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§1 Recurrence Relation
We all know that a sequence is an ordered list of numbers. When a term of a sequence is defined
as some relation of the previous terms, we call that relation a recurrence relation. For instance,
the Fibonacci sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

is a recursive sequence. In this case, the recurrence relation is that every term is the sum of the
previous two terms. In other words, if Fn is the n-th Fibonacci number, then

Fn = Fn−1 + Fn−2 .

Note that there are infinitely many sequences that satisfy this relation. That’s why the initial
values F0 = 0 and F1 = 1 are important. We often use the term order of a recurrsive relation,
that basically tells you how far you need to look back in order to compute the next term. In
this scenario, the order is 2, because we need to look at the previous two terms to find out Fn.
It should be evident to you that if a recursive sequence has order m, then you need the first m
terms to find the whole sequence.

Definition 1.1 (Linear Recurrence Relation). Suppose {an}∞n=0 is a sequence. We call it a
linear recursive sequence if an can be written as follows:

an = c1an−1 + c2an−2 + · · ·+ ckan−k + bn .

Note that, ci and bn might be functions of n. If bn = 0 we call it a homogenous linear
recurrence. We call this recurrence to have constant coefficients if all the ci’s are constant.

At first we are gonna solve the simplest kind of linear recurrences: homogenous linear recurrence
with constant coefficients. The simplest of such recurrences is:

an = ran−1 .

You might recognize this as the recursive relation of a geometric sequence. The general solution
is given by

an = a0r
n .
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This example might seem trivial, but it’s important nonetheless because the solution of every
recurrence relation can be expressed as a linear combination of some geometric sequences. Now
let’s look at a slightly more complicated recursive relation.

an = c1an−1 + c2an−2 .

If an = Crn is to be a solution of this recurrence relation, then r has to satisfy the following
equation.

Crn = c1Crn−1 + c2Crn−2 .

Cancelling out stuffs, we get
r2 − c1r − c2 = 0 .

So r has to be a root of the polynomial

x2 − c1x− c2 .

This polynomial is called the characteristic polynomial of the recurrence relation. If r1 and
r2 are two (distinct) roots of the characteristic polynomial, then the general solution of the
recurrence is given by

an = Crn1 +Drn2 .

The values of C and D are to be obtained using the initial conditions, i.e. the value of a0 and
a1.

In a similar fashion, one can solve a homogenous linear recurrence with constant coefficients
of any finite order.

Exercise 1.1
Find a general expression for the Fibonacci sequence.

Solution. The recurrence relation is Fn = Fn−1 + Fn−2. So the characteristic polynnomial is
x2 − x− 1. The roots of this polynomial are

r1 =
1 +

√
5

2
and r2 =

1−
√
5

2
.

Therefore, the general expression for Fibonacci numbers is

Fn = C

(
1 +

√
5

2

)n

+D

(
1−

√
5

2

)n

.

Now, using F0 = 0 anf F1 = 1, we find that

0 = C +D and 1 = C

(
1 +

√
5

2

)1

+D

(
1−

√
5

2

)1

.

Now we have two simultaneous linear equation for two variables. Solving for C and D, we get

Fn =
1√
5

((
1 +

√
5

2

)n

−

(
1−

√
5

2

)n)
.

■
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Exercise 1.2 (USAJMO 2018)
For each positive integer n, find the number of n-digit positive integers that satisfy both of
the following conditions:

• no two consecutive digits are equal, and

• the last digit is a prime.

Solution. Let an be the number of n-digit positive integers with the given property. One can
easily find an for small values of n. For instance, a1 = 4 and a2 = 32 (left as an exercise for the
reader).

Now we are going to find out a recurrence relation for an. Let X be a n-digit number with
the given properties. If the second digit (from left) of X is nonzero, X can be constructed from
a (n− 1)-digit number with the same properties. In this case, we have 9− 1 = 8 options for the
first digit.

On the other hand, if the second digit of X is 0, then X can be constructed from a (n− 2)-
digit number with the given properties by adding another nonzero digit as the first digit. In
this case, we have 9 options for the first digit. Therefore,

an = 8an−1 + 9an−2 .

The characteristic polynomial of this recursive relation is x2 − 8x− 9. The roots are 9 and −1.
Therefore,

an = A9n +B (−1)n .

By using a1 = 4 and a2 = 32, we can find the values of A and B.

9A−B = 4 and 81A+B = 32 =⇒ A =
2

5
, B = −2

5
.

Therefore, an = 2
5 (9

n − (−1)n). ■

In a similar manner, we can compute higher order homogenous linear recurrences that have
constant coefficients. For instance, if

an = c1an−1 + c2an−2 + · · ·+ ckan−k ,

then the characteristic polynomial of this recursive relation would be

xk − c1x
k−1 − c2x

k−2 − · · · − ck .

If r1, r2, . . . , rk are the distinct roots of this polynomial, then

an = d1r
n
1 + d2r

n
2 + · · ·+ rnk .

The values of di are to be determined using the initial conditions.

Now, what do we do when the roots of the characteristic polynomial are not distinct? If
r1 = r2 and the rest are distinct, then we will have

an = d1r
n
1 + d2 nr

n
2 + d3r

n
3 · · ·+ rnk .

In the same way, if r1 is repeated 3 times, then the answer would be

an = d1r
n
1 + d2 nr

n
1 + d3 n

2rn1 + d4r
n
4 + · · ·+ rnk .

3



This is how we deal with repeated roots.

Now we shall learn what to do if the recurrence is not homogenous. Basically we need to
make it homogenous. Consider the non-homogenous recursive relation

an = c1an−1 + c2an−2 + · · ·+ ckan−k + c0 ,

where c0 is a constant. For n− 1, the equation would look like

an−1 = c1an−2 + c2an−3 + · · ·+ ckan−k−2 + c0 .

If we subtract one from the other, then we get rid of the constant c0. Let’s see a few exam-
ples.

Exercise 1.3
x0 = 5, x1 = 9, x2 = 43 and for every n ≥ 3, xn = 3xn−1 − 4xn−3. Find xn.

Solution. The characteristic polynomial of this recurrence is x3 − 3x2 + 4 = (x+ 1) (x− 2)2.
Therefore,

xn = c1 (−1)n + c22
n + c3n2

n .

Using the initial conditions, we can find c1, c2, c3. We get that c1 = 3, c2 = 2 and c3 = 4. Hence,

xn = 3 (−1)n + 2n+1 + n2n+2 .

■

Exercise 1.4
Find the general solution to the recurrence an = an−1 + 2an−2 + n.

Solution. Substituting n− 1, we get

an−1 = an−2 + 2an−3 + n− 1 .

Subtracting this from the original recurrence, we get

an − an−1 = an−1 + 2an−2 − an−2 − 2an−3 + 1 =⇒ an = 2an−1 + an−2 − 2an−3 + 1 .

Now, substituting n− 1 in this new recurrence relation,

an−1 = 2an−2 + an−3 − 2an−4 + 1 .

Then again we subtract to get rid of the constant 1.

an = 3an−1 − an−2 − 3an−3 + 2an−4 .

The characteristic polynomial of this recurrence relation is x4 − 3x3 + x2 + 3x − 2. The roots
of this polynomial are 2, 1, 1,−1.

an = c12
n + c2 (−1)n + c3 + c4n .

For this to satisfy the given recurrence an = an−1 + 2an−2 + n, we must have c3 = −5
4 and

c4 = −1
2 (verify this). Therefore, the general solution is

an = c12
n + c2 (−1)n − n

2
− 5

4
.

■
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Exercise 1.5
For which values of x0, the sequence defined by xn+1 = 2n − 3xn is strictly increasing?

Solution. Note that this is not exactly a linear recurrence. We have to get rid of the 2n term
somehow. The trick to do it is looking at two consecutive terms

xn+1 = 2n − 3xn and xn = 2n−1 − 3xn−1 ,

and multiplying the second one by 2 and subtracting it from the first one. Therefore,

xn+1 − 2xn = 2n − 3xn − 2n + 6xn−1 =⇒ xn+1 = −xn + 6xn−1 .

This is of our favorite form. We know how to solve it. The characteristic polynomial is x2+x−6,
the roots of which are 2 and −3. Therefore,

xn = c12
n + c2 (−3)n .

Using x1 = 1− 3x0, we express c1 and c2 in terms of x0.

c1 + c2 = x0 and 2c1 − 3c2 = x1 = 1− 3x0 .

Solving for c1 and c2, we get c1 =
1
5 and c2 = x0 − 1

5 . Therefore,

xn =
2n

5
+

(
x0 −

1

5

)
(−3)n .

For large enough values of n, (−3)n grows faster in magnitude than 2n. But (−3)n alternates
signs. So the sequence xn will alternate in sign for large enough values of n. So, the sequence
xn is not increasing except for the case when the coefficient of (−3)n is 0. Therefore,

x0 −
1

5
= 0 =⇒ x0 =

1

5
.

■

§2 Finding Recurrence From The Solution
So far we have solved linear recurrences. Now we are going to do the reverse job. If we are
given the solution to a recurrence relation, we will be finding the recusive relation that solves
to the given solution. This is often a very useful tool in solving problems.

