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Preface

This series of lecture notes has been prepared for aiding students who took the BRAC University
course General Theory of Relativity (PHY413) in Fall 2022 semester. The first part of these
notes are from the course MAT313 - Differential Geometry that is offered by BRAC University.
These particular notes are from the Summer 2022 Semester. The second part of these notes are a
typeset of the notes of the course PG512 - General Relativity and Cosmology that is offered
by Dhaka University. These particular notes are from the MS Session 2016 - 2017. These notes
were typeset under the supervision of Dr. Syed Hasibul Hassan Chowdhury. The main goal of
this typeset is to have an organized digital version of the notes, which is easier to share and handle. 1
would like to thank my friend Nian Ibne Nazrul for his contributions to the sections on gravitational
waves. If you see any mistakes or typos, please send me an email at atonuroychowdhury@gmail . com.
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]. Topology Overview

§1.1 Euclidean Space R”

Before embarking on the concept of general topological space, let us look at the Euclidean space R™.
R™ is equipped with the notion of distance between 2 points p and gq.

Definition 1.1 (Distance). Let the coordinates of p and ¢ be (p',p?,....p") and (q',¢>, ...... q"),
respectively. The distance between p and ¢ is given by

d(p,q) = [Z(pi - q")2] 2 (1.1)

i=1

Definition 1.2 (Open ball). An open ball B(p,r) in R" with center p € R™ and radius r > 0 is

defined as the set
B(p,r) ={z e R" : d(z,p) <r} (1.2)

A set equipped with the notion of distance between its elements is called a metric space. Thus the
Euclidean space R" is a metric space. And we can talk about open balls in R™ using this metric. We

can define open sets in R™ using open balls B(p, r) defined above.

Definition 1.3 (Open Set in R™). A set U in R” is said to be open if for every p in U, there is an
open ball B(p,r) such that B(p,r) C U.

Proposition 1.1
The union of an arbitrary collection {U,} of open sets is open. The intersection of finite collection

of open sets is open.

Example 1.1
The intervals (—%, %) , n=1,23,.... are all open in R but their intersection

N(-57)-© (13

is not open.

The metric d in R™ allows us to define open sets in R™. In other words, given a subset of R", we can
tell if it is open or not. This situation is a special case called metric topology in R".

§1.2 Topology

Definition 1.4 (Topology). A topology on a set S is a collection 7 of subsets of S containing both
the empty set @ and the S such that T is closed under arbitrary union and finite intersection. In

other words,

o If U, €T for all & in an index set A, then |J U, € T
acA
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o IfU, €T forie{1,2,....,n},then N U; €T
i=1

The elements of T are called open sets.

Definition 1.5 (Topological Space). The pair (S, T) consisting of a set S together with a topology
T on S is called a topological space.

Abuse of Notation. We shall often say “S is a topological space” in short. But there is always a
topology T on S, which we recall when necessary.

Definition 1.6 (Neighborhood). A neighbourhood of a point p € S is called an open set U
containing p.

Definition 1.7 (Closed Set). The complement of an open set is called a closed set.

Proposition 1.2

The union of a finite collection of closed sets is closed. The intersection of an arbitrary collection
of closed sets is closed.

Proof. Let {F;};_; be a finite collection of closed sets. Then, {S\ F;},_, is a finite collection of open
n

sets. The intersection of a finite collection of open sets is open, therefore () (S'\ F;) is open. By De
i=1

ﬁ (S\F;) =5\ <O FZ> is open = CJ F; is closed (1.4)

i=1 i=1

Morgan’s law,

Therefore, the union of a finite collection of closed sets is closed.

Now, let { F, }aca be an arbitrary collection of closed sets with A being an index set. Then {S\ F,, }aca
is an arbitrary collection of open sets. We know that the union of an arbitrary collection of open sets
is open, therefore | J 4 (S'\ Fu) is open. By De Morgan’s law,

U (S\ Fo) =S\ (ﬂ Fa> is open = ﬂ F, is closed (1.5)

a€A acA a€cA

Therefore, the intersection of an arbitrary collection of closed sets is closed. |

Definition 1.8 (Subspace Topology). Let (S, 7) be a topological space and A a subset of S. Define
T4 to be the collection of subsets

Ta={UNA|UeT} (1.6)

T4 is called the subspace topology of A in S.

It is not hard to see that T4 satisfies the conditions of a Topology. Firstly, T4 contains both & and A.
For these, taking U = @ and U = 5, respecitvely, suffices. By the distributive property of union and

intersection
Jwana)= (UU)ﬂAand ﬂUnA (ﬂU)mA (1.7)

i=1

which shows that T4 is closed under arbitrary union and finite intersection. So T4 is a Topology
indeed.
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Example 1.2

Consider the subset A = [0,1] of R. In the subspace topology, the half-open interval [O, %) is an
open subset of A, because [O, %) = (—%, %) N[0, 1]

§1.3 Bases and Countability

Definition 1.9 (Basis and Basic Open Sets). A subcollection B of a topology 7 is a basis for T
if given an open set U and a point p in U, there is an open set B € B such that p € B C U. An
element of B is called a basic open set.

Example 1.3

The collection of all open balls B(p,r) in R” with p € R"™ and r > 0 is a basis for the standard
topology (metric topology) on R™.

Proposition 1.3

A collection B of open sets of S is a basis if and only if every open set in S is a union of sets in B.

Proof. (=) We are given a collection of B of open sets of S that is a basis. U is any open set in S.
Also, let p € U. Therefore, there is a basic open set B, € B such that p € B, C U. Hence, one can

show that U = |J B,.
peU
(<) Suppose, every open set in S is a union of open sets in B. Now, given an open set U and a

point p € U, since U = |J B, there is a B, € B, such that p € B, C U. Hence B is a basis. |
B.eB

We say that a point in R™ is rational if all of its coordinates are rational numbers. Let Q be the set
of rational numbers and Q% the set of positive rational numbers.

Lemma 1.4

Every open set in R" contains a rational point.

n
Proof. An open set U in R™ contains an open ball B(p,r) which, in turn, contains an open cube H I;

i=1
where I; is the open interval (pi - ﬁ, P+ ﬁ) Here is a visual example for n = 2.

Now back to general n. For each i, let ¢’ be a rational number in ;. Then (¢!, ¢?, ..., ¢") is a rational

n
point in Hli C B(p,r). Therefore, every open set contains a rational point. [ |
i=1

Proposition 1.5

The collection By of all open balls in R™ with rational centers and rational radii is a basis for R".

Proof. Given an open set U in R” and p € U, there is an open ball B(p,r’) with positive real radius
r’ such that p € B(p,r’) C U. Take a rational number r € (0,r'). Then we have

p € B(p,r) C B(p,r') CU (1.8)

By Lemma 1.4 , there is a rational point in the smaller ball B (p, %)
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1

G ) < (v

Figure 1.1: B(p,r) contains <p

Claim — pe B(q,5) € B(p,7)

Proof. Since d(p,q) < %, we have p € B (q, %) Next, if x € B (q, g), then by triangle inequality
ror
d(z,p) < d(z,q) +d(g.p) <5 +5=r (1.9)

Therefore, € B(p,r).
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Ny 7

N 7

~ 7
\\ //
T T
So, p € B(q, 5) and B(q,i) C B(p,r). O

As a result, p € B (q, g) C B(p,r) € B(p,r") CU. Hence we proved,
pEB(q, g) cuU (1.10)

In other words, the collection Bg of open balls with rational centers and rational radii is a basis for
R™, |
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Both the sets Q and Q* are countable. Since the centers of the open balls in By are indexed by Q",
a countable set, and the radii are indexed by QT, also a countable set, the collection By is countable.

Definition 1.10 (Second Countable). A topological space is said to be second countable if it has a
countable basis.

Proposition 1.5 shows that R™ with its standard topology is second countable.

§1.4 Hausdorff Space

Definition 1.11 (Hausdorff Space). A topological space S is Hausdorff if given any 2 distinct points
x,y in S there exist disjoint open sets U, V' such that x € U and y € V.

Figure 1.2: Here S is a Hausdorff space, U and V are disjoint open sets containing x and y respectively.

Proposition 1.6

Every singleton set (a one-point set) in a Hausdorff space S is closed.

Proof. Let € S. We want to prove that {z} is closed, i.e. S\ {z} is open.
Let y € S\ {z}. Since S is Hausdorff, we can find disjoint open sets U, and V, such that z € U,
and y € Vj. No such V, contains z. Therefore

S\{z}=J ¥ (1.11)

yeS\{z}

So S\ {z} is union of open sets, hence open. So {z} is closed. [ |

Example 1.4

The Euclidean space R™ (equipped with standard/ metric topology) is Hausdorff, for given distinct
points z,y in R", if € = %d(w, y), then the open balls B(x,€) and B(y, €) will be disjoint.
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§1.5 Continuity and Homeomorphism

Definition 1.12 (Continuous Maps). Let f : X — Y be a map of topological spaces. f is said to
be continuous if for each open subset V of Y, the set f~!(V) is an open subset of X.

Proposition 1.7
f: X — Y is continuous if and only if for every closed subset B of Y, the set f~!(B) will be
closed in X.

Proof. (=) Suppose f is continuous. B is closed, so Y \ B is open in Y. Therefore, by the continuity
of f, f7L(Y\B) =X\ f~Y(B) is open in X, so f~1(B) is closed.

(<) Suppose f~(B) is closed in X for any closed B C Y. Take any open set U in Y. Choose
B =Y \ U. Then by the assumption f~' (Y \U) = X \ f~}(U) is closed in X. This gives us f~1(U)
is open. So f is continuous. |

Definition 1.13 (Homeomorphism). Let X and Y be topological spaces; let f : X — Y be a
bijection. If both f and the inverse function f~' : ¥ — X are continuous, then f is called a
homeomorphism.

Example 1.5
The function f : R — R given by f(z) = 3z + 1 is a homeomorphism. We define g : R — R by
1

g(y) = 5(y — 1). Then we have

flgly) =y and g(f(z))=2 Vz,yeR (1.12)

This proves g = f~L. It is easy to see that both f and g are continuous functions. Therefore f is
a homeomorphism.

However, a bijective function can be continuous without being a homeomorphism.

Example 1.6
Let S' denote the unit circle in R?; that is ST = {(x,y) € R? | 22 + 4% = 1}, considered as a
subspace® of the space R2. Let f :[0,1) — S! be the

f(t) = (cos 2mt, sin 27t) (1.13)

It is left as an exercise for the reader to show that f is a continuous bijective function. But the
function f~! is not continuous.

U= [0, i) is an open set in [0, 1) according to the subspace topology. We want to show that f(U)
is not open in S'. That would prove the discontinuity of f~.

10
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Let p be the point f(0). And p € f(U). We need to find an open set of S in subspace topology
containing p = f(0) and contained in f(U) to show that f(U) is open in S!, i.e we have to find
an open set in V of R? such that f(0) =p € VNSt C f(U). But it is impossible as is evident
from the figure above. No matter what V' we choose, some part of V' N S would lie outside f(U).

“Subset of R? equipped with subspace topology.

11



2 Multivariable Calculus Review

§2.1 Differentiabiliy

Consider f : R? — R defined as follows:

AL i (@) # (0,0)

0 if (z,y) = (0,0) 1)

f(w,y)Z{

For the piecewise defined function stated above, note that along the z-axis y = 0. So f (z,0) = 0 for
every x € R. In other words, f is constant and identically 0 on the z-axis. Therefore,

of

2 (x,y) =0. (2.2)

y=0

Similarly, along the y-axis z = 0. So f (0,y) = 0 for every y € R. In other words, f is constant and
identically 0 on the y-axis. Therefore,

g;j (2, )

=0. (2.3)
=0

Therefore, both the partial derivatives exist at (0,0), and are equal to 0. We will now show that f is
not even continuous at (0,0). Consider the line y = x, and we shall evaluate the limit of f (z,y) as
(z,y) — (0,0) along this line.

T-x 1

1. = 1. _ = = . 2.4

So we get,

lim xz,y) =0, along z-axis;
(MHO,O)JC (z,y) g

lim z,y) = 0, along y-axis;
e on (&Y &Y (2.5)

1

lim x,y) = — , along the line y = z.
(z,y)—(0,0) fey) 2 & Y

Therefore, f is not even continuous at (0,0), let alone being differentiable. Therefore, mere existence

of partial derivatives of order doesn’t guarantee differentiability at a given point.

We will, first, consider functions whose domain is U C R™ and codomain is R. If f : U — R" is

such a function, then f (Z) = f (xl,xQ, e ,x") denotes its value at & = (xl, 22, ... ,a:") € U. We also

assume that the underlying domain of f is an open set U C R"™. At each @ € U, the partial derivative

% B of f with respect to 7 is the following limit, if it exists

(2.6)

If % is defined, that is, the limit above exists at each point of U for 1 < j < n, this defines n
functions on U. Should these functions be continuous on U for 1 < j < n, f is said to be continuously

differentiable on U, denoted by f € C! (U).

12
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n . .
We shall say that f is differentiable at @ € U if there is a homogenous linear expression »_ b; (xz — a’)
i=1

n . .
such that the inhomogenous expression f (@)+ > b; (:cZ — al) approximates f (Z) near @ in the following

sense: .
F(@) = f(@) - X bi (a8 —a)
lim =1 =0. (2.7)
F—d | & — dl
In other words, if there exist constants by, bs, ..., b, and a real valued function r (Z,d) defined on a

neghborhood V' of @ € U such that the following two conditions hold:

F@) = f(@+) bi(a'—a')+|F—a|r(#ad) and limr(Za) =0. (2.8)
i1 r—a

b;’s are uniquely determined, and they are the partial derivatives at a:

0
b; = 89{@' - (2.9)
In fact,
q L= Of i 4 o o= o
J@=1@+Y 55 (@ —d)+|7-alr (7). (210)
i=1 T=d

Actually, existence of partial derivatives and their continuity guarantees differentiability at a given
point @ € U C R".

§2.2 Chain Rule

By a differentiable curve in R”, we mean f : (a,b) — R", with f () = (2! (¢),2%(t),...,2" (1)),
where the n coordinate functions z' (¢) are all differentiable on (a,b). Recall that, for a function of
one variable, differentiability is equivalent to existence of derivative.

Here, (2" (t)) are real valued functions of one variable. And you must be familiar with the notion of

C"-differentiability of real valued functions of one variable. For example, h (t) = £3 is not C*, because
its derivative does not exist at ¢ = 0. Similarly, k (¢) = 3 is C', but not C?.

Now, let’s suppose f : (a,b) — R™ is a C" differentiable curve in the sense that all the n coordinate
functions z¢ (t) are C" differentiable. Take to with a < to < b, and f : (a,b) — U C R"™. Let g be a
C"-differentiable function from U to R. In particular, g : U — R is differentiable at f (tg) € U. Then
go f:(a,b) — R is differentiable at ¢y, and the derivative is given by:

. dat (t)

=09 (f (1)
_Z dt

t=to =1 Oz ‘f(to)

S lwon® (211)

t=to

This result is known as the chain rule for real-valued functions.
Now, we can generalize this idea to functions on subsets U of R", whose range is not in R, but in
R”. In other words, we consider F': U C R" — V C R™.

i=(a',2?...,2") eU; F(@) = (F' (%), F2(7),....F" (%)) . (2.12)

Now take a point p'€ U with coordinate (pl,p2, e ,p”). Then F (p) is a point in V' with coordinate
(F1 (p), F? (@,,Fm(p)) Now let G : V C R™ — R!. Write a point § = (yl,yz,...,ym) eV C
R"™. Then

G@)=(¢"@.@....¢' ) - (2.13)
In other words, G* : V. — R. Then we have G o F': U C R™ — R. In this case, the chain rule is
0 GZ o F BG’ OFFk
( (9) = Z @ (D) - (2.14)

13
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§2.3 Differential of a Map

Let FF: U C R® - V C R™. Let T,R"™ denote the tangent space on R™ to the point p € R™. (For
convenience, we'll drop arrows in p) The differential of F' at p is a map DF), : T,R" — T, R™. T,R"
is clearly isomorphic to R™ as vector space. Hence, DF), : R" — R™. Let’s try to see that DF), is
related to the Jacobian matrix of ' : U C R®" — V C R™.
} (2.15)
P

o o
Oxl »

" 0z
is a basis of T,R", which can be treated as R" with origin at p. Similarly,

0
{ xa F(p)} 216)

is a basis of T, R™, which can be treated as R™ with origin at F'(p).

0

7...’777‘
» ox

0
Fp) OV

0
P Oy

Geometric tangent vectors like 57 » OF % o) act on smooth functions of R™ or R™, respectively,
and spit out real numbers.
0 af
| f==—=(p) €R. (2.17)
ox* » ox*

Since DF), is a linear map between two vector spaces, in order to express DF), as a matrix, we need

to find where the basis vectors are getting mapped. So we want to find DF), ( ) This is a vector

ozt

in Tp;)R™, and hence can be written as a linear combination of a—J ’'s. Now we wish to find the

F(p)
coefficients in the linear combination.
DF, (% p) acts on f € C* (R™) and yields a real number.
0 0
DF, <8 )f —a‘ (foF). (2.18)
This makes perfect sense as fo F : U C R"™ — R. By chain rule,
0 O(foF of OF7
5| (foF)= (axi ) (p) = 3| B (2.19)
P =1 Y lrE) 9T p
"~ OF7 %) " OF7 0
=3 ;= DF( >= () — (2.20)
( ) ]Zl ‘93/] F(p) Oxtl,) o Oz 0% | ()
Therefore, DF), can be represented by the following m x n matrix:
[OF! OF! OFY | 7
Dl (p) D22 (p) - Oxm (p)
OF? OF? OF?
Dl (p) D22 (p) - Ozn (p) (2.21)
OF™ oOF™ oOF™
L o0l (p) or2 (p) - Oxm (p)_

F is differentiable at p € U C R™ if all the entries in the m x n matrix DF exist and are continuous at
p. If F is differentiable at every p € U, we say that F is of class C'. DF is called the total derivative
in the language of multivariable calculus.

Similarly, if all the second order partial derivatives exist and are continuous at p, then we say F
is twice differentiable at p. If F is twice differentiable at every p € U, we say F is of class C2. In a
similar manner, we define maps of class C". If a map F is of class C” for every r € N, we say F is
smooth or infinitely differentiable, or F' belongs in the class C'*°.

14
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§2.4 Inverse Function Theorem

Definition 2.1. Let U and V be open subsets of R”. A map F : U — V is said to be a C"-
diffeomorphism if F is a homeomorphism, and both F and F~! are of class C". When r = oo,
we just say F' is a diffeomorphism.

Theorem 2.1 (Inverse Function Theorem)

Let W be an open subset of R" and F': W — R" a C° mapping. If p € W and DF), is nonsingular,
then there exists a neighborhood U of p in W such that V = F (U) isopen and F : U — V is a
diffomorphism. If x € U, then

DFZ!

) = (DF,)~ " (2.22)

We are not going to prove it here. We will see an example now.

Example 2.1. Let’s consider the conversion of polar to rectangular coordinate. F : R? — R? is

defined by
r r cos 6
F <0> N (rsin9> ' (2.23)

OF! 9F!

Then the differential DF is

DF — or 00 _ 0989 —rsinf (2.24)
OF2 OF? sinf@ rcos@
or 00

Hence, det DF' =r. So DF|, ) is differentiable for r # 0. Choose r = V2 and 0 = 7. Then

P2 (). o35

— -1
V2

DF(\/Q%) =17 . (2.26)
— 1
V2

By the Inverse Function Theorem, there is a local inverse
-1
-1
DFY = (DFWZ%)) . (2.27)

Now, F~! is given by

Fl <x> - (V v +y2> . (2.28)

y)  \tan™' (%)
Therefore,
2z 2y z Y
2 2 2 2 2 2 2 2
DF-! = 2 $_y+y 2 xery — \/$_;'y \/:E x+y ) (2_29)
x2 + 2 22 + y? w2 +y? 2?4 y?
As a result,
1 1
1 |[V2 V2
DF(l,l) =17 1| (2.30)
2 2

One can indeed check that

1 1

_ V2 ov2 (2.31)
-1 1
2 2

15
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§2.5 Implicit Function Theorem

Let us consider the equation of a unit circle in R?; 22 + 32 = 1.

(% )
(~1,0)
(1,0)
(d)

The graph of the unit circle above does not represent a function. Because, for a given value of x,
there are 2 values for y that satisfy the equation. Choose a point, say (%, %), on the unit circle.

Then one can consider an arc (colored blue in the figure above) containing ( > that indeed

11
V22 V2
represents a function given by y = v/1 — x2. Had we started with the point <—%, —%), we could
find an arc (colored red in the figure above) containing <—%, —%) that represents a function given

by y = —v/1 — 2. The only problematic points are (1,0) and (—1,0). No matter how small an arc
we choose about these points, it is not going to be represented by a function. Because, for those arcs,
for a given x, there will be multiple values for y.

Now let us address the following 2-dimensional problem: Given an equation F' (z,y) = 0, which
is not globally a functional relationship (in the unit circle example, F (z,y) = 2% + y? — 1), does
there exist a point (x,yo) satisfying F' (xo,y0) = 0 so that there exists a neighborhood of (zo,yo)
where y can be written as y = f (x) for some real valued function f of one variable? In other words,
F (z, f (x)) = 0 should hold for all values of = in that neighborhood. In the unit circle example, this
f was given by f(z) = v1—22 or f(z) = —v1 — 22, depending on the choice of the point (zg,yo)
in the upper or lower semicircle, respectively. The Implicit Function Theorem guarantees the local
existence of such a function provided the initial point (xo,yo) was chosen appropriately. In the unit
circle example, (1,0) and (—1,0) were two inappropriate points. As required by the Implicit Function

Theorem, one must have

0
31; (z0,90) # 0. (2.32)

But in this case, for F (z,y) = 2% + y? — 1,

oF oF oF
- = 1 — —_

o s (1,0) . (2.33)

Therefore, in the light of Implicit Function Theorem, (1,0) and (—1,0) are not appropriate points on
the unit circle around which we can construct a locally functional relationship. Now we state the most
general form of Implicit Function Theorem.

16



2 Multivariable Calculus Review 17

Theorem 2.2 (Implicit Function Theorem)
Let U be an open set in R”xR™ and F' : U — R™ a C*° map. Write (z,y) = (:nl, oyt ,ym)
for a point in U. Suppose the matrix

[aFi

o o) 234

1<i,j<m

is non-singular for a point (zg, yo) € U satisfying F' (z9,yo) = 0. Then there exists a neighborhood
X XY of (zg,y0) in U and a unique C*° map f : X — Y such that in X x Y C U C R" x R™,

F(z,y) =0 < y=f(z). (2.35)

17



3 Differentiable Manifolds

§3.1 Manifolds

Definition 3.1 (Locally Euclidean Space). A topological space M is locally Euclidean of dimen-
sion n if every point in M has a neighborhood U such that there is a homeomorphism ¢ from U
onto an open subset of R™. We call the pair (U, : U — R") a chart, U a coordinate neigh-
borhood and ¢ a coordinate system on U. We also say that a chart (U, ) is centered at
peUif p(p)=0.

Definition 3.2 (Topological Manifold). A topological manifold of dimension 7 is a Hausdorff,
second countable, locally Euclidean space of dimension n.

Definition 3.3 (Compatible Charts). Two charts (U, : U — R") and (V,¢ : V — R") of a topo-
logical manifold are C°*°-compatible if the two maps

pop lipUNV) =9 (UNV) and poy i (UNV) = pUNV) (3.1)

are both C'°°. These two maps are called transition functions between the charts. If UNV is
empty, then the two charts are automatically compatible.

R™ M RrR™

Definition 3.4 (Atlas). A C°°-atlas or simply an atlas on a locally Euclidean space M is a
collection % = {(Uq, )} of pairwise C*°-compatible charts that cover M. In other words,

M=|JUa. (3.2)

Definition 3.5 (Maximal Atlas). An atlas .# on a locally Euclidean space is said to be maximal
if it is not contained in a larger atlas. In other words, if % is any other atlas containing .#, then

U = M.

Definition 3.6 (Smooth Manifold). A smooth or C*° manifold is a topological manifold M
together with a maximal atlas .#. The maximal atlas is also called a differentiable structure on
M.

In practice, to check that a topological manifold M is a smooth manifold, it is not necessary to exhibit
a maximal atlas. The existence of any atlas on M will do, because of the following proposition.

18



3 Differentiable Manifolds 19

Proposition 3.1

Any atlas % = {(Ua, pa)} on a locally Euclidean space is contained in a unique maximal atlas.
In summary, to show that a topological space M is a smooth manifold, it suffices to check that

(i) M is Hausdorff and second countable,

(ii) M has a C* atlas (not necessarily maximal).

Example 3.1 (Unit circle in the (x,y)-plane)

We'll view S' as the unit circle in R? with defining equation 22 + 32 = 1. We can cover S! with
4 open sets: the upper and lower semicirles Uy and Us, the right and left semicircles Us and Uy.
The homeomorphisms are:

z  ifi=1,2

3.3
y if i =3,4 (3:3)

pi: U= (-1,1) , (Pi(l'vy):{
o1 (z) = (:n, m) U o3 (y) = <_ 11— y2,y>

P4 ¥3
U. 4 U3

-1

_ _ )
o5 () = (a:, —V1- :cz) U, e3 (y) < -y 7?/)
Let us check that on U; N Us,

(pso@rt) (¢1(z,9)) = (P30 07" (=) = 3 (907 V1- 952) =v1-—a2. (3.4)

Since (1,0) ¢ Uy N Us, we can conclude that @30 @7 " is C°°. Also, on Uy N U,
(02007") (p1 (@9) = (w20 97") (1) =92 (—V/1=12y) = -1 42 (3.5)

Since (0, —1) & Us N Uy, we can conclude that @0y ! is C°. In a similar manner, one can check
that ¢; o cpj_l is C™ for every i,j. Therefore, {(U;,¢;) | 1 <i <4} is indeed a C* atlas on S*.

§3.2 Smooth Maps on Manifold

Definition 3.7. Let M be a smooth manifold of dimension n. A function f: M — R is said to
be O or smooth at a point p € M if there is a chart (U, ) about p in M such that fo o~ !:
e (U) CR™ = R is C* at ¢ (p). The function f is said to be C°° on M if it is C*° at every point
of M.

19



3 Differentiable Manifolds 20

p(U) CR”

The tangent space T, M at p € M is spanned by {8%1‘[), % b a%‘p}. Any tangent vector X,

can be written as a linear combination of thee basis vectors,

Xp= X'(p) - (3.6)
These vectors are maps C*°(M,R) — R given by
Xpf =D X'0) 5| F=2 X'0)55 ) (3.7)
i=1 p =1

So, it needs a well defined notion of % » f, for f € C®(M,R), i.e. f is a smooth function defined in

the neighborhood of p. This is defined as,

0
ozt

o ah—1
o 20T ), (3.8)

YA
» or

where (U, ) is a chart, p € U, and ¢ = (ml,xQ,...,x”), and foy~l:y(U) CR* — R.

Definition 3.8. Let N and M be manifolds of dimension n and m, respectively. A continuous
map F : N — M is C* at a point p € N if there are charts (V) about F' (p) € M and (U, ¢)
about p € N such that the composition

YpoFop lip(F 1 (V)NU) CR" - R™,

which is a map from an open subset of R” to an open subset of R, is C*° at ¢ (p). The continuous
map F': N — M is said to be C*° if it is C*° at every point of V.

M
F
——»'
’l/)

woFogofl

N

20



3 Differentiable Manifolds 21

Let I be an open interval of R containing 0. Recall that

0

oxH

_ 9
 Ork

f

p

(foe™), (3.9)

©(p)

where p belongs to the chart (U, ) of M. Let A : I — U C M be a curve. WLOG assume \ (0) = p.
We are interested in finding the tangent vector X, to the curve A at the point p. By definition of
tangent vector at a point on the manifold, it is a map C*° (U,R) — R.

Definition 3.9. Let f € C*° (U,R) - R, and A : I — U C M a curve with A (0) = p. Then the
tangent vector X, to the curve X\ at the point p is defined as

d

X,f = S (fory= 2

|, =gl fO®). (3.10)

t=0

Note that f o A is a map from I to R, so its derivative is defined in the usual sense. Now, if we write
folas fop topo\and apply chain rule, then

d 0 d
— (fod) = — foptopol)=— fop ™). (A (1)) . (3.11)
o | o )= ar| oy 09 @,
Here Einstein summation convention is implied. Therefore,
0 d
Xpof = — - = H(XN(t)).
pf 8xﬂpf at t:Ox (A (1))
d 0
X, = — HN(@) —| . 12
o= G| 00 5| (3.12)

§3.3 Relationship Between Coordinate Bases

Let ¢ = (2',2%,...,2") and ¢' = (2"*,2’",...,2™) be two charts defined in neighborhoods U and V'
of p, respectively. Then for any smooth function f defined in a neighborhood of p,

0 0 0
—| f=—| (foe )=+ (foy' Topop™
Okt P ork »(p) Ot »(p)
0 0
_ Y (r”ogo’ogp_l) = (ngol_l)
Ot | op) O | 1 (o=10(0))
0 0
| wee s
Ork »(p) Oz’ P
ox'” 0
p
Therefore,
0 oz’ 0
oxl| — oxr () oz’ (3.14)
p p

This is the change of basis formula for tangent vectors at a point. Now, let X, be a tangent vector
at p. Suppose its components with respect to the basis { a% ‘p} are X* (p), and its components with

g p} are X" (p). Then

respect to the basis { T

0

Xp=X"(p) ") 5w

(3.15)

9
oxH » »
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3 Differentiable Manifolds 22

Using the change of basis formula (3.14), we get

0 ox'" 0
X = XH(p) 2| = x» 1
p (p) Ok » (p) Ot (p) AV » (3 6)
Equating this with X" (p) af,y L we get
ax/l/
X" = XH# . 1
(p) = 5 (0) X* () (3.17)

Therefore, in a change of coordinates, the components of a tangent vector transform in the abovemen-
tioned way. This is often called “contravariant transformation” in many GR texts.

§3.4 Covectors

Definition 3.10 (Dual Space). Let V' be a vector space over the field F. The dual vector space
V* of V is the space of all linear maps from V to F.

If dimV = n, then dimV* is also n. If {e1,...,e,} is a basis of V, the “dual basis” of V* is
{fl,fQ, . .,f”} such that f# (e,) = 6. If X = X" e, is a generic element of V,

FUX) = f1(XVe,) = XV fl(e,) = XVoF = XP. (3.18)

Since V and V* have the same dimension, they are isomorphic vector spaces. The isomorphism is given
by e, — f#. However, this isomorphism is basis dependent. There is a more natural isomorphism
between V and (V*)*.

Theorem 3.2

If V' is a finite dimensional vector space, then (V*)
isomorphism

* is naturally isomorphic to V with the

O:V — (V) with & (X) (w) =w(X). (3.19)

Now we get back to manifolds.

Definition 3.11. The dual space of T}, M, denoted by 7,7 M, is called the cotangent space of M
at p € M. An element of this space is called a covector.

Definition 3.12 (Vector field). A vector field is a map X which assigns any point p € M to a
tangent vector X, at p. Given a vector field X and a function f, we can define a new function
X (f): M — R by p+— X, f. The vector field X is smooth if this map is a smooth function for
any smooth f.

We shall mostly deal with smooth vector fields. So unless stated otherwise, a vector field will always
mean a smooth vector field. One can also think of a vector field as a smooth map X : C* (M,R) —

C* (M, R), defined as
(Xf)(p) = Xpf, (3.20)

for a given f € C° (M, R).

Definition 3.13 (1-form). The dual notion of vector field on a smooth manifold is called 1-form.
A 1-form w assigns to each point p € M a covector w, at p.
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3 Differentiable Manifolds 23

Given a smooth real-valued function f on M, one can write down a 1-form df such that df |p eT;M
is given by
af|, (X\p) = X[ (p) = X| f. (3.21)
Note that we denote vector field and 1-form by X and df, respectively, and vector and covector by
X ‘p and df ‘p, respectively.
Now, let (:1;1, e ,x”) be a chart defined in a neighborhood of p. Then a basis of T),M is, as we know

(oo, aml
9 p,..., o |, .
The dual basis of Ty M is
{dxl p,dx2 b ,dx"‘p} . (3.22)
The action of dx“‘p on ag,, » is given by
da*| (a?:v p) - 6?6” p "= gii (p) = oM. (3.23)

Now we want to know how do the covector components w, (p) of a given covector w, = w, (p) d:r“‘p

transform under change of coordinates. We consider two different charts ¢ = (a:l, ey :c”) and ¢/ =
(2',...,2") defined in a neighbourhood of p. Relabeling = and 2’ in 3.14, we obtain

0

ox'

_Bx”() 0
p_ax’“p ox?

(3.24)

Now, both {d:vl

d:v“‘p can be written as a linear combination of dz'

,dacQ’ ,...,daz”’ } and {d:c”’ ,d:c’2’ ,...,dm’"! } are bases of T*M. Therefore,
P P P P P P p

9y

S.
p

d:L‘“|p = al da:'p‘p. (3.25)

Now, applying % ,on both sides of (3.25), we get

0 0
dxu}p (81"” ) = aﬁ dxlp‘p <8m/y
p p

Now, let’s evaluate the LHS of (3.26) by expanding &Ci,,, , using (3.24).

oz’ 0
— b
p) d.’L’ |p <8.’E/V (p) 8£UU p)

0x? 0
— I
ox'v (p) dx {P <8x"

) = a},0) = aj,. (3.26)

0
da:“ ‘p ( 8%’”

0x”
= 9z (p) 35
oxt
= 5 ). (3.27)
Therefore, aj, = g;ff, (p). Hence,
da''|, = alda|, = 2= (p) da™| . (3.28)
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3 Differentiable Manifolds 24

Consider a generic covector wy, € Ty M. We write it in both the charts as follows:

wp = Wy (p) dx“]p, (3.29)

wp = wl’, (p) dx’”‘p.

Now, using (3.28),

wp = wy (p) dl"“’p
Ox# y
= wy (p) 9 (p) dz"|

Ox# y
= oz (p) wy (p) da’ ‘p- (3.31)

p

Since w, = w), (p) da’ ”‘p, and basis decomposition is unique, from (3.30) and (3.31), we get

W (0) = 02 () () (3:32)
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4 Tensors and Tensor Field

§4.1 Tensor

Definition 4.1. A tensor of type (r,s) at p is a multilinear map

T| Ty (M) X T (M) := T (M) x -+ x Ty (M) x T, (M) % -+ x T, (M) 5 R, (4.1)

~
r factors s factors

Multilinear means the map is linear in each argument.

Example 4.1

A tensor of type (0,1) is a linear map T, M — R, i.e. it’s a covector. A tensor of type (1,0) is a
linear map T, M — R, i.e. it is an element of (T;M )* But (T;M )* is naturally isomorphic to
T,M. Hence, a tensor of type (1,0) is a tangent vector. Given a vector X, € T,M, we define a
linear map T;M — R by

p = 1p (Xp) €R, (4.2)
for any n, € Ty M.
Example 4.2
We can define a (1,1) tensor § by
Op : Ty M x TyM — R, with 3, (wp, Xp) = wp (Xp) , (4.3)

for any wp, € Ty M and X, € T,M.

Definition 4.2. Let T‘p be a tensor of type (r,s) at p. If {i}p} is a basis for T, M with dual

oxH

basis {dx“‘p} of TyM, then the components of T’ }p in this basis are the numbers

) . (4.4)

Remark 4.1. Tensors at p can be added together and multiplied by a scalar. Hence, T‘p’s form a

0

p’ axl’l

0

sy
» ox

T'ulm'urul...us (p) - T‘P (dxul |p’ T ,d.CC'uT

In the abstract index notation, we denote T‘p by THL-Hr, . (D).

vector space denoted by 7, (r,s). T }p’s can be written as a linear combination of the following vectors

0

o | (4.5)

v1 Vs
p®dx ‘p@ ® dx »

OxHr

The coefficients of such linear combinations are precisely the numbers T#1--#r,, , (p). The vectors of
the form 4.5 form a basis of .7}, (r,s). The action of these basis vectors on T, (M)" x T}, (M) is given
0

by
0
P1 —_—
((91:#1 » Oxhr » P) (de‘ p p’uw 0x%s »

:5p1u1...6p’f,ur61110_1...6”30_8‘ (46)

0

Pr
..., dx P’ Bpot

®d2"| © - ©de”
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4 Tensors and Tensor Field 26

If dimT,M = T;M = n, then there are n'** basis elements of .7, (r,s). Therefore, dim 7, (r,s) =
n"ts.

Remark 4.2. By “tensor” physicists mean the components T#1#r,, , (p) of T|p.

Transformation of Tensors Under Change of Coordinates

Consider two charts ¢ = (z!,22,...,2™) and ¢/ = (2/!,...,2™) about p € M, and take an element
T’p € I, (r,s). Then

0
— HL- e V1 “e Vs
Typ =T s (P) Furr | ®® 5 ) ® dx }p ® - ®@da" . (4.7)
This is the expression of T!p in the chart ¢. In the chart ¢, the expression for T}p is
T|, =17 9 lg..e ®da”| ®- - @ da'’ (4.8)
p P1---Ps Orlo ) ox!or , z D x p’ .

Using 3.14 and 3.28 in 4.7, we get

0
— THApr v vs
Tl =T i (0) | @ ® | @], @ @da],
T . S .
o' Ox"i 0
— THLhr ! I Ips
=T O 5o 0 M 50 ) 5| @@ 5| @da | @ e da|)
i=1 j=1 P P
(4.9)
Combining 4.8 and 4.9, we get
T . S .
Oz’ Oxi
T/UI.”UTpL..ps — TM1...MTV1MVS (p) (p) . (410)

OxMi
i=1

§4.2 Tensor Field

Recall that a tangent vector at p € M is a map X‘p : C*°(M,R) — R, ie., X’pf is a number given
f e C>®(M,R). A vector field X, on the other hand, is the map X : C*> (M,R) — C*> (M,R) given
by

(XF)(p) =X, [ (4.11)

So X f is a smooth function on the manifold.

Definition 4.3. An (7, s) tensor field is a map T that maps any point p € M to an (r, s) tensor

T|p at p. Given r 1-forms 7,...,n, and s vector fields Xi,..., X, we can define a function
M — R by

P T, (il ool Xl Xl (4.12)
The tensor field T is called smooth if this function is smooth for any r 1-forms n;,...,n, and s

vector fields X1, ..., X,.

Commutator of two vector fields is again a vector field. In other words, given two vector fields X and
Y, [X,Y] defined by
(X, Y]f =X (f) =Y (X)) (4.13)
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4 Tensors and Tensor Field 27

is also a vector field. Let us now compute the components of this vector field in a given chart
(¢!, ")
T, ...,

(X, Y] f=X (Y (f) =Y (X))

0 of 0 of
—xr 2 (yv —yv w
=% Ox# (Y 835”) Y Ox” (X 83:“)

L0Y" of L xhyv 0% f _YVOXﬂai_ vy 0% f
oxt JxV oxHoxY oxV Oz OxvOxH
L0Y" of _YV(?X“ of
oz# Oxv ox? OJxt
L oY H LOXPN Of
= (X D7 -Y 855”) pye (4.14)
In the component form,
of
XY XY 4.1
X V) f =) L (1.15)
Combining 4.14 and 4.15, we get
oY+ oXH
X, Y =X" —-Yv . 4.1
X, Y] oxV oxV (4.16)

Remark 4.3. Since the components of % in the coordinate basis are either 0 or 1, it follows that

o 0
[W, W] = 0. (4.17)

§4.3 The Metric Tensor

Consider a curve x (t) in R? with a < ¢ < b. The length of this curve is

/dt‘dx

Motivated by the above scenario, we define the metric tensor as follows.

dx dx (4.18)

Definition 4.4 (Metric Tensor). A metric tensor at p € M is a tensor of type (0,2), i.e. it is a map
g‘p : TyM x T,M — R with the following properties:

1. (Symmetry) For X,,,Y,, € T,M, g‘p (DG W) = g|p (Yp, Xp).

2. (Non-degeneracy) If g‘p (Xp,Y,) =0 for all Y, € T,M, then X, =0.

Remark 4.4. In the chart x*, g} = gu (p x“‘ ® dz¥ ‘ g, as a (0,2) tensor field, can also be
written as g = g, do” ® dz¥. Since the components 9w (p) of g’p form a symmetric matrix (from

the symmetry of metric tensor), such a matrix can be diagonalized following an appropriate choice of
basis vectors. Non-degeneracy implies that none of the diagonal elements will be 0. Because, if g; =0
after diagonalization, we take X, € T, M such that X* =1 and X’ = 0 for j # i in that basis. Then

9], (Xp,Yp) = g XY = gi, XY = i X'V =0, (4.19)

for any Y, € T,M. This contradicts non-degenracy. So none of the diagonal elements are 0. Then
after scaling the basis vectors appropriately, we can make the diagonal elements +1. Such a basis is
then called an orthonormal basis.

In differential geometry, one is interested in Riemannian metrics. For such metrics, the signature is
+ 4 - -4, i.e., all diagonal elements are +1 in an orthonormal basis. But in general relativity, we are
interested in Lorentzian metrics, i.e., those are with signature — + +--- +.
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4 Tensors and Tensor Field 28

Definition 4.5. A Riemannian (Lorentzian) manifold is a pair (M, g) where M is a Rieman-
nian (Lorentzian) manifold and g is a Riemannian (Lorentzian) metric tensor field.

On a Riemannian manifold, one can now define the length of a curve as in R3: if A : (a,b) — M is a
smooth curve with tangent vector X ‘ NOL then its length is

b b
/a dt g, (X\/\(t),XL\(t)) - /a dt g (X, X) (A (1)) (4.20)

Example 4.3
In R”, the Euclidean metric is

g=dz'®@dz! +d2? ®dz? + - + dz" ® dz™ (4.21)
(R™, g) is called the Euclidean space. A coordinate chart which covers all of R™ and in which the
components of the metric are diag (1,1,...,1) is called Cartesian.
Example 4.4

In R?*, the Minkowski metric is
n=—dz’ ® dz° + dz! ® dz! + dz? ® dz? + dz® ® da®. (4.22)

(R4, 77) is called the Minkowski spacetime. A coordinate chart which covers all of R* and in which
the components of the metric are 7, = diag (—1,1,1,1) is called an inertial frame.

Example 4.5
On S2, let (6, ¢) denote the spherical polar coordinate chart. The round unit metric on S? is

g =df ®df + sin? 6d¢ ® de. (4.23)

In the chart (6, ¢), we have g, = diag (1,sin?#).

§4.4 Lorentzian Signature

On a Lorentzian manifold, we take basis indices u, v to run from 0 to n — 1. At p € M, we choose an
orthonormal basis {e,} so that the matrix with entries of the metric components gets diagonalized,
ie.

q, (e“\p,eyw = N = diag (-1,1,1,...,1). (4.24)

Such a basis is not unique. Let {e“p} be any other such basis with

/

eﬂ‘p

= (A7)" e, (4.25)

Then we have

Nuw = g‘p <6L p,ef,‘p) = g‘p ((A*I)nga » (A*l)PVep|p>
= (A7) W (A7 gl (ool ) = (A7) (A7) v
S Nop = nw,A“JAZ. (4.26)

4.26 is precisely the defining equations of a Lorentz transformation in special relativity. Hence, different
orthonormal basis at p € M are related by Lorentz transformations. The A’s are actually the A’s we
see in special relativity.
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4 Tensors and Tensor Field 29

Definition 4.6. On a Lorentzian manifold (M, g), a non-zero vector X, € T,M is timelike if
g‘p (Xp, Xp) <0, null (or lightlike) if g‘p (Xp, Xp) = 0, and spacelike if g‘p (Xp, Xp) > 0.

Remark 4.5. In an orthonormal basis at p, the metric has components 7,,. So, the tangent space
at p has exactly the same structure as Minkowski spacetime, i.e., null vectors at p define a light cone
that separates timelike vectors at p from spacelike vectors at p.

§4.5 Geodesic Equation

Let p and ¢ be points connected by a timelike curve, i.e. the tangent vectors at all point of the curve
are timelike. There are infinitely many timelike curves between p and q. The proper time between
p and ¢ will be different for different curves. It’s a natural question to ask which curve extremizes
proper time.

Consider timelike curves from p to ¢ with parameter u such that A (0) = p and A (1) = ¢q. The
proper time between p and ¢ along such a curve is given by the functional

1
T[N = /0 du G (z (u), 2 (u)), (4.27)

where G (z ( =v—9w (A zH (u) ¥ (u). We are writing x# (u) as a shorthand for x# (A (u)).
The curve that extremlzes proper tlme must satisfy the Euler-Lagrange equation.
d (oG 0G
——=0. 4.28
<8x“) Oz (4.28)

Recall that

G(z(A(u)), #(A(u))) = \/—gau(A(U))«’i?"(A(U))ﬁC”(/\(U)) (4.29)
oG _ 1 e
S = 20 L 9ov00E” = 9out? )]
1 v .
= ﬁ [_guuw — Goul ]
1 v .
= % [_guux — Guol ]
1 Juv . v
2G( 29 d") = - & (4.30)
oG 1 o
@ - % [*gau,,ux €z ] : (431)
Now, recall
dr dar(A(uw)) da’ (AM(u)
i \/ Guv(A(uw)) ™ P G. (4.32)
So % = Gd%. Now Euler-Lagrange equation reads
d Juv .y 1
W (G )+2G9wf” =0
d x" dz”
= O ( d > 2G9"”“ @ Y 7Y
. d G dz? dz” 0
“ar MR e
dz 1 dz? da¥
dr < Ydr ) 2901/’“ dr dr 0 (4.33)
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Hence,
A2z d dzv 1 dx? da¥

O R e P R P
d%z¥  9gu, dzf dav 1 dx? dz”

= I T ar ar 2% A dar
A2z dxPdz¥ 1 dx? dz¥
- A vp 7 1 — =Y9ov ——— =0. 4.34
I dr2 + Guvp dr dr g Iprii dr dr ( )
Now, observe that
09y da? da” _ Oy, do” da? (1.35)

dzp dr dr  Oxv dr dr’
Therefore, we write

defda® _ 109 dzPdz” 10, da” dz?
Gruwrp dr dr 2 9xr dr dr 2 Ozv dr dr

1 dz¥ dz”
=~ (qu ) — ——. 4.36
9 (G + Gupw) dr dr ( )
Now 4.34 reads
d2zv N dzfdz” 1 dzf dz”
Gpuw dr? Gurp dr dr ZQW’“ dr dr
d?zv 1 dxf da”
= 9w g2 Ty (Guvp + Gupw = Gupu) T dr 0. (4.37)
Contracting with g7 on both sides, we get
A%z 1 dz? dx¥
QUNQMVW + 590# (Guvp + Gupw — Gup,u) G dr
%z 1 dz? dx¥
= 0y 12 T 590” (Guvp + Gupw = Gup,p) O dr
re,
d2z° dz¥ dz”
L — o ——=0. 4.38
dr2 t i dr dr ( )

I'7,’s are called Christoffel symbols, and 4.38 is called the geodesic equation.

Remark 4.6. In Minkowski spacetime, metric in an inertial reference frame is constant. Therefore,
I'7,’s are all 0. Therefore, the geodesic equation reduces to

d2x°

which is the equation of motion of a free particle.
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5 Connection

§5.1 Covariant Derivative

Motivation

Partial derivative of a function belonging to C*° (M, R) is denoted by

of
fu= PR (5.1)
This is the component of a 1-form df.
9 v
df|, = 507 pfd:c - (5.2)
So gc . (p) are the components of a covector d f ‘p. We can restate this fact by saying that the gradient
—the partial derivative— of a scalar is a (0, 1) tensor. However, the partial derivative of a 1-form does
not transform like a tensor. Under a change of coordinate, the components of T, = g‘;ﬁ transform as
follows:
y o , 0x7 0 [0xFf
TV = wy = wP
e Qalm ox'm dxo \ Oz'v
0x? Oz 0w, 0x°  0%xr
= w
ox'* 9z Ox° P Ox'k OxoOx”
027 Ox* 0x°  0%xr

Oz 9l P? T W Ox'H Oxo Oz’ (5-3)

The second term in 5.3 confirms that 7,, does not transform as a tensor components. In a similar
manner, one can show that given a vector field V, T#, = V¥, does not transform as tensor compo-
nents.

Definition 5.1. Let X (M) be the space of all vector fields on M. Then a covariant derivative

on M is a map
V:X(M)xX(M)—-X(M), (X,Y)— VxY, (5.4)

satisfying the following properties:
1. VixqgvZ = fVxZ 4+ gVyZ, where f,g e C*® (M) and X,Y,Z € X (M).
2. Vx Y+ 2)=VxY +VxZ.

3. Vx (fY) = fVxY + (Vxf)Y, where Vx f is defined as Vx f = X (f).

Remark 5.1. If Y is a (1,0) tensor field (a vector field), then VY can be considered a (1,1) tensor

field in the following way
(VY) (0, X) =n(VxY) € C* (M,R). (5.5)

In other words, V increases the covariant index by 1. The (1,1) tensor field VY has components
(VY)*,, also denoted by Y%,.

Consider 5.5 again.
(VY) (0, X) =n(VxY) = (VY)"unu X" = n, (VxY)".
(VY= (VY XY =YEX". (5.6)

V is also called the connection.
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Definition 5.2. In a basis {%}, the connection components I'), are defined by

0 0
—TH
Vagp S F”"@xl" (5.7)

Remark 5.2. In general, the connection components are not the same as Christoffel symbols. However,
we shall see that the Christoffel symbols are the components of a very special kind of connection, called
the Levi-Civita connection.

Then

Now, consider two vector fields X = X “a% and Y =YY% 2

oxv*

0 0
_ v oYM v
VxY = vX“a%u (Y 8.%’”) =X vagu (Y 33:”)
0 oYy o
— YAryV w
XY va%u oxv X oxH Oxv
0 aYe? o
= XH*YVT?e — + XH —
VE Do ozt Ox°

oye 0
= [ X* XHY¥TY .
( OxH * ”“) ox°

)

. o _ yp
L (VxY)T = XP o

+ X“Y’T,‘IH. (5.8)
Furthermore,

oY °
oxH

g v (o g 8YU g 14
+I9Y ) Xt = Y5, = (VY) = 5o + T, Y (5.9)

@xy = (

In other words,
Yo, =Y+, Y" (5.10)

Exercise 5.1. Show that under a change of coordinates, I'),, does not transform as a tensor field, but
Y?, transforms as a tensor field.

Now, along the same lines, V can be defined on tensor fields by Leibniz property. If T is a tensor
field of type (r,s), then VT is a tensor field of type (r,s + 1). For instance, if n is a 1-form, then for
any vector fields X and Y, we define

(Vxn) (Y):=Vx (n(Y)) =n(VxY). (5.11)

Vxn is another 1-form. It acting on Y gives out a smooth function. It is not obvious that VY is
indeed a (0,2) tensor field. Let’s have a closer look.

(Vxn) (Y)=Vx(n(Y)) —n(VxY) = Vx (uY") = nu (VxY)"

oY H
= X (1,) Y* 40, X (YH) =1, [X”W + I8 YPXY
= X (nu) Y¥ =T m,YP XY
In
= <X” 8;: - Ffwan”) YH
Therefore,
v 677“ P v
(Vxm), = X750 = ThnpX (5.12)
on
- <6x5 - FZu”p> XV
(vn)uy = nllzﬂ/ = nu,u - Fsznp (513)
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5 Connection 33

For an (r, s) tensor field T', the Leibniz rule for covariant derivative is

VX(T(nla 7777"7Y17"' 7}/19)): (VXT) (7717”' 7777"7Y17"' 7Y:9)
+T(VX771, 7777"7}/17... 71/;)++T(7717 7VX77T7Y17"' 7}/5)
+T(7717 777T7VXY17“' 7}/;)++T(fr]1, 777T7Y17“' 7VXYS)7
(5.14)

where 7; are 1-forms and Y} are vector fields. 5.14 allows us to define V on tensor fields. Therefore,
(VxT)! ki, .., is given by

0 0

# '”l""f‘ J— P ” — LR e

(VXTY P o, = (VXT) <d‘”‘”’ W 0:U>

0 0

_ IR w2

VX (T <d$ ) ) dx ) 8331/1 ) ) axl,s >>
_ E T <dx’“, e 7Clxlu—17Vdem’da,;liiﬁtl7 R ,dx“", 78 e ’78 >
— oz oxVs

: 9 9 o 0 9
— Bl Hr
;T (dx ) ,dl' ) 8~TV1 ’ ) 8x1/j,1 7VX axz/j ’ 8$Vj+1 ) ) 8£CVS> .

(5.15)
Now,
0 0
M1 Hr L.
Vx <T (da} L ,dx " Ot 781”/5)>
» o
Vg () = ()
=THhr e XP. (5.16)
We have seen earlier that
Vxn= (VXW)M da# = X (n,) dat — T, , X n dat. (5.17)
If we take n = dz#, 1, = 0 unless p = ;. Plugging it into 5.17, we get
Vxdat = X (n,) dat =T} XPn, dat' = =T XP6l dat' = T8 XP da”. (5.18)
Therefore,
. . . 0 0
T dg", -+ dat=t Vxdat dgtitt - datry —— - —
oz oxYs
i . . 0 0
=T (dl’ﬂl, e ,d.l?ul 1, _ngXP dxg,dm” +1, s ,dfl?” ,%, s ’a];l’?)
0 0
=— Fﬁ,‘;,Xp T <dx”1, coedatit dx?, datett - datr, —— ) e >
loknd’ OxYs
= — D rrtimotoie, o, XP. (5.19)
Moreover, we have
0 0 o 0
- - p
X g = VXPB% B ijpX ped (5.20)
Therefore,
0 0 0 0 0
1oL Hor . S
g <d$ e, de, oxv’ 9gvi1 X 9gi Qgvitt) 8:}6”3)
0 0 0 0 0
— Mo Hor g P - ...
- (dx e Oz’ 7 QxYi—t Lo X Oz’ Jzvitr’ 7 83:’“)
0 0 0 0
—T° Xx°P IR pr 2
— b X (dx U e G e e 636”8)
= ngpT’“"'“TVl...yj_lgyjﬂ...ysXp. (5.21)
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Plugging 5.16, 5.19, 6.43 into 5.15, we obtain

T S
1 . . T P o
(VXT)N Hr Upevs = Tﬂl lurl/l"'VsJ) XP+ E I‘g'szﬂl Hi—10 i1 #TVl"'Vs XP_ E FlljpTlul HTVl"'ijlUVjJrl"‘Vs Xp'
=1 J=1

s S
TR — THLp Hhi TP = 1O i1 _ o ppLp
A " evgp = 1 T v T E T 1K " s E L7 ,T T UV 1OV g1 s

i=1 j=1
(5.22)
§5.2 Torsion Freeness
Recall that (VxY)* = Y5 X".! In a coordinate basis, the components of (VxY — Vy X) are
XYYl —YVXh = XV (YL +ThY?) =YV (X4, 4+ T4, X")
= X"Yh - Y'XE + T, XYYP — Ty XPYY
=[X, Y]+ (F‘;l, - Fﬁp) Xvy?r
=[X, Y]+ 2F’[‘py]X”Yp. (5.23)
Now, consider 5.13 again.
(VU)W = Vully = Ny = My — Fﬁunp
Take V = df here. Then the LHS is
of
\% (df)u =V, i) = VoVuf=f . (5.24)
On the other hand, the first term on the RHS is
0 0 af
=2 (. >: e R 5.25
T, ox? << f)“ ox? (837“) I ow ( )
Therefore, we have
f O f v Pny P (5'26)
Although f ., = f . holds, f .. # f ., in general. In fact, from 5.26, we get
f?[l“’} = _Fﬁw} f,p- (527)

5.27 guarantees that f ., = f ., if and only if I'), = I'),,. This condition is called the torsion freeness
of the connection.

Definition 5.3. A connection V is torsion-free if V,V,f = V,V,f for any function f. From 5.27,

it is equivalent to
FZV = Fﬁu (5.28)

in a coordinate basis.

Lemma 5.1

For a torsion free connection V, given two vector fields X and Y, VxY — Vy X = [X,Y].

Proof. From 5.23, we have

(VY = VyX)! — [X, Y] =20t X"YP, (5.29)
which is 0 if V is torsion free. Therefore, VxY — Vy X = [X,Y]. [ |

Remark 5.3. We've just seen that if the connection is torsion free, the second covariant derivatives
of a scalar function commute. However, the second covariant derivatives of a tensor field, in general,
do not commute even though the coonnection is torsion free.

!Note that these formulations don’t require a metric on the manifold.
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§5.3 The Levi-Civita Connection

Theorem 5.2 (Fundamental Theorem of Riemannian Geometry)

Let M be a manifold with a metric g. There exists a unique torsion-free connection V such
that the metric is covariantly constant, i.e. Vg = 0. This connection is called the Levi-Civita
connection.

Proof. Assume such a connection exists. Let X,Y, Z be vector fields. Then we have

X(g(V,2))=Vx(g(Y,2)) =(Vxg) (Y, 2) +9(VxY,Z) +g(Y,VxZ)

=9(VxY,Z)+g(Y,VxZ), (5.30)
because Vg = 0. Similarly,
Y (9(2,X)) = (V2 X) + (7, Yy X). 5.32)

5.30—5.314-5.32 gives us

XY, 2)+Y (9(Z, X)) - Z(9(X,Y))
=g9(VxY,Z)+g(Y,Vx2Z)+g(VyZ,X)+g(Z,VyX) —g(VzX,Y) — g (X,VzY)
= g(VXY—i-VyX, Z) —|—g(VXZ — VzX,Y) +g(VyZ - VZY) . (5.33)

Torsion-free condition implies VxY — Vy X = [X,Y]. Therefore,

XY, 2)+Y (9(2,X)) - Z(9(X,Y))
= 9(2VXY_ [XvY}vZ)"i_g([XvZ]?Y) +g([Y7Z]7X)
= QQ(VXY7Z) —g([X,Y},Z) —g([Z,X],Y)—i—g([Y,Z},X). (5'34)

L9 (VxY,2) = L[X (9, 2) 4+ ¥ (9(Z,X) ~ Z (g (X, V) )
+9(1X,Y],2) +9(12.X],Y) - g (I¥, 2], X) .

5.35 is known as the Koszul formula. If there is another such connection 6, then it also satisfies 5.35.
Therefore,

g(vXY,Z):g(%XY,Z) — g<VXYf€XY,Z) —0, (5.36)

for every Z € X (M). Therefore, by the non-degeneracy of the metric, VxY = VxY, so the connection
is unique (if it exists). Now we need to verify that such a connection exists. For that purpose, it suffices
to show that any V : X (M) x X (M) — X (M) satisfying 5.35 is indeed a connection. First, we shall
show that V;xY = fVxY for a smooth function f.

29(VyxY, Z2) = fX(9(Y, 2)) + Y (9(Z, f X)) = Z(9(f X, Y))
+9([fX,Y], 2) + (12, f X].Y) — g([Y, Z], f X)
=X (9(Y,2)) +Y(f9(Z, X)) = Z(f9(X,Y))
+9([fX,Y], 2) +9(12, f X].Y) — g([Y, Z], f X)
=X, 2)+ fY(9(Z2,X)+Y (f)9(Z,X) - fZ(9(X.Y)) = Z(f) 9(X,Y)
+9(f X, Y], 2) +9(12, F X1, Y) = fg([Y, Z], X) (5.37)
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[FX,Y]=fIX.Y] =Y (f) X, and [Z, fX] = f[Z,X] + Z (f) X. Therefore,

29(VyxY, 2) = fX(g ( Z)+ Y92, X)) +Y () 9(Z,X) - f2(g(X,Y)) = Z(f) (X, Y)
+o(fIX Y] =Y (f) X, Z)+g(f[Z,X]+Z( ) X,Y) = fy(lY, 2], X)
=X, 2)) + fY(9(Z, X))+ Y (f)9(2, X) = f Z(9(X,Y)) = Z(f) 9(X,Y)
+f9((X,Y],2) =Y (f)g (X Z)+ f9(12, X] Y)+2Z(f)g(X,Y) = fe(lY, 2], X)
=X (Y, 2)) + fY(9(Z X)) - [ 2(9(X,Y))
+19(X, Y], 2) + fe((2, X] Y) - fe(lY, 2], X)
=2fg(VxY,Z) =29 (fVxY,Z). (5.38)

So, g(VyxY — fVxY,Z) = 0 for every Z € X(M). Hence, by the non-degeneracy of g, VyxY =
fVxY.

29 (Vx+x,Y,Z) = (X1 + X2) (9(Y, Z)) + Y (9(Z, X1 + X2)) — Z(9(X1 + X2,Y))
+g([X1 + X2, Y], Z) + 9([Z, X1 + X2], V) — g([Y, Z], X1 + X2)
=X19(Y, Z) + X29(Y, Z) + Y (9(Z, X1)) + Y (9(Z, X2))
= Z(9(X1,Y)) = Z(9(X2,Y)) + 9([X1,Y], Z) + g([X2, Y], Z)
+9([Z, X1].Y) + 9([Z, X2], Y) — g([Y, Z], X2) — g([Y, Z], X2)
=29(Vx,Y,Z) +29(Vx,Y,2)
=29(Vx,Y +Vx,Y,7Z). (5.39)

So, ¢(Vx,+x,Y —Vx,Y = Vx,Y,Z) =0 for every Z € X (M). Hence, by the non-degeneracy of g,
Vxi+x,Y = Vx,Y + VY. By combining this with V xY = fVxY, we get

Vixit+hxY = iVx,Y + faVx,Y. (5.40)
Now, we shall show that Vx (Y1 4+ Y2) = VxY1 + VxYa.

2g(Vx (Y1 +Y2),2) = X(g(Y1 + Yo, 2)) + (Y1 + Y2) (9(Z, X)) — Z(9(X, Y1 + Y2))
+9([X. Y1 +Y3], Z) + 9([Z, X|, 1 + Y2) — g([Y1 + Y2, Z], X)
=X (g1, 2)) + X(9(Y2,2)) + Y1(9(Z, X)) + Y2 (9(Z, X))
= Z(9(X, Y1) = Z(9(X,Y2)) + g([X, Y1), Z) + g([X, Y], Z)
+9([Z, X, Y1) + 9([Z, X], Y2) — g([V1, Z], X) — g([Y2, Z], X))
29 (VxY1,7) +29(VxYs, Z)
=29 (VxY1 +VxYa2, 7). (5.41)

So, g(Vx (Y1 +Y3) —VxY) — VxYs, Z) =0 for every Z € X (M). Hence, by the non-degeneracy of
g, Vx (Y1 +Y3) = VxY; + VxYa. We are only left to show that Vx (fY) = fVxY + X (f)Y.

29(Vx (1Y), 2) = X (9(fY,2)) + fY (9(Z, X)) — Z(9(X, fY))
+9([X, Y], Z) + 9([Z, X], fY) — 9([fY, Z], X)

=X(fg9(Y.2)) + fY(9(Z, X)) — Z(f 9(X,Y))

+9(f[X, Y]+ X ()Y, 2)+ fg([Z,X], ) g(fIY. Z] - Z(f)Y,X)
=X, 2)+ X (f)g(Y,Z2)+ Y (9(Z, X)) - fZ(9(X,Y)) = Z () g(X,Y)

+fg([X,Y],Z)+X(f)g(Y,Z)+fg([ZXL) fa(lY: 2], X)+ Z (f) g(Y, X)
=2fg(VxY,Z)+2X (f)g(Y,2Z)
=29 (fVxY+X(f)Y,Z2). (5.42)

So, g(Vx (fY) — fVxY — X (f)Y,Z) =0 for every Z € X (M). Hence, by the non-degeneracy of g,
Vx (fY)— fVxY = X (f)Y. Therefore, V is indeed a connection. [ |
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Let us now compute V in a coordinate basis. From 5.35, we get

v, 2 9\_1190 0 93\, 09 0 9O \\_ 09 ( (9 O
g a7 0z 0zo )~ 2 |0z \I \ 927 927 02w \I\ 820 9zr 027 \I \ 9zr’ 0z

.0 0 1
0 (Vg o ) = 5 G+ G~ ) (5.43)

The LHS is nothing but '], ,g--. So, contracting with g"?, we get

1
guarqu—pgfa = 59“0 (gua,p + Gopv — gpy,a) . (5.44)

The LHS is 5#T5p = I‘ﬁp. Therefore,

1 ag
Pﬁp = 59# (gl/a,p + 9op — gpu,a) . (5.45)

This expression is exactly identical to the expression of Christoffel symbols we have seen earlier.
Therefore, the Christoffel symbols are the components of the Levi-Civita connection.

§5.4 Geodesic and Parallel Transport

Previously we considered curves that extremize proper time between points of spacetime, and showed
that this gives the equation

d2zH dx¥ da?
rs — =0, 5.46
T2 T () g (5.46)
where 7 is the proper time along the curve. The tangent vector to the curve has components X* = %.

This is defined along the curve. We extend X* in the neighborhood of the curve so that X* becomes
a vector field and the curve is an integral curve of this vector field.

drz ~ dr

A2zt d [dat dXx*# dz¥ 0X* y
<dr> =4 (x (7)) = P = X" X1, (5.47)

Then 5.46 becomes

XVXH +TH XVXP =0
= XY (X" +TH,X°) =0
= X"X!, =0 = VxX =0 (5.48)

Here V is the Levi-Civita connection.

Remark 5.4. (On parallel transport) Let X* be the tangent vector to a curve A (f). A tensor field
T is parallely transported along the curve if Vx7T' = 0. In particular, a vector field Y is parallely
transported along a curve A (¢) (which is the integral curve to a vector field X) if VxY = 0. When
a curve A (t) is a geodesic, the tangent vector field to A (¢) is parallely transported along A (), i.e.
VxX =0.

Definition 5.4 (Affine parametrized geodesic). Let M be a manifold with a connection V. An
affinely paramtrized geodesic is an interal curve of a vector field X satisfying Vx X = 0.

Remark 5.5. Consider a curve A\ with parameter ¢ whose tangent vector field satisfies Vx X = 0. Let
u be some other parameter so that ¢ = t(u) and 3—2 > 0. Then the tangent vector becomes

B daH dt dz#

yr= S T 4
du du dt ’ (5-49)
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where h = %. SoY =hX. Now,
VyY = Viux (hX) = hVx (hX) = X (h) hX + h®VxX = X (h) Y. (5.50)

X = X152

dzr > SO

Oh  dz* Oh  dh
ozt~ dt dz+  dt’
The new parameter is affine, i.e., VyY =0, if X (h) = 0. Then h is a constant, so u and ¢ are related
by u = at + b where a and b are constants and a > 0.

X (h) = X*

(5.51)
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6 Curvature

§6.1 Riemann Curvature Tensor

Definition 6.1. The Riemann curvature tensor R%,., of a connection V is defined by
R%qZ°X°Y¢ = (R(X,Y) Z)*, (6.1)
where X,Y, Z are vector fields, and R (X,Y") Z is the vector field

R(X,Y)Z=VxVyZ —-VyVxZ — V[Xy]Z. (6.2)

Recall that tensor fields are multilinear maps. Therefore,
R:X(M)xX(M)xX(M)—X(M) (6.3)
is linear in all 3 vector fields X, Y, Z. Let us verify this.
1.We shall show that R (fX,Y)Z = fR(X,Y) Z.
R(fX,Y)Z=VyxVyZ -VyVixZ —VixyZ
= fVxVyZ = Vy (fVxZ) = Vixyv(HxZ
= [VxVyZ - fVyVxZ =Y (f)VxZ - fVixy1Z+Y ([)VxZ

= [ (VxVyZ - VyVxZ - Vix 1 Z)
= fR(X,Y) Z. (6.4)

2.From the definition (6.2) of the Riemann curvature tensor, one immediately finds that R (X,Y) Z =
—R (Y, X) Z. Therefore,

R(X,fY)Z=-R(fY,X)Z=—fR(Y,X)Z = fR(X,Y) Z. (6.5)

3.1t remains to show that R(X,Y) (fZ) = fR(X,Y) Z.

R(X,)Y)(f2) =VxVy (fZ2) = VyVx (fZ) = Vixy) ([ Z)
=Vx(fVyZ+Y(f)Z)-Vy ([VxZ+X(f)Z) - fVixyZ - [X.Y](f)Z
=fVxVyZ+X()VyZ+X (Y (f)Z - fVyVxZ =Y (f)VxZ
Y (X (f)Z—-fVxnZ - X, Y](f)Z
= f(VxVyZ - VyVxZ —VxyZ)
= fR(X,Y)Z. (6.6)

Since R(X,Y)Z =—-R (Y, X) Z, we have

(R(X,Y)Z)*=(-R(Y,X) Z)* = R%qZ°X°Y% = —R%.42°Y°X?
= R%qZ"XYV? = —R%y. 2" XY (6.7)

Since this is true for all X,Y,Z € X (M),

In other words,
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Now let us compute Riemann curvature tensor in a coordinate basis. Choosing X = -2, Y = &%, Z =

0 o
3.7 We get
0 g 0 0
Ml/ AT X7Y Z = a9 o
By OxH R ( ) R (8:):P 8:1:") oxV
0 0
=Vt Vot oo Vet Y o ar Y labiat] 5
. 0 - 0
o () v ()
or7 o 0 ory,, o 0
=X ry,re — L -TIy e —
oxP Ox™ vty ozt O0x° Ox7 VPTTI Dk
ory, ory 0
— vo T B _ e _ 1T ) 2
= ( 5P +17,1%, 5” FVPFTU> D (6.10)
Therefore,
ort, ort, i
RV py = B2r " B + 10,18, =17, I, (6.11)

§6.2 Normal Coordinates

Theorem 6.1

Let M be a manifold with a connection V. Let p € M and X, € T,M. Then there exists a unique
affinely parametrized geodesic through p and tangent vector X, at p.

Proof. We choose a coordinate chart z* in a neighborhood of p. Let X} be the components of X, in
this coordinate basis. Consider a curve A parametrized by 7. Then the components of the tangent
vector to the curve are

d(zH o N)

Xt = 6.12
dr ( )
The geodesic equation is
d? (z# o \) d(z¥ o) d(zP o))
— 4T =0. 1
T, (e (1 () S Y (613)
There are n differential equations, each with the initial condition
d(zt o))
(zF o X)(0) =z (p) , a4 » =X/ (6.14)

Then existence and uniqueness of z* o A is guaranteed by the theory of ordinary differential equations.
|

Definition 6.2 (Exponential Map). Let M be a manifold with a connection V. Let p € M. The
exponential map exp : T,M — M is defined as the map which sends X, to the point unit affine
parameter distance along the geodesic through p with tangent X, at p. In other words, if A is the
unique geodesic such that A (0) = p and X' (0) = X, (existence and uniqueness of X is guaranteed
by Theorem 6.1.), then exp (X,) = A (1).

It can be shown that exp is one-to-one and onto locally, i.e. for X, in a neighborhood of the origin of
T,M.

Lemma 6.2
If exp X, = A (1) (as in Definition 6.2), then exp (tX,) = A (t) for 0 <t < 1.
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Proof. Clearly, it is true for ¢t = 0. If )\; is the unique geodesic through p that has tangent vector tX,,
at p, then let A (1) = X\ (% 7'). Then A (0) = p, and

d(zt o)
dr =0

d (il}'u @) )\t)

1
= —tXI =XHI 6.15
dr o t P P (6.15)

1
ot
A clearly satisfies the geodesic equation. Therefore, A is the unique geodesic through p with tangent

vector X, at p. Therefore,
exp (tXp) = M (1) = A (2). (6.16)

Definition 6.3 (Normal Coordinates). Let {e,} be a basis for 7,,A/. Normal coordinates at p
are defined in a neighborhood of p as follows: pick ¢ near p. Suppose ¢ = exp (X,). Then the
coordinates of ¢ are X}

Lemma 6.3

In normal coordinates at p, I'! | (p) = 0. For a torsion-free connection, I';, (p) = 0.

(vp)

Proof. Let X be the unique geodesic through p with tangent vector X, at p. By Lemma 6.2, \ (t) =
exp (tXp). In normal coordinates, the coordinates of A (t) are (tX;, th, . ,tX;}). We write this by

zH (t) = tX”‘p. So % = X”‘p.

d?z+ d
S = (xM) =o. 6.17
a2 dt ( |P (6.17)
Then the geodesic equation reduces to
2 v
dez# e dz @ B
de? Pdt dt
= T, (A (1) X”|pXP]p = 0. (6.18)
At t =0, A(0) = p, so we have
I, (p) X”\pXP|p =0. (6.19)
We can interchange v and p to get
s, (p) X”\pXP|p =0. (6.20)
Combining 6.19 and 6.20,
I'(,, () X”]pXP\p =0, (6.21)
which is true for any arbitrary X, € T,M. Therefore, F’(*Vp) = 0 at p. For a torsion-free connection,
F‘[fj , = 0 everywhere. Hence, Iy, (p) = 0. [ ]

Remark 6.1. In general, I'), is not 0 away from the origin of normal coordinates. From 6.18, we
can’t conclude I'), (A(t)) is 0 for all ¢. Because, when we are writing 6.18, the tangent vector X, is
fixed. For ¢ near p, if ¢ = exp (Y},) for some Y), € T, M, then ¢ = (1), where  is the unique geodesic
through p with tangent vector Y, at p. Then the analogouos equation of 6.18 is

T, (y (1) Y], Y*| = 0. (6.22)

In particular, I';, (¢) Y ‘pr‘p = 0. This equation is not necessarily true for every Y, € T,M. That’s

why we can’t conclude I'}, (¢). However, for any Y, € T,M, the unique v geodesic through p with
tangent vector Y, at p starts at 0, i.e. v (0) = p. T hat’s why we can take ¢ = 0 in 6.18 and get 6.19,
for any tangent vector, and hence we can conclude Lemma 6.3.
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Lemma 6.4

On a manifold with metric, if the Levi-Civita connection is used to define normal coordinates at
p € M, then

Iup (P) = 0. (6.23)

Proof. Levi-Civita connection is torsion-free, so we have 7, (p) = 0 in normal coordinates. Now,
using 5.45,

Iy, = %g‘” (Gurp + Grpw — Gour) - (6.24)
Contracting by 2g,, yields
290Xy = Gupp + Gupw — Gpu: (6.25)
Now,
uvp + Gupw — Jovyu = 0 (6.26)

at p € M. Interchanging 4 and v, we get

Gopp + Gupu — Goupy =0 (6.27)
at p € M. Adding 6.26 and 6.27, we get
29y =0 at p € M. (6.28)

Therefore, g, (p) = 0. |

§6.3 Parallel Transport and Curvature

Let X and Y be vector fields that are linearly independent everywhere, with [X,Y] = 0. Suppose we
are dealing with a torsion-free connection. We can choose coordinates (s,t,...) such that

0 0

X=— dY = —. 6.29

s’ " ot (6:29)
Let p,q,r,u € M along integral curves of X,Y with coordinates p = (0,0,...), ¢ = (0s,0,...),
r = (0s,0t,...), u=(0,0t,...). Let Z, € T,M. We first parallel transport Z, along pgr to obtain
Z, € T,M. Then we parallel transport Z, along pur to obtain Z € T, M. Then we shall compute
Z! — Z, assuming a torsion-free connection. We shall use normal coordinates at p.

u(0,6t,...) X

r(ds,dt,...)

q(9s,0,...)
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From p to q : pqis an integral curve of X, and Z is parallely transported along this curve. Therefore,
VxZ=0.

— o [(OZH
XZ,O':O:>X W—i—rgaZp :0
dz? 0Z*
= g T 20X =0
dz# ——
= -+ 2"X7 =0 (6.30)
d2z» dz* 9
= ds2 ~  ds oz* (Fg‘TZPXU)
A2z N, .
= Jz = -X 9 (Th,ZPX7) (6.31)

Now, using 6.30 and 6.31, we expand Z* in Taylor series around p and set I'h, (p) = 0 since we are
working in normal coordinates at p.

dzr 1 d?z~ 5 3

= T, () ZEXG0s — LX) o5 (U 27X7) 5% + 0 (55°)
p

z8— 7 —

o) i
oz

1
= —§X;Z]fjxg (p) 0s* + O (8s%) . (6.32)

From q to r: ¢r is an integral curve of Y, and Z is parallely transported along this curve. Therefore,
VyZ = 0. Then following a similar procedure as above will lead us to
dz# a2z

—— =11, Z°Y? and

a g
;7 =Y — (TW,Z°Y7). (6.33)

dt? ox?

Using 6.33, we expand Z* in Taylor series again, this time around q.

dzr 1d*z
2 =2 = - @t + 5 —5 (@) §t* + O (5t°)
g 1 8 g
= —T0, () Z7Y70t =S¥ 5| (D5, 27Y7) 612 + O (6t°) (6.34)
q

Now, we shall expand I} (¢) Z{Y and Y} (,)a%{q (I'heZPY?) in Taylor series around p. Since we are
only interested in up to second order terms in 6.34, we shall expand the former one up to first order

and the latter one up to zeroth order.

o o d
Fga (Q) Z(/;Y:; = Fga (p) prYp + -

(Th,Z°Y?) 65 + O (85%)

ds »
ozt 0
- — FM ZPYO' 2
Js 3x>\p(pa )58"'0(55)
Arzp 081—‘5‘7 5 5 2
= Xp20Y) 517 (p) 05 + O (55°) (6.35)
Y 9 TH ZPY?) =Y —| (TH ZPY°) 4+ O (8s) = Y)‘ZPY"@F'%” O
a P (pa )_pa$)\ (pG )+ (S)_p PP 9N (p) + O (0s). (6.36)
q p
Using 6.35 and 6.36, 6.34 reads
, Ok, 1 , Ok,
8 — Zh = =X, Z0Y o (P) 050t — AL G (P) 37+ 0 (57). (6.37)
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Adding 6.32 and 6.37, we get

o H
Zr — ZH = —fXAZ”X” Ly 2 (p) 0s* — X, 20,7 ar,w (p) 65t
p :
— fYAZpY" s 2 (p)ot* + O (6°).

a/\

From p to u: pu is an integral curve of Y, and Z is parallely transported along this curve. Therefore,
Vy Z = 0. This leads us to 6.33. Now we expand Z* in Taylor seris around p.

dzr 1 d2z»
2y =2 == D)ot + 5 =5 () 5t* + O (5t°)
g a (e
= T (p) Z0Y, 5t — 4@} 5 (r;;,zpy ) 6t + O (5t°)
- _%Y’\ZPY" 8;”" (p)6t* + 0O (5t3) (6.39)

From u to r: ur is an integral curve of X, and Z is parallely transported along this curve. Therefore,
VxZ = 0. This leads us to 6.30 and 6.31. Now, we expand Z* in Taylor series around u.

dz# 1d%z+
AR W+ 35— (u) 6% + 0O (0s%)
= —T%, (u) ZX]0s — —X;} ;A (T, 2PX7) 65> + O (55°) (6.40)

[Py (w) ZHXT =10, (p) Zp X,

(T, 2P X7) 6t + O (6t°)

dt
ox* 0 - 9
8 N
=Y\ 70 X7 o 2 (p) ot + O (6%) . (6.41)
x> 2| e zoxey = x> | (pe gexey L o5 X, 7Z0X5 Mg" X0 4
ua)\ (pa )_ pw (pa )+ (t) a (p)+ (8) (6 2)
Using 6.41 and 6.42, 6.40 reads
P K
Zm — zh = —Y’\ZPX”%F (p) Otds — XAZ”X”%F (p)ds® + O (6%). (6.43)
Adding 6.39 and 6.43, we get
B B
ZM— 7t = —EY’\ZF’Y" 8;”" (p) 6t — Y, 28 X7 a;”" (p) 6tds
(6.44)
,u
—XAZPX"aaF (p) 65° + O (6°).
Subtracting 6.38 from 6.44 yields
orbs o) po
A o A o
zh — 7t = (szgyp Tox (P) = Y, ZpXT =5 (p )) 556t + O (5%)

= (2 (XPve - v2x7)) ‘pésdt +0 (5%

= (0T, ) 27X°Y7) ‘pds(St +0 (5% (6.45)
We have derived that
R, e =T, F‘,fp s+ F;Ul“ﬁp — FZPF‘T‘U (6.46)
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Since the components of I' are 0 at p, R“,,pa}p = F’,jgyp‘p - F‘,fpp‘p. Therefore, from 6.45,
2= 2 = (R ppo 22XV 7) | ds8t+ 0 (5%). (6.47)
P
Now,
(Rpro27x*Y7) | = (Ripe22X2Y7) | +061)
T q
— (R“,,AJZﬂXAY") ‘ + O (8s) + O (3t)
P
(R 22XV ‘ = (R pro2X?Y7) | +0(8), (6.48)
p T
Combining 6.47 and 6.48, we get
zt -zl N
D (R e 2P XNYT) | 40 6.49
s = (W ,TO0) (6.49)
gt \
o lim T (R” Z°PX Y”) . 6.50
550 st pra \ (6.50)
§6.4 Properties of Riemann Curvature Tensor
Proposition 6.5
If V is torsion-free, then
R“[Vpa] = 0. (6.51)
Proof. Let p € M and choose normal coordinates at p. Then at p
R ype = 0p1, — 051, (6.52)
Ruaz/p = &/ng - 8prg,/, (653)
R oy = 051, — O, T, (6.54)
For a torsion-free connection, I';, = I',. Using this, we can add 6.52, 6.53, 6.54 to get
Ruupa + Ruol/p + R'upm/ =0. (655)
From 6.8, R*,,; = —R",5,. Therefore,
1
RM[VPU] = ? [Rullpa + Rucn/p + R'upcn/ - Rulla'p + Rucrpu + Rupuo]
1
= 5 (R + Ry 4 B
=0. (6.56)

Therefore, R*[,,,1 = 0 at p in normal coordinates. If this is true in one basis then it is true in any basis.
Therefore, R*(, 5 (p) = 0 in any basis. Furthermore, p is arbitrary, so R¥, ;) =0 atallpe M. ®

Proposition 6.5 is also known as the first Bianchi idntity.

Proposition 6.6 (Bianchi Identity)

If V is torsion-free, then
Rab[cd;e} =0.
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Proof. Observe that
R%edie = R%ede + TgeR%bed — T R gea — T R%yga — T, R%cq- (6.58)
Now, we use normal coordinates at p € M. So I'f. (p) = 0. Therefore,
R%ci.e = Rede = 0eR%ca (6.59)

at p € M. Now, from 6.11, we get that R, ,, = 9,I')s — 0,1/, at p € M in normal coordinates.
Therefore,

R ypeir (p) = R vpor (p) = 0-0,1, .7 0-0:1", ) (6.60)
Similarly,
R yrpio (p) = 0,0:1%, T 0s0,1, » (6.61)
Ryorp (p) = 0051, . 0p0r 1y, ) (6.62)
Since partial derivatives commute, adding 6.60, 6.61, 6.62, we get
R poir (D) + B yrpio (P) + B voryp (p) = 0. (6.63)

From 6.8, R¥,,; = —R",,,. Therefore,

1
R“V[pan’] () [R“Vpa;f (p) + Ryrpio (p) + R yorip (p) — R yopir (p) — R yprio (p) — R o (p)]

K]

1
= g [R#Vpa;f (p) =+ R“m-p;g (p) + Rﬂuaﬂ';p (p)]
=0. (6.64)

Therefore, R",[)5.,;1 = 0 at p in normal coordinates. If this is true in one basis then it is true in any
basis. Therefore, R, ;5.7 (p) = 0 in any basis. Furthermore, p is arbitrary, so R¥,|,s.;] = 0 at all
pe M. |

Proposition 6.7 (Ricci ldentity)

For torsion-free connection,

Ve VaZ% — VgV Z* = R%qaZ°. (6.65)

Proof. We shall prove that
XYV V2% — XVIVGV.Z% = R%qZ° XY (6.66)
The LHS is
XYV v, Z% — XYV, V.Z°
- [XCVC (dedza> -~ X© (vcyd> vdza} - [ded (X°V,2%) — YT (VaX) V2% . (6.67)

Now, YIV4Z% = (Vy Z)*, 50 XV, (YIV4Z?) = (VxVy Z)®. Similarly, Y9V, (X°V.Z%) = (VyVxZ)".
Also, for a torsion-free connection, [X,Y] = VxY — Vy X.

(Vixy12)" = [X,Y]" V2% = (VxY — Vy X))’V 2°
= (VxY)?VaZ% — (Vy X))V 2"
= x° (vcyd) ~ve (VX0 V, 20 (6.68)
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Plugging 6.68 into 6.67, we get

XYV v, 2% — XYIV,V.Z°
= (VxVy2)" = (VyVx2)" = (Vixy12)"
= (R(X,Y)Z)" = R%qZ° X Y. (6.69)

Hence, 6.66 is proved. Since X,Y € X (M) are arbitrary, 6.65 holds and we are done. |

Ricci Identity tells us that the second covariant derivative of a vector field commutes if and only if
the Riemann curvature tensor R%,.4 vanishes.

§6.5 Geodesic Deviation

Consider a family 75 of geodesics each labeled by s € R, and each of these geodesics is affinely
parametrized by ¢. The map (s,t) — 75 (t) from R — M is smooth with a smooth inverse. This
implies that the family of geodesics form a 2d surface > imbedded in M.

Let T be the vector field tangent to the geodesics. One moves along a geodesic by varying ¢ (s has
to be fixed since one sticks to a certain geodesic). Similarly, one can move across the geodesics (for
constant t) by varying s smoothly and obtain curves due to constant t.

T
T

constant ¢

S

constant s

Figure 6.1: ¥ C M.

Now, consider a chart z* and express the geodesics in this chart by x* (s,t). In this chart, the
geodesics are specified by S* = %L: and TH = dg—:. In other words,

0 ozt 0 0
= SH — _
§=5 OxH 0s Oz  Os’ (6.70)

and similarly, T = %. Now we taylor expand the geodesic x* (s,t) around s with small perturbation
ds.
a# (s +6s,t) =z (s,t) + 65 S* + O (65°) . (6.71)

Therefore, S* points towards neighboring geodesic. S* is known as deviation vector. Now, we want
to know how S changes as we move along geodesics. We quantify this change by V7 S. This quantifies
if two nearby geodesics are moving towards or away from each other.
The vector field V' = V1.5 captures the or relative velocity between infinitesimally close geodesics.
One can also define relative acceletation between neighboring geodesics as A = VoV = Vp (V7S).
Since S and T are basis vector fields for chart (s,¢,...), i.e. S = % and T = %, we have

[5,T] = 0. (6.72)
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We further impose torsion-free condition to V. So
V7S —-VsT =[T,S]=0. (6.73)
Hence, V1S = VgT. Therefore,
VrVrS =VrVsT =VsVrT +VipgT + R(T,S)T. (6.74)
Since the integral curve of T is a geodesic, V7T = 0. Also, the commutator of T"and S is 0. Therefore,
A=VrVrS=R(T,S)T. (6.75)

In a coordinate chart,
Al = R!, G TVTPT . (6.76)
6.76 is known as the geodesic deviation equation.

Remark 6.2. Two initially parallel geodesics, i.e. V# = (VpS)* = 0 initially (meaning they neither
move toward nor move apart from each other), will fail to remain parallel (meaning there will be
non-zero accelerationo) if and only if R*,,, # 0.

§6.6 Curvature of Levi-Civita connection

From now on, we shall restrict attention to a manifold with metric, and use the Levi-Civita connection.
The Riemann tensor then enjoys additional symmetries. We can lower an index using the metric:

Revpo = gruRF v po (6.77)

Proposition 6.8

The Riemann tensor satisfies

Raped = Redab , and R(ab)cd = 0. (6.78)

Proof. By Lemma 6.4, g, (p) = 0 in normal coordinates at p € M. Now, 67, = ¢""g,, so taking 0,
gives us
Dp (9™ guw) =0 = gudpg™ =0 = 9pg™ =0, (6.79)
at p € M. Now, by 5.45,
1
[, = ig‘m (g,uz/,o + Yoy — gyg,y) . (6.80)
Taking d, and using 6.79, we get

1
0oLl = 597 (Guvop + Guowp = Gvoup) - (6.81)
Therefore, at p € M,
R ype = 0,1, — 0517,

1 T
=g (g;w,up = Guoup — Gupyo + gup,;w) . (682)

2
As a result, at p € M,
Raupa = gaTRTVpa

1
= 79047'97—# (g,ua,up - gVU,,up - gup,ua + gl/p,/w')

2
1
= 5 (gaa,up — Gvo,ap — Gapyo + gup,aa)
1
Rw/pa = 5 (g,u,a,l/p — Guo,up — Gup,vo + gup,ua) . (683)
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Similarly,
1
Rpo/u/ = 5 (gpl/,op, — Gov,pp — 9pp,ov + gap,,py) . (684)

Comparing 6.83 and 6.84 keeping in mind that g is symmetric and partial derivatives commute, we
get that R, = Rpsuv at p. Since it is a tensorial equation and it holds at p € M in a particular
basis, it holds at p € M in any other basis. Since p € M was arbitrary, R0 = Rjou everywhere.

For the second part, recall 6.9 that R, (,,) = 0. Therefore, R",,; = —R!,;,. Lowering the index
W gives us
gMTRquO' = _guTRuuop - RTVpO’ = _RTyap- (685)

We have just proved that R;,,; = Ryor,. Therefore,

Rpchz/ = Rﬂ/pa = _Rﬂ/ap = _Ra,m-u' (686)
Hence, R(5p)r, = 0. ]
Now we shall compute the number of independent components of Riemann tensor. We have proved
that Raped = —Rpacd, and Raped = Regap. Since a and b are antisymmetric in Rgpeq, the number of
independent components in the first two indices is N = @

Furthermore, since Rypeqd = Redap, the number of independent components in the last two indices is
also N = @ Now, Rgped = Redap tells us that the first two indices and the last two indices are
symmetric. We have N independent choices for both of them. Therefore, the number of independent
components are

%N(N—i— 1) = ;”(”2_ D <”(”2_ DN 1) = én(n 1) (2 —n+2). (6.87)

However, we have not taken into account the first Bianchi identity (Proposition 6.5) Rgjpeq = 0 if the
connection is torsion-free, i.e.

Rabcd + Racdb + Radbc = 0. (688)

If any of the indices b, ¢, d are equal to a, let’s say b = a, then 6.88 becomes
Raacd + Racdb + Radbc =0 < Racda + Radac =0 < Radac = _Racda = _Rdaaca <689)

which gives is the antisymmetry of the first two indices. So this does not give us any new information.
If any two of b, ¢, d are equal, let’s say b = ¢, then 6.88 becomes

Rapbd + Rapap + Raapy = 0 <= Rappa + Rapap = 0 <= Rappa = —Rapdb, (6.90)

which is nothing but the antisymmetry of the last two indices. Therefore, if any two indices a, b, c,d
are equal, the Bianchi identity (6.88) does not give us any new symmetries. If a, b, ¢, d are all distinct,
we get (Z) constraints. Therefore, the total number of independednt components of R,p.q are

én(n—l)(n2—n+2)_ <Z> :% (n—l)(nQ—n—FQ)—n(n1)(7;42)(713)

20 (g (22 e9)

8 3
~n(n—1)3n? —3n—n?+5n
-8 3
Lo oo/ 2
= 33" (n*-1). (6.91)

Therefore, the number of independent components of Rgpeq 18 %nQ (n2 — 1).
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Definition 6.4 (Ricci Curvature Tensor). The Ricci curvature tensor is the (0,2) tensor defined
by
Ry = RCyep. (6.92)

Proposition 6.9

The Ricci curvature tensor of Levi-Civita connection is a symmetric (0,2) tensor, i.e. Ryp = Rpq.

Proof.
Rab = Rcacb = QCdeacb = gchcbda = Rdbda = Rba- (693)

Definition 6.5 (Ricci Scalar). The Ricci Scalar is defined by

R = gabRab. (694)

Definition 6.6 (Einstein Tensor). The Einstein tensor is the symmetric (0,2) tensor defined by

1
Gab = Rab — §Rgab' (6.95)

Proposition 6.10 (Contracted Bianchi Identity)

The Einstein tensor satisfies the contracted Bianchi identity:
VG =0, (6.96)

or equivalently

1
VRap — 5 Vs R = 0. (6.97)

Proof. Recall the Bianchi Identity we proved earlier: R%j.q. = 0. In fact, during the course of the

proof, we saw that
Rabcd;e + Rabec;d + Rabde;c = 0. (698)

Contracting with the metric tensor gs,, we obtain
Rvedie + Bfpec;d + Rfpde;e = 0. (6.99)
Therefore

9" "™ (Rapmnst + Rapimin + Rabnizm) = 0
= " (R™pmny + R bimn + R pntm) = 0
= " (R™ymng — R™ bt + R pntom) = 0
= ¢"" (Rpny — Rotn + R™bntzm) = 0
= Ry~ R+ ¢ Ry = 0. (6.100)

Now,

gbanbnl;m = gbngamRabnl;m = _gbngamRbanl;m = _gamRnanl;m = _gamRal;m = _le;m- (6101)
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Plugging 6.101 into 6.100, we obtain
R;l — Rnlm — le;m =0 = R;l — 2Rnlm =0
1
— §VIR =VuR" =V (" Ry) = 9"V Ry

1
— ile = V"R, (6.102)
ViR = g,yV"R = V" (Rgy). Therefore, 6.102 becomes V*R™ — %V" (Rgn) = 0, which is equivalent
to V"G, = 0. [ |
Definition 6.7 (Weyl Tensor). The Weyl tensor Cq is the trace-free part of Riemann curvature
tensor defined by
2 2
Cabed = Rabed — p— (9afcRap — gocRaja) + mRQa[cgd}b- (6.103)
Proposition 6.11
gaccabcd =0.
Proof. Multiplying both sides of 6.103 by g%, we get
ac . ac 2 ac ac 2 ac
9*Cabed = 9* Rabed n—_2 (g ga[CRd]b 9 gb[cRd]a) + (n — 1)(TL _ 2)9 Rga[cgd]b
2 ac ac 2 ac
= Rpq — m (g ga[cRd]b -9 gb[cRd]a) + mg Rga[cgd]b' (6104)
Now,
2% Gaic Rapp = 9" GacRab — 9° gaaRev = g Rap — 0gRey = nRap — Rap, (6.105)
29 gy Raja = 9" GocRda — 9" gpaRca = 0y Raa — gbag“* Rea = Rap — Ry, (6.106)
29" Rgajc9ap = 9°“R9acgdo — 9°°Rgadger = Réggap — Rogger = (n — 1) Rgap. (6.107)

Substituting 6.105, 6.106, 6.107 into 6.104 and using the symmetry of R, and g,,, we get

1
YC bed = — — — ——(n—1
9" Cabed = Bya — —— (nRay = Rap — Ray + Rgpa) + CESCE) (n —1) Rgap
R R
— Ry Ry 9, Foa
n—2 n-—2
_o. (6.108)

§6.7 Curvature of 2-Sphere

In this section, we shall compute the Riemann curvature tensor R%,4, Ricci curvature tensor R, and
the Ricci scalar R for the 2-sphere S?. We have seen in Example 4.5 that the round unit metric on
S? is given by

g =df ®df +sin? fd¢ @ do. (6.109)
Let 2! = 0 and 22 = ¢. Then
Guw = { sin? 0 ifpu=v=2. (6.110)
0 otherwise
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6 Curvature 52

Then g is
9" =1 = ifu=v=2. (6.111)
0 otherwise

Now, goa,1 = sin (260), and the rest of the g, , are 0. Therefore, the Christoffel symbols are
1 1 .
Iy, = Eg/w (9vo.p + Gopw = Gpv.o) = §guu (9vp.p + Gupw — Yov,u) (nO summation) , (6.112)

since g is diagonalized. If p = 1, the only nonzero contribution comes from go21 when v = p = 2.
Therefore,

1
I3y = —59" 221 = —sinf coso, (6.113)

and the other Fll,p are all 0. If g = 2, the only nonzero contribution comes from gs2; when {v, p} =
{1,2}. Therefore,

1 1 .
Fg1 = F%z = g% (9122 + 9221 — 921,2) = ———5 sin (20) = cot 0, (6.114)
2 2sin“ 0

and the other ng are all 0. Now,

661;%12 = —cos?f +sin?f = — cos (26), 8;512 = 8@?11 = —csc? 6. (6.115)
Now, Rl91s is (using 6.11),
Rly1p = 882%12 - 881}21 + T30 — T30y = —cos (20) — T3, 15,
= sin? § — cos” § 4 cot fsin 6 cos § = sin? 6. (6.116)
So Rig12 = gu1RF212 = g11R'912 = sin® 0. Using Raped = —Rbacd> and Raped = Redap, we get
Ri1w = Roguw = Ry = Ruvee = 0. (6.117)

The remaining ones are Ri291, R2121, Ro112.
) i 2
R1221 = R2112 = —R1212 = — s 9, and R2121 = —R1221 = sin“ 6. (6.118)

So we have computed all the Ruped. R%ed = 9%€Reped = §°*Rapeq- Therefore, the remaining nonzero
components of R%.q are

R'391 = "' Rigyn = —sin®0, (6.119)
1 :
R*1g = 9P Rotnp = —5— (—sin®0) = -1, (6.120)
sin” 6
1
R*151 = ¢”Ro1yn = —5—sin® 0 = 1. (6.121)
sin“ 6

Now, the Ricci curvature tensor Rgp is Rap = gedReadp = 9 Reacy (summation over ¢). Therefore,
Ris = Ro1 = ¢“Reie2 = 9" Rin12 + g% Ro122 = 0. (6.122)

The nonzero components of R, are

Ri1 = g*Reicer = 9" R + 9 Roiz1 = e sin?6 =1, (6.123)
Ryy = g“Reaea = 9" Ri212 + g7 Ragoy = sin® 0. (6.124)

Therefore, the Ricci curvature is
R=g"Ra =g" Ri1 + g Ry = 2. (6.125)

In a similar manner, one can show that the Ricci scalar for a sphere of radius r is %
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7 Einstein Equation and Linearized Theory

Einstein equation related spacetime curvature via Einstein tensor with matter distribution (via
energy-momentum tensor). The Einstein equation is

Gop = S7GTop, (7.1)

where G is Newton’s constant, and T, is energy-momentum stress tensor which is a symmetric tensor.
7.1 can equivalently be written as

1
Rab — iRgab = 87TGTab. (7.2)

The Einstein equation is one of the postulates of general relativity. Note that, from Einsten equation
and Contracted Bianchi Identity, it follows that the energy momentum tensor T,; is conserved, i.e.
Ve = 0. Now, it’s a natural question to ask how unique Einstein equation is. Is there any
other tensor than G, that we could have put on the LHS of 7.17 Lovelock’s theorem answers this
question.

Theorem 7.1 (Lovelock, 1972)

Let H,, be a symmetric tensor such that

(i) in any coordinate chart, at any point, H,, is a function of g.., gu.p and gu. - at that
point;

(ii) V*Hg, = 0;
iii) either spacetime is 4-dimensional or H,, depends linearly on g, ,o-
I pv,p

Then there exist constants « and § such that

Hab = CVC;’(:Lb + 5gab~ (73>

Hence, Einstein realized there is a freedom to add a constant multiple of g,; to the LHS of 7.1.
Gap + Agap = 87GTpp. (74)

This A is called the cosmological constant. We can rewrite 7.4 as

Gaop = 87G (Tab — ) = 81 (Tab - pvac.gab) ) (75)

A
Sﬂ_Ggab

where pyac = % is the energy density of the vacuum. In vacuum, there is no matter, so Ty is O.
Hence,

TéZaC) = —PvacYab- (76)
§7.1 Equivalence Principles

Incompatibility of Newtonian Gravity and Special Relativity

Newton’s law of gravity is gven by the following Poisson’s equation
V2¢ = 41Gp, (7.7)

where ¢ is the gravitational potential and p is the mass density.
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7 Einstein Equation and Linearized Theory 54

Consider a sphere V' of radius 7. In Newtonian gravitational theory, |g| = Cfﬂé” . Therefore,
GM GM
{fe-da=qf =5 (-r)-ddr= - {f =5~ a4 = —arGM. (7.8)
ov ov ov

By divergence theorem,

[[J(v-g)av ={fg dA = —4xGM = —4xG [ [ paV. (7.9)
v \%4

ov

Therefore, V - g = —47Gp. Furthermore, g = —V¢. Hence, V2¢ = 47Gp.
Now, solution of the above Poisson equation (7.7) is given by

6 (t,x) = —G/d3y P(ty) (7.10)
x -yl

Note the presence of the same t on both sides. The time at which one adds change to source distribution
p is exactly the same time at which the gravitational potential responds to. These two events are
simultaneous in one inertial frame, may not be simultaneous in other inertial reference frames. In
fact, change in gravitational potential may precede the change in source distribution in some reference
frames, i.e. the effect taking place before the cause violating principle of relativity. This is how
Newtonian gravity is incompatible with special theory of relativity.

The incompatibility of Newtonian gravity with special theory of relativity is not a problem if the
objects under consideration are moving non-relativistically (with speeds much less than the speed of
light). For instance, in our solar system, Newtonian theory is very accurate.

Newtonian theory also breaks down when the gravitational field is very strong. Consider a partivle
of mass m moving rouns a spherical body of mass M in a circular orbit of radius r. Then

GM
b =— . (7.11)
,
Newton’s law gives
G gl
- =0l 7.12
r r2 2 2 ( )

Newtonian theory requires non-relativistic motion, which is the case only when the gravitational field
is weak: t%' < 1. In our solar syetem, t%l < 107°. GR is the theory that replaces both Newtonian
gravity and special relativity.

The earliest form of all equivalence principles is called the weak equivalence principle, which
dates from Galileo and Newton. It states that the inertial mass and gravitational mass of any object
are equal.

Newton’s second law relates the force exerted on an object to the acceleration it undergoes, setting
them proportional to eacgh other with the proportionality constant being the inertial mass my:

F = msa. (7.13)

The inertial mass has a universal characteristic. It is the same constant no matter what kind of force
is being exerted. The gravitational field g, on the other hand the hand, is the negative gradient of
gravitational potential ¢, g = —V¢. Gravitational force F|, is proportional to this gravitational fiels
with the proportionality constant being called the gravitational mass mg.

F, =mgg = -mgVo. (7.14)

mgq has a very different character than my. It is a quantity specific to gravitational force. mg is
the “gravitational charge” of the body. However, the response of matter to gravitation is universal:
objects of different composition falls from a given height at the same rate.
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7 Einstein Equation and Linearized Theory 55

§7.2 Gravitational Red Shift

Consider the following scenario: Alice and Bob are at rest in a uniform gravitational field of strength
g in the negative z direction. Alice is at z = h and Bob is at z = 0. They have identical clocks. Alice
sends light signals to Bob at constant proper time intervals which she measures to be Ar4. What is
the proper time interval between the signals received by Bob?

A

z=h Alice

z=0 Bob

Alice and Bob have acceleration g with respect to a freely falling frame. We choose our freely falling
frame so that Alice and Bob are at rest at t = 0. We shall neglect spacial relativistic contributions
(i.e. 2 < 1). Then the position of Alice and Bob at time ¢ are

1 1
za (t) =h+ igt2, and zp (t) = ith' (7.15)

Alice and Bob have v (t) = gt, which we assume to be much smaller than ¢ over the time it takes to

perform the experiment. Hence, we shall neglect effects of order gz—f.
Suppose Alice emits the first signal at ¢ = ¢;. Then its trajectory is

1
24 (tl)—c(t—tl):h+§gt§—c(t—t1). (7.16)
It reaches Bob at ¢t = Ty, when the above is equal to zp (T11). So
1 1
h+§gt%—c(T1 —t) = 5ng. (7.17)

The second light signal is emitted at ¢t = t; + A74, and it reaches Bob at t = T} + Arg. Therefore,
h+ %g (ti+A7a)* —c(Ti + AT —t1 — ATy) = %g (T + A7p)*. (7.18)
7.18—7.17 gives us
¢(ATa — Arp) + SgATs (201 + Ara) = SgArs (2T + Arp). (7.19)

The terms quadratic in A74 and Atp are negligible as gATy < c. If this does not hold, then Alice
would reach relativistic speeds by the time she emitted the second signal. Similarly for A7p. Therefore,

c(A1a — ATp) + gATAt) = gATETY

= (¢11+c) At = (gt1 +¢) ATy
= At = (9T + c)_1 (gt1 +¢) ATy
t 7\t
= A7rp = <1—|—gcl> <1+gcl> ATy
T,
= ATp =~ <1+gt1> <1_g1) ATy
c c
t T
— Arp =~ <1 + 9 gl) A7 (7.20)
c c
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7 Einstein Equation and Linearized Theory 56

T1 — t1 is the time light takes to travel the distance h between Alice and Bob. Therefore, % =T, —t;.
So

h
Arp ~ (1 - 962) A7 (7.21)

Therefore, the time interval between the light signals received by Bob is less than the time interval
between the light signals emitted by Alice. In other words, Bob’s clock appears to run slow compared
to Alice’s.

If A7y is the period of light waves sent by Alice, then Aty = )‘TA. Then 7.21 reduces to

gh
A ~ (1 — 02> A4 (7.22)

Therefore, the light received by Bob is shorter in wavelength and hence is blue-shifted. In other words,
light falling in a gravitational field is blue-shifted. An identical argument reveals that light falling out
of a gravitational field is red-shifted.

§7.3 Linearized Theory

The Einstein equation G, = 87GT,, is nonlinear. However, when gravity is weak, we consider
spacetime as a perturbation of Minkowski spacetime. We assume our spacetime manifold is M = R4,
and that there exists globally defined “almost inertial” coordinates x* for which the matric reads

Guv = M + h;w, (7.23)

where 7, = diag(—1,1,1,1). The weakness of the gravitational field corresponds to components
of h,, being small compared to 1. Notw that g, is the physical metric, i.e. free particles move
along geodesics of gqp. On the other hand, h,, are the components of a tensor field that transforms
accordingly under Lorentz transformations of the coordinates z*.!

Let kt” = nt" — A where h*" = n#n"?h,,. Then

K gur = (" = 00" hpe) (e + hyur)
= 0" 1ur + 0" hyr = 00" oo — P07 hpohyr
higher order —0
=087 + 0" hyr — 670" hpo
=08+ 0" hyr — 17 hor
— o (7.24)
Therefore, g"" = kH = n#** — h*" up to linear order in the perturbation h,,. Now we shall determine

the Einstein equation to first order in the perturbation h,,.
To first order, the Christoffel symbols are

v 1 loa
Ly = 577# (hov.p + hopy — hupo) - (7.25)

The Riemann tensor is (neglecting I'T" terms since they are second order in the perturbation)
Ruupa = Nur (apFZg - agrz;p) . (726)

Using 7.25, we get 9,17, = %nm (hkv,op + Pkowp — Puokp), and 0,17, = %nm (hsvpo + hipro — hupro)-

! A convenient fiction: We can think of a slightly curved spacetime as a flat spacetime with a tensor h,, defined on
it. Then all physical physical fields, such as R,.,- will be defined in terms of hy..
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Hence,
1
Ruupo = 5777”77/“' (h%o,l/p - huo,/@p - hmp,ua + hl/pﬁa)
1
= §5H,u (hHO',IJp - hl/o,mp - hnp,ya + hl/p,mr)
1

= Qh/w,lm — hvoup — hppwo + hup o

1
=3 (0p0uhye + 050,hyp — 0p0uhue — 0s0uhyy) -

]‘ K
31" o0l + o Ouhip = 0y Ot = Do Ouhyy)

= % (0p0h" g + g0 hyyp — 0y hive — Dy h" ).

K K,
R vpo = 1] MRquO' =

1
Ry =R\ps = 3 (0p0,h" ¢ + 0,0 hyp — 0,0 hyye — 050, 1P ) .
0,005 = 0,0,mM*Phag = NP0,0, hae = 0?0, h,s. Therefore,

1 1 1 1
— _OP —_OP _ 4 J—
Ryg = 50"uhay + 50°0hup = 50,0 hug — 50,001
1 1
= 90 hg)y — 50 Ophus — 5060uh.
. ) . 1
o By = 00y = 5050 by — 50,00,

Neglecting the non-linear terms, the Ricci scalar (to the first order) is
17 1 174 1 174 1 174 1 174
R=R,n" = 577“ 0?0, hyp + 57)“ 0?0, hyp — 517“ 0,0 hyy, — 577“ 0,0y h
1 1 1 1
- §8pal/hyp + §8p8#hup - §8p8ph - 58,/81,]1
= 070"hp, — 0°0,h.

(7.27)

(7.28)

(7.29)

(7.30)

(7.31)

The Einstein tensor is G, = R, — %RUW (again, in the first order). Einstein equation equates it to

87T, (by choosing the unit G = ¢ = 1). Let us define a new quantity

1
hyw = by — 5}”7#1/'
Then we have 1 1
h = n“”huu — nﬁwhw _ §h77“”77uv = h — ihéﬁ = —h.
This gives us
_ 1 _ 1_
h'uy = h‘m, + ih’nuy = h'uy — 5]’&7]“1,.
In this new variable, the expression for G, is
1 1 1 1 o
Gl“’ = R/“, — §Rnl“/ = 8pa(uh,,)p — iapaph/“, — iauayh — in“/ (8P8 hpo’ — apﬁph)
1 - 1- 1 - 1- 1 - 1-
= iapau <hyp - 2h7]yp> + §8pay <hﬂp - 2h77up> — §8p8p (hﬁ“’ - 2hnuy)
1 - 1 - 1- 1 _
+ 53“0,,h — 577“”8’)00 (hpcr — 2h77p0-> — 577#yap8ph
1 PP 1 - 1 on T 1 - 1 Py 1 PP
= 58 8/,Lh’ljp — Za,,auh + 56 al,hﬂp — Zaﬂ&,h — 58 aphw, + 17]/“,6 aph

1. .- 1 1 T ,
+ §auayh - 577uyap8 h/po' + anw,npg@paph - §nuyapaph

1 - 1 - 1 - 1 -
= iap({)uhw, + iap&,hup - §8paphuy - inuyapaghm

1 - - 1 -
= —iﬁpaphlw + 8p8(#h,,)p - inujapa hpO"

o7
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Therefore, the linearized Einstein equation is

1 - - 1 -
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8 Diffeomorphisms and Lie Derivative

§8.1 Pull Back and Push Forward

Definition 8.1. Let o : M — N and f : N — R be smooth maps. The pull back of f by ¢ is
the map ¢* (f) : M — R defined by ¢* (f) = f o ¢. In other words, ¢* : C* (N) — C* (M) is
the map given by f +— fo .

N — R

M
wl Y‘(f#foso
f

Definition 8.2 (Push Forward of Tangent Vector). Let ¢ : M — N be a smooth map. Let p € M
and X, € T,M. The push forward of X, with respect to ¢ is the vector ¢. (X,) € T,V given
by

(¢« (X)) (f) = Xp (€7 ), (8.1)

where f € C* (N).

Definition 8.3 (Pull Back of Covector). Let ¢ : M — N be a smooth map. Let p € M and
To(p) € T;(p)N . The pull back of 7, by ¢ is the covector ¢* ("7%(19)) € Ty M given by

4,0* (7790(17)) (Xp) = T(p) (¢* (Xp)) ) (82)

where X, € T,,M.

Definition 8.4 (Diffeomorphism). A map ¢ : M — N is a diffeomorphism iff it is bijective,
smooth and has a smooth inverse.

If o : M — N is a diffeomorphism, then M and N have the same dimension. In fact, they have identical
manifold structure. If (U, ) is a coordinate chart in M, then (<p (U),vo go_l) is a coordinate chart
in N. With diffeomorphism, we can extend our definition of push forward to any type of tensor.

Definition 8.5 (Push Forward of a Tensor). Let ¢ : M — N be a diffeomorphism and T‘p a tensor

of type (r,s) at p € M. The push forward of T‘p is a tensor (T‘p) of type (r,s) at ¢ (p) € N
defined by

P (T‘p) <m‘<p(p)’""m‘w(p)’Xl‘w(p)’""Xs|w(p)>

- T’p (90* (m’v(p)) o0 (nrlw(p)) ’ ((p_l)* Xl‘s@(p)’ T (¢_1>*X3’so(p)) '

Remark 8.1. In GR, we descrive physics with a manifold M on which certain tansor fields, such as
the metric g, the Maxwell field F' etc. are defined. If ¢ : M — N is a diffeomorphism, then there is
no way of distinguishing (M, g, F,...) from (N, ¢. (g), ¢« (F),...). They give equivalent description
of physics. If we set N = M, this reveals that the collection of tensor fields (. (¢), ¢« (F),...) is
physically indistinguishable from (g, F,...). It follows that diffecomorphism are gauge symmetry in
GR.

(8.3)
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Definition 8.6 (Symmetry Transformation). A diffeomorphism ¢ : M — M is a symmetry trans-
formation of a tensor field 7" iff

s (T}p) =T, VYpeM. (8.4)

A symmetry transformation of the metric tensor is called an isometry.

We want to compute . (T|p> in a coordinate basis. Let ¢ = (ml, e ,x") be coordinates around

pe M, and Yy = (yl, . ,y") coordinates around ¢ (p) € N. Now,

(gO*T‘p)Mln-ur B (go*T‘p) <dy”1’¢(p)7 L dytr w(p)) . (85)

So we need to compute how the basis covectors and basis tangent vectors transform with pull back by
¢ and push forward by ¢!, respectively.

0
e(p)” gy

0
sa(p)’ " Oy

0 0 * 0
-1 -1 -1
@) 50 (f)= 5 @) f) =50 (foe™), (8.6)
(83/ ' w(p)) Y | () ( ) Y | ()
for f € C°° (M). Using chain rule,
O | oty = A ountovi o ous)
oyi N orvi
Y lew) " U (o))
_ O(moptouy) O (f o)
N orvi ort
' ) B OV
0 ($z o gp_l) 8f
:cio -1 i
We shall write E)(Tfi) as gfyi. So
0 _ o’ 0
oy (fo@p 1):8l/i afz'
Y™ o) Y o) 97 Ip
0z 0
= 3 () 5.5 pf
0 0z 0
(o), < — ) = — (¢ () 5= (8.8)
Oy": ©(p) oy" Oz
Now we shall compute * (dy“i sa(p))' For any X, € T,M,
* i — i
¥ (dy <p(p)> Xp=dy o(p) (SO*XP) . (8.9)
Using an analogous manner as 8.8, one can show that
0 oy’ 0
(8.’1: p> 833 8y] <,0(p)
where g% is a shorthand for 8%;?”. Therefore,
.0 Oy’ 0
P Xp = Qs (X’ - ) =X'2=(P) 5 . (8.11)
Oz p Oz Ayl ©(p)
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Applying dy* o(p) O1 8.11, one obtains

dyﬂi

¢(p) (P Xp) = dy™

8y' 0 l@y s
»(p) (X oz’ Q oy’ Lp(p)) X oz’ (P) 0]

— 3ym nsto o 8yui i w 0
= ur WX =5 e, (X o,
= OaPi (p) da™ P (Xp)
- oF (dytt _ oyt AP 819
-.QD(y ‘P(P))_axpi(p)x p’ ( )
Combining 8.3, 8.5, 8.8, 8.12, one obtains
e = oyt P oy pr
(SD*T‘p) ViUs T{p (81-,01 (p) dl’ 1 P axpr (p) d.’l? )
8.170—1 a amo's 6
g ¢ P) 5 g (¢ (1) 5.5 p)
8yuz 0x%i o o 9 P
al'pl H ayllj T’p (dfﬁ pr dﬂj 5 ax"l gy axo's
=1 P p
53/’“ Oz prLpr
axpz H 8yllj (T‘p) 01 0s* (813)

§8.2 Lie Derivative

Let X € X(M), and p € M. Suppose ~ is the integral curve of X going through p. WLOG, 7 (0) =
Then let ¢; be the map that sends p to the point parameter distance ¢ along v, i.e. ¢ (p) = 7 (¢).
This might be defined for only small ¢.

It can be shown that ; is a diffeomorphism. Note that g is the identity map, and s 0 @ = ©g4q.
Hence, ¢, ! — ¢_,. Therefore, if ¢; is defined for all ¢ € R, the diffeomorphisms ; form a 1-parameter
abelian group, with the group operation being composition.

Definition 8.7 (Lie Derivative). The Lie derivative of a tensor field 7" with respect to a vector
field X at p € M is

(QD,t)* T} - T‘
(£xT), = lim ;’t(p) 2 (8.14)

One can easily verify that Lie derivative is, indeed, a derivation. First, let’s verify that Lx is linear.
If S and T are (r, s) tensor fields,

(0-1). (as\@(p) +5T‘¢t<p)> - (aS‘p + 5T|P>'

(Lx (aS+8T)), = %g% . (8.15)
(¢—t), is linear, so
a(goy), S\¢ +B8(¢-0), T|,, ) — S|, - BT,
(Lx (@S + BT)), = lim "
= o lim i ‘(bt( ‘p + G lim ' |¢t(p) ‘p
t—0 t t—0 t
=« (,C)(S)p—{—ﬁ (,CxT)p. (8.16)
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So, linearity is verified. Now, in order to show that Lx is indeed a derivation, we need to verify the
Leibniz rule, i.e.
Lx (S@T)p:EX (S)p®T|p+S|p®ﬁx (T)p. (8.17)

Let S and T be (r,s) and (k,1) tensor fields, respectively. Then

Lx (S®T),=Ilm (¢—1), (S@T) ‘qst(p) —(SeT)|

p
1
t—0 t <8 8)

Take wi,...,wr,m, ..y € TyM and Xy, ..., X, Y1,..., Y, € T,M. Then

(¢—t)* (S®T) ‘Qﬁt(p) (wl,... ,wT,T]l,...,T]k,Xl,.. . ,XS,Yl,...,}/l)
= (S X T) |p (¢itw17 .. '7¢*—tw’r‘7¢itnla .. a¢it77k‘7 (¢t)*X1> CII) (¢t)*XSa (¢t)* Yia DI (¢t)* Y;)
= S‘ (qﬁ*—twl? .. '7¢*—th7 (¢t)*X1, ey (d’t)*Xs) T‘p ((ﬁitnla o 7¢itnk7 (¢t)* Yia DRI (</7t)* }/i) .
Let A == (wla--'7w7’77717' "777k7X17"' 7X57Y17- . -7}/2)7 B = ((bttwlw "7¢itw7"7 ((bt)*Xl?' R (¢t)*XS)7

C: (qb*—tnla"'7¢*—t77k‘7(¢t)*yvla"'7(¢t)*1/l)7D — (wla"',wTaXla"'7XS)?E: (nla"'vnkayvla"‘ayi)'
Now,

p

(-0, (ST, — (S&T)| }(A)

=S|, (B)T|,(C) -S|, (D)T], (B
=S|, (B)T|,(C) -S|, (D)T],(C) +S\p(D)T\p(C)—S\p(D)T\p(E
= (s, B) = 5|, (D)) 7|, () + S, (D) (7], (€) ~ T, (B)) . (8.19)

Now we shall divide 8.19 by ¢ and take the limit ¢ — 0. Thus we obtain

S| (B)—S| (D Tl (C)—T| (E
exsom, (= b P I P )5 (o T O~ T
=Lx (9), (D) T\p( +S\ Lx (T), (E)
= [ex(8), 01, ] (4 +[S}p®cx @), (4). (5.20)

Therefore, 8.17 holds, and hence Lie derivative is a derivation.

Convenient Coordinates

Let X € X(M), and ¥ a hypersurface (surface with dimension dim M — 1) in M such that X is
nowhere tangent to . Let 2%, i = 1,...,n — 1 be coordinates on ¥. Now, assign coordinates (t, xl) to
the point parameter distance ¢ along the integral curve of X that starts at the points with coordinates
z' on 3.

(t, ")
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8 Diffeomorphisms and Lie Derivative 63

This defines a coordinate chart (t, x’) at least for small ¢, i.e. in a neighborhood of ¥. Furthermore,
the integral curves of X are the curves (t x) with fixed z' and parameter t. The tangent to these
curves is E So we have constructed coordinates such that X = at

¢ sends a point p with coordinates a# = (tp,az ) to the point with coordinates y* = (tp + t,x;).

Then we have
oyt

=oH,. 8.21
et (8.21)

Now, writing the formula for push forward of an (r, s) tensor in the component form (8.13),

e 3y”’ 0z pLpr
( <Pt T} ) V1Vs H 8x/’1 H 8yy] (T|p> o110
M1
- (T}p) i (8.22)
50 piepr YT

((()O—t)* T‘Lpt(p)) vievs T (T‘(ﬂt(p)> Vi Vs: <823)

In this coordinate chart, p = (tp, x;), and ¢ (p) = (tp +t, x;) Therefore,
(EXT)ZIM“T ViUs

1 1
() e (1)
T 150 t

B B i
‘ <T|%(p)> s — (T\p) _—
= lim

t—0 t

1 .
= D [T (b ) = T, (1, 08)]

) .
= 5 T (tp, ;) - (8.24)

In this chart, we have X (f) = %{ Therefore,

Lxf=X(f). (8.25)

Both sides of this equation are scalars, and it must therefore be basis independent. Next, consider a
vector field Y. In our coordinate above,

oY+
LxY)H="—0o. 8.26
(LxY) 5 (8.26)
In our coordinate X* is either 1 or 0, so %);:L = 0.
oYy H oXH*  OJYH
(X, Y]l =X"— —Y" = = (LxY)". (8.27)

ozV orv 9z

Therefore, (LxY)" = [X,Y]" in our coordinate. If two vectors have the same components in one basis,
they are equal in any other basis. Therefore,

LxY =[X,Y]. (8.28)

Now we shall compute the Lie derivative of a 1-form. Let w be a 1-form. Consider a vector field U.
Then w,U* is a scalar, i.e. a smooth function on the manifold. Therefore,

oU*

b (8.29)

0
Lx (w,U") =X (w,U") = X”%U“ +X'w
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Since Lie derivative is a derivation,

EX (OJMU“) = (EXOJ)M U+ —I—(,uu (ﬁxU)‘u
= (Lxw),U" +w, [X, U]

ou+ oxH
= (Lxw), U" + WNXVW —w,U” o (8.30)
Combining 8.29 and 8.30, we get
Owy, G
(Lxw), Ut = XVWUM +w, U B
Owy, oxv
— XV Rk H
=X O:BVU +twl OxH
Since U € X (M) is arbitrary,
L 0wy, oxX"”
(Lxw), =X 5w (8.31)
In exactly similar fashion, one can define the Lie derivative of an (r, s) tensor field as
T
(LxT)"Fr = XOQ,THHr L, — Z (ONXH) TH i M1 pr
i=1
s (8.32)
+y (aquA) T, v
j=1
Manifestly Covariant Form of Lie Derivative
Now, we shall show that if T" is a (r, s) tensor field, and V is the Levi-Civita connection,
T
(LXT)/H'"HT iy = XON TR Z (VA XH) T#l'"M-1>\M+1"'urylmys
ot (8.33)
3 (Vi X Ty v
j=1

We know that

T S
TH1 uryl"-Vs;O' = TH “Tu1~~~u5,a + E F}\;Tm Hi—1AMi+1 #rylmys _ E FujaTM #TV1---V]~_1)\1/J-+1---VS'
i=1 j=1
(8.34)
Therefore, XV, THFr, .., is equal to

' S
; TS VTP A
XD Ty + Y XOTR Tt Mttt N XD T wypevee (8:35)
i=1 j=1

VaXHi = X" = 0\ X# + T, X. Therefore,

T T
_ Z (VA XH) THI"',Uti—1>\Ni+1"'llrylmys _ Z (5/\Xu + FZ/\XU) Tul~--ui—1/\ui+1-~~uryln_y
i=1 i=1

s

T T
- _ B L i — 1 A1 _ Ko O L i L A 1
(ONX*)T V1 r,X°T Yy
i=1 =1
(8.36)
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Furthermore, V,, XA = X/\;l,j = Oy, XA+ I’f;,jj X7. Therefore,

s

E ' A e
<ijX ) T Tul---ujfl)\lzj+1---us
Jj=1

s

. A A o .

- § :<8MjX +FO’V]‘X )Tul a V1 Vj1AVj 41 Vs
Jj=1

s s
= Z (@“X)‘) T'ulmm‘V1“'Vj71)\l/j+1"'1/s + ZFi\jaXJTmmurm--~Vj71)\uj+1“~us' (8'37)
j=1 j=1

Adding 8.35, 8.36, 8.37, we obtain that the RHS of 8.33 is equal to

r

S
X9, T Fr, L, — Z (DX Tﬂl"'Hi—lAlLi-‘rl”'/JT‘VlmVs + Z (8%)()\) Tmmurul~~-Vj_1>\l/j+1-~~usa (8.38)
i=1 j=1

which is exactly the formula for (LxT)"*"#" ,,...,,. Therefore, 8.33 holds.

Now, using 8.33,

(£x9) = X Vogu + (VMXA) Iw + (VVX’\> 9ux

=V (X90) + 9 (XPg0)

=V, X, +V, X,
VX, (3:39)
If ¢ is a symmetry transformation of 7" for all ¢, then (¢¢), T|p = T‘cpt(p) and (¢_¢), T‘%(p) = T‘p for
all t. Therefore,
o1
(£xT), = lim + [(¢-0). T],, ) = T],] = 0. (8.40)

So LxT = 0 if ¢, is a symmetry transformation. If ¢, is a one-parameter group of isometries, then
Lxg = 0. In other words,
VoXp + VX, =0. (8.41)

This is the Killing equation, and the solutions X to this equation are called Killing vector fields.
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9 Linearized Theory Revisited

§9.1 Gauge Symmetry in Linearized Theory

We have seen earlier that diffeomorphisms are gauge symmetries in GR. If ¢ is a diffeomorphism,
(M,g,F,...) and (¢« (9), ¢« (F),...) are physically equivalent. Let us now go back to the metric

Guv = Nuv + huu, (9.1)

where 7, = diag(—1,1,1,1). We focus on diffecomorphisms that preserve 9.1. A general diffeo-
morphism ¢ would lead to (1) v very different from diag (—1,1,1,1). However, if we consider
1-parameter family of diffeomorphisms ¢y, then g is the identity map. So, if ¢ is small, then ¢, is
close to identity. Therefore, small ¢ guarantees that ((¢y), 77);w will be close to diag (—1,1,1,1) and
the form 9.1 will be preserved. For small t,

(-, (Tl,y) =T, +H(EXT), +O () = T| + (£T), + O (), (9.2)

where X is the vector field that generates ¢; (¢ is defined of integral curves of X) and % = tX%. tis
small, so we can treat £* as first order quantity. If we apply 9.2 to the energy momentum tensor, which
itself is in the 1st order, because T}, < 1 for spacetime being nearly flat. Then LT is higher order
and hence negligible. Therefore, energy momentum tensor is gauge invariant in the first order. The
same is true for any tensor that vanishes in the unperturbed spacetime, e.g. the Riemann curvature
tensor.

Now, what abouot the metric tensor g, 7

(o) (g\w(p>—g|p+(£59)p+ =, +hl, + (Len), + -, (9:3)

where we have neglected L¢h which is very small as £ and h are both of the first order. But we want
(ot (g!wt(p ) = g‘p for all p € M. Comparing 9.1 and 9.3, we can deduce that h|p and h‘p + (/Jgn)p

are equlvalent metric perturbations. Therefore, the Linearized theort possesses the symmetry
h — h+ Len for small §. In our chart {z"'}, (L¢n) ,, = 0p€y +0v&y (covariant derivatives are replaced
by partial derivatives to the first order). Therefore, the gauge symmetry is

|y = s + 0 + 0,60 (9-4)

Now, consider the linearized Einstein equation (7.36):

1 - - 1 o7

We have seen earlier that under gauge transformation hj,,, = hy, + 9,6, + 9,€,. Now we want to know
how B;w = hu, — %hnw transforms under such gauge transformation.

_ 1 1
hl;uj = h,/u,l/ — ih,nl“/ hl“’ —+ aué-y + 8V€N 77#1/ ( PUh;)o.)
1
h;w + 8u£u + 81/5“ nuunpa (hpa + apgc + aafp)

1
= h,ul/ + aué-y + &/fu - inuuh - nuuapgp

= B,uu + 3Mf,, + 81/§u - nuuapgp-

Therefore, under gauge transformation,

h,uz/ — B;w + (a,ufu + 61/£;L - npuapgp) . (9'6)
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9 Linearized Theory Revisited 67

Under this transformation,

O Wy = 0 by + 0 s + 00,6 — 10 0%,
= O + 0,0” € + 070, — 0,076,
= 0" By + 0" 0,8,

Therefore, under gauge transformation,

0" hywy — 0"y, + 0" 0,,. (9.7)

If we choose &, to satisfy the wave equation 0V0,&, = —0” BW (which we can solve using a Green’s
function), then the transformed equation will read

Iy = 0. (9.8)

This is called the harmonic gauge. In this gauge, the linearized Einstein equation (9.5) reduces to
1 _
—§8p8ph’u,, = 81T, (9.9)

leading to

Oy = —167T,,. (9.10)

§9.2 The Newtonian Limit

We will now see how GR reduces to Newtonian theory in the limit of non-relativistic motion and a
weak gravitational field. We expect Newtonian theory to be valid as ¢ — oco. We stick to ¢ = 1, but
introduce a small parameter 0 < ¢ < 1 and write € everywhere whenever % would appear.

We take an almost inertial coordinate system (freely falling system) z# = (t, :pl) The 3-velocity of

a particle is v = g—f = O (¢). In Newtonian theory, ® = —GTM and g = GTJQ\/[ So |®] =v? = O (£?).

Therefore, we expect tha gravitational field to be O (52). We further assume

h(]o =0 (62) y hOi =0 (63) s hiij =0 (62) . (9.11)

Since the matter which generates the gravitational field moves non-relativistically (v = O (¢)), time
derivative of the gravitational field will be small compared to spatial derivatives: the gravitational
field at a point x due to a body of mass m located at x (t) is given by

m
@ —_— _m. (9-12)
Let L = |x — x(t)|. Then
00 = v = " =x(0) (9.13)
|x — x()]
Hence,
_om |2
|0;®| = <P =7 (9.14)
On the other hand, using x = O (¢), we get
® ® da’ :
Hence,
H® <|V|- x| =0 (i') O() <O <€|> : (9.16)

Therefore, 9y® < 9;9.
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Consider the Lagrangian L of a time-like geodesic.

R dx# dz¥ ey
L? = —gu (z (7)) P @W + hu'u) itz N
= — (=14 hgo) i%3° — ;@' — hid'd® — (8;5 + hij) &3
= (l — hOO) 2 — Qh(]iléj}i — (513 + hij) iqd (9.17)

Now, recall the definition od proper time:
dr? = —gdatda’ = 1= —g,,i"3". (9.18)
Therefore, L? =1 on the time like geodesic. In other words,

(1 — hoo) 2 — Qhoiiii — (5U + hij) il = 1. (919)

Observe that % = % aii = ¢! 8‘3&. Since v¢ = O (¢), % < 82“ i.e. time derivatives are much smaller
than spatial derivatives. Also,

s

dz’ - dz? g
dr  dt dr

=vii=0(E)i = i=0(1). (9.20)
Now, rewriting 9.19, we get
(1 — h(]()) 2 — (5ij.i‘ij?j =1+ 2h0¢t..%"i + hiji'ii'j

O(e?)
(1= hoo) % = 1+ §;;d'd7 + O ()

(1 — hgo)

NI

F= 14 Loyt +0 (<)

N|—=

t= <1 + %5@]1‘11‘] + O (84)) (1 — hoo)_
t = <1 + %@jiiﬁcﬂ' +0 (54)) (1 + %hoo +0 (54)>

1 IR
= t=1+ Shoo + 504" + O (eh). (9.21)

bl

Now, recall 9.17. The Euler-Lagrange equation for z* is

d (oL oL
dr (ay‘) T ot (6-22)
From 9.17, one has
~ OL o o —
QL% = —h007it — 2h0j,itl’ — hmj7ia} . (923)
Furthermore, R
~ OL . i
QL% = —2hgit — 2 (52] + hij) x’. (9.24)
Then the Euler-Lagrange equation for z° reduces to
d . . . . .
ar [Qhoz't -2 (513 + hij) .f]] = —h()o’itz — 2h0j7iti'J — hmjVii'ma'}]. (9.25)

3

hoji = O (5 ), 50 hojidi? = O (). Similaly, hyyi™i? = O (5). Therefore,

gl

% [2hoit — 2 (6ij + hij) 27| = —hoo; + O <L> : (9.26)
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Note that N
2 sk = 9.27
dr _ dr 92k " zk (9.27)
which is of order +. hoit is O (53), SO d(Ziit) is O (%) Similarly, hija‘cj is O (53), SO d(héfﬂ) is also

O (%) Therefore, 9.26 gives us

, et et
— 95t — ) == i — . 2
;1:+(’)<L> h00,+(’)<L) (9.28)
Retaining only the leading order terms gives us
|
= §h00,i- (9.29)
Using chain rule,
L d (da"y _d dxit.
oA \dr ) T ar \ar
B g d:cit.
Codt \ dt
d d(L‘l 2 .
=% < T ) (t) + subleading terms
d2zt .
=3P + subleading terms . (9.30)

For & = —%hoo, 9.29 reduces to
d2a2?
de?
which is exactly Newton’s equation for a body moving in a gravitational field ®.

= —9,;P, (9.31)

§9.3 Gravitational Waves

In vacuum, the linearized Einstein equation reduces to the source-free wave equation (9.10):
0P, 1y, = 0. (9.32)
Let’s look for plane wave solutions to this equation:
i = Re (Hgyeikox”) . (9.33)

where H,, is a constant symmetric complex matrix. (We shall suppress Re in all subsequent equations.)
Then we have

099y (Hjpe™") =0
— ¢ O, (H/’w (ik,) e“) =0
— g7 (Hy, (k) (ikr) €077 ) = 0
= — H} kk’e™"" =0. (9.34)

Therefore, k,k” = 0, i.e. k* is a null vector so it propagates with the speed of light.
Now consider the harmonic gauge condition (9.8).

Oy =0 = "0, (Hj,e™") =0
= ¢""Hj, (ike) ™™ =0
vy
= k“H/,, =0. (9.35)
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This means the waves are transverse, i.e. oscillations are orthogonal to the wave vector. Since H
is symmetric, there are 10 independent components on the matrix. But now the transverse wave
condition gives us four constraints: k¥ H ;,w one condition for each v € {0,1,2,3}. Hence, there now
will be 10 — 4 = 6 independent components of H.
However, 0”h/ uw = 0 does not eliminate all gauge freedom. Recall the harmonic gauge condition
(9.8).
0"hy = —0"0,§, = —0&,. (9.36)

If we choose £, — £, + (¢, with OC, = 0, then 9.36 is still satisfied. This 0§, = 0 condition is called
residual gauge symmetry. We look for the solution to the wave equation 9”0,¢,, = 0. If we take

& = X, et (9.37)

this obviously satisfies 0”9,¢,, = 0 since k" is a null vector. Using 9.6, we get

huyefikgx" — Bwjefiko—x” + (8p,€1/) efik(,—m" + (ayfu> efiko—x" _ 77“” (aofp) efikgx"
_ hwe—im + 0, (Xyeik:pxp) e—ikor” | g (X#eikpxp> oikon? _ mwpﬁaﬁ (Xpeikagca> o—iko”
= hue * 4 X, (ik,) + X, (iky) — nuwn® X, (ikg)

| Hyy = Hyy +i (k:HXl, + kX, — nu,,kﬁxﬁ) . (9.38)

We want the gravitational wave h/ uv to be purely spatial. Hence, h'o, = 0. Therefore, we have
H|,=0, (9.39)

which is known as the longitudinal gauge condition. This still does not determine X, uniquely.
So we add the tracelessness condition:

H'", =0. (9.40)
Using 9.38 and 9.40, we get

0= H'"y = " Hlpy = 0" Hyy + it (KXo + by X, = 1k X ) (9.41)
— H",+ i (KX, + KX, — 467X ) (9.42)
= 0", — 2ik"X,. (9.43)
KX, = —éH“#. (9.44)

Now, we impose 9.39. For v = 0, we have
0= Hjy= Hoo+1i (koXo + koXo + k;BXﬁ) = Hoo + 2ikoXo + %H“u. (9.45)
S Xg=— 1 <H00++1H“ ) <H00++1H ) (9.46)

ik 2 2ko 2

For v # 0, we have
Hoy, +i (ko X, + k Xo) = H{, =0

= ko X, = —Hy, — ik, Qk (H00—|-+ H* )

1

= ko X, = —— | —2koHo, + k., | Hoo + +7H“u
20 2
Z

X, =
2k2

1
|: 2koHoy + ky, (H()o + +2H“M>:| . (9.47)
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Now the X, are determined uniquely. So we have eliminated all the gauge freedom.

So, we see that, for these choices of X, (9.46 and 9.47), we will have H'*, = 0 and H{,, = 0. Thus,
we began with 10 independent components in the symmetric matrix H,, —choosing the harmonic
gauge implied the transverse wave condition, which led to 4 constraints— bringing the number of
independent components to 6. We used our remaining residual freedom to choose X, such that
H'",, =0 (1 condition) and Hp, = 0 (4 conditions). But when v = 0, Hy, = 0 gives us

ky H" =k, H" = 0. (9.48)

So there are only three new conditions in HOv = 0, not four.

Thus the number of independent components of H,, is then 6 — 3 — 1 = 2, and using all our
freedom, we can have the only non-zero components of H,, to be: Hyy, Hiy, Hy;, and Hy,. The trace-
free condition gives: Hi; + Hjy = 0 so H{; = —H}, = H, and symmetry gives: Hiy = H) = Hy.

00 0 0

, 0 H. Hyx 0

Huw =10 ., “H, 0 (9.49)
00 0 0

So, the gravitational wave is transverse and has two possible polarizations. This is another way of
interpreting that the gravitational field has two degrees of freedