for t^p being identified with the scalar μ .

$$\rho(x) = \begin{bmatrix}
0 & 0 & 0 & \cdots & 0 & \mu \\
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0
\end{bmatrix}$$
(11)

So $\rho(x)$ looks exactly like multiplication by t on k[t], except for t^p being identified with the scalar μ . So our representation space is gonna be $k[t]/\langle t^p - \mu \rangle$.

$$\rho(y) = \lambda \, \mathbb{1} + \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 2 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & p-1 \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{bmatrix}$$

$$(12)$$

And $\rho(y)$ looks exactly like λ plus $\frac{\mathrm{d}}{\mathrm{d}t}$ on $k[t]/\langle t^p - \mu \rangle$.

To summarize, the irreducible representations of A_1 in characteristic p are on the representation space $k[t]/\langle t^p - \mu \rangle$, where

$$\rho(x) = \text{multiplication by } t$$

$$\rho(y) = \lambda + \frac{\mathrm{d}}{\mathrm{d}t}$$
(13)

for $\lambda, \mu \in k$.

Concluding Remarks

So, in finite dimensions and char k=p>0 as well, the representation of Weyl Algebra looks exactly like those for $k=\mathbb{C}$.

Concluding Remarks

So, in finite dimensions and char k=p>0 as well, the representation of Weyl Algebra looks exactly like those for $k=\mathbb{C}$.

What's next? Defining Quantum Mechanics over an algebraically closed field k with char k = p > 0?

Concluding Remarks

So, in finite dimensions and char k=p>0 as well, the representation of Weyl Algebra looks exactly like those for $k=\mathbb{C}$.

What's next? Defining Quantum Mechanics over an algebraically closed field k with char k = p > 0?

Apparently some people are trying to do that! And it might have some cool applications in Quantum Computing! See references!

References

- Introduction to Representation Theory, by Etingof et al.
- ② Categorical Quantum Computing with Finite Fields, by Matthew Varughese. https://www.cs.ox.ac.uk/people/bob.coecke/Varughese.pdf
- Quantum Computing over Finite Fields, by R.P. James et al. https://arxiv.org/pdf/1101.3764
- Main problems in constructing quantum theory based on finite mathematics, by Felix Lev. https://arxiv.org/pdf/2412.01846

Thank you for joining!

The slides are available in my webpage https://atonurc.github.io/assets/weyl_talk.pdf