Exercise 2.1
Let an = (n+ 2n)Fn, where Fn is the n-th Fibonacci number. Then find the recursive
relation for an.

Solution. We computed the general formula for Fibonacci numbers before.

Fn =
αn − βn

α− β
, where α =

1 +
√
5

2
, β =

1−
√
5

2
.
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Using this, we can express an as

an = (n+ 2n)Fn = (n+ 2n)
αn − βn

α− β

=
1

α− β
nαn − 1

α− β
nβn +

1

α− β
(2α)n − 1

α− β
(2β)n

Therefore, the characteristic polynomial has α and β as repeated roots, and 2α, 2β are non-
repeated roots. Therefore, the characteristic polynomial is

(x− α)2 (x− β)2 (x− 2α) (x− 2β) =
(
x2 − x− 1

)2 (
x2 − 2 (α+ β)x+ 4αβ

)
= x6 − 4x5 − x4 + 12x3 + x2 − 10x+ 4

Therefore, the recurrence relation is an = 4an−1 + an−2 − 12an−3 − an−4 +10an−5 − 4an−6. ■

Exercise 2.2
Prove that Fn − 2n3n is divisible by 5 for every n ≥ 0.

Solution. We basically need to show that Fn ≡ 2n3n (mod 5) for every n ≥ 0. The key to do
it is to show that the sequences an = 2n3n and Fn have the same recursive relation in mod 5,
and the first few terms are same in mod 5.

The characteristic polynomial of an has 3 as repeated root. In fact it repeats twice. So the
characteristic polynomial would be (x− 3)2 = x2 − 6x+ 9. Therefore, the recursive relation is

an = 6an−1 − 9an−2 ≡ an−1 + an−2 (mod 5) .

We already know that Fn = Fn−1 + Fn−2. So the recursive relations do agree. Since the order
of the recursion is 2, we need to verify that the first 2 terms of an and Fn agree in mod 5.

F0 = 0 , a0 = 0 ; F1 = 1 , a1 = 2× 3 = 6 ≡ 1 (mod 5) .

Therefore, Fn ≡ an (mod 5) for every n ≥ 0. ■

Exercise 2.3
If x+ y + z = 0, show that

x2 + y2 + z2

2
· x

3 + y3 + z3

3
=

x5 + y5 + z5

5
.

Solution. Although this seems to be an algebraic problem, we are going to approach it using
recursive methods. Let an = xn + yn + zn. Then x, y, z are the roots of the characteristic
polynomial. Therefore, the characteristic polynomial is

(tx) (t− y) (t− z) = t3 − t2 (x+ y + z) + t (xy + yz + zx)− xyz = t3 +At−B ,

where A = xy + yz + zx and B = xyz. Therefore, the recursive relation is

an = −Aan−2 +Ban−3 .
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We need to show that a2
2 · a3

3 = a5
5 .

a2 = x2 + y2 + z2 = (x+ y + z)2 − 2 (xy + yz + zx) = −2A .

a3 = −Aa1 +Ba0 = 3B .

a5 = −Aa3 +Ba2 = −3AB − 2AB = −5AB .

Now a2
2 · a3

3 = a5
5 follows trivially. ■

Also, show in a similar fashion that a2
2 · a5

5 = a7
7 .

§3 Miscellaneous Problem Solving

Exercise 3.1
Let a1 = 1 and for every n ≥ 1,

an+1 =
1 + 4an +

√
1 + 24an

16
.

Show that an is rational for every n.

Solution. Here the only part that might stop it from being rational is the thing under square
root sign. If we can prove that bn =

√
1 + 24an is rational for every n, then we are done.

bn =
√
1 + 24an =⇒ an =

b2n − 1

24
.

We can use this and try to get a recursion for bn.

b2n+1 − 1

24
= an+1 =

1 + 4an +
√
1 + 24an

16
=

1 + b2n−1
6 + bn

16
=

b2n + 6bn + 5

96

=⇒ b2n+1 = 1 +
b2n + 6bn + 5

4
=

b2n + 6bn + 9

4
=

(
bn + 3

2

)2

bn is always positive since it’s the square root of some positive real number. Therefore,

bn+1 =
bn + 3

2
.

Since b1 =
√
1 + 24 = 5 is rational, we can conclude that bn is rational for every n. Therefore,

an is rational. ■

Exercise 3.2
Given a positive integer n, consider a sequence of real numbers a0, a1, . . . , an defined as
a0 =

1
2 and ak = ak−1 +

a2k−1

n for 1 ≤ k ≤ n. Prove that 1− 1
n < an < 1.
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Solution. If we expand ak = ak−1 +
a2k−1

n , we get

nak = nak−1 + a2k−1 = ak−1 (n+ ak−1) =⇒ ak
ak−1

=
n+ ak−1

n
.

If we divide both sides by akak−1, we get

1

ak−1
=

1

ak
+

ak−1

ak
· 1
n
=

1

ak
+

1

n+ ak
=⇒ 1

ak−1
− 1

ak
=

1

n+ ak
.

This gives us a nice telescoping sum. If we add this for k = 1, 2, . . . , n we get:

1

a0
− 1

an
=

n∑
k=1

1

n+ ak
=⇒ 1

an
= 2−

n∑
k=1

1

n+ ak
.

Now,

1− 1

n
< an < 1 ⇐⇒ n

n− 1
>

1

an
> 1 ⇐⇒ n

n− 1
> 2−

n∑
k=1

1

n+ ak
> 1

⇐⇒ 2− n

n− 1
<

n∑
k=1

1

n+ ak
< 2− 1

⇐⇒ n− 2

n− 1
<

n∑
k=1

1

n+ ak
< 1 .

So it suffices to show that n−2
n−1 <

∑n
k=1

1
n+ak

< 1.
If ak−1 is positive, then so is ak. Since a0 is positive, all the ai’s are positive. Therefore,

n+ ak > n, and consequently, 1
n+ak

< 1
n . Hence, the second inequality is satisfied.

To prove the first inequality, we shall use the inequality we just proved an < 1.

ak < 1 =⇒ n+ ak < n+ 1 =⇒ 1

n+ ak
>

1

n+ 1
=⇒

n∑
k=1

1

n+ ak
>

n

n+ 1
>

n− 2

n− 1
.

So we are done. ■

§4 Practice Problems
Problem 4.1. (a) Determine the number of ternary sequences of length n that contain the

subsequence 00.

(b) How many ternary sequences have no 1 anywhere to the right of a 0?

Problem 4.2. Show that F 3
n+1 + F 3

n − F 3
n−1 = F3n for all n ≥ 1.

Problem 4.3. For n ≥ 1, define an to be the number of sequences of n0s, 1s, and 2s such that
no three consecutive numbers in the sequence are all different. Find a formula for an, and show
that if p ≥ 3 is a prime, then ap ≡ 3 (mod p).

Problem 4.4. Let (xn) be a sequence such that x0 = x1 = 5 and

xn =
xn−1 + xn+1

98

for all positive integers n. Prove that xn+1
6 is a perfect square for all n.
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Problem 4.5 (Canada 1982). Let a, b, and c be the roots of the equation x3 − x2 − x− 1 = 0.
Show that a, b, and c are distinct, and that

a1982 − b1982

a− b
+

b1982 − c1982

b− c
+

c1982 − a1982

c− a

is an integer.

Problem 4.6 (Putnam 1976). Let P (x, y) = x2y + xy2 and Q(x, y) = x2 + xy + y2. For
n = 1, 2, 3, . . ., let Fn(x, y) = (x+y)n−xn−yn and Gn(x, y) = (x+y)n+xn+yn. One observes
that G2 = 2Q,F3 = 3P,G4 = 2Q2, F5 = 5PQ,G6 = 2Q3 + 3P 2. Prove that, in fact, for each n
either Fn or Gn is expressible as a polynomial in P and Q with integer coefficients.

Problem 4.7 (Putnam 1980). For which real numbers a does the sequence defined by the
initial condition u0 = a and the recursion un+1 = 2un − n2 have un > 0 for all n ≥ 0?

Problem 4.8. Let a1, a2, a3, . . . be a sequence of positive numbers. Prove that there exists
infinitely many n such that 1 + an > 21/n an−1.

Problem 4.9 (ISL 1988). An integer sequence is defined by a0 = 0, a1 = 1, and an = 2an−1 +
an−2 for all n ≥ 2. Prove that 2k divides an if and only if 2k divides n.

Problem 4.10 (EGMO 2020). The positive integers a0, a1, a2, . . . , a3030 satisfy

2an+2 = an+1 + 4an for n = 0, 1, 2, . . . , 3028.

Prove that at least one of the numbers a0, a1, a2, . . . , a3030 is divisible by 22020.

Problem 4.11 (USAMO 1982). Let an = xn + yn + zn with a1 = 0. Find all pairs of positive
integers (m,n) such that

an
n

· am
m

=
am+n

m+ n
.

Problem 4.12 (EGMO 2020). Let m > 1 be an integer. A sequence a1, a2, a3, . . . is defined
by a1 = a2 = 1, a3 = 4, and for all n ≥ 4,

an = m(an−1 + an−2)− an−3.

Determine all integers m such that every term of the sequence is a square.
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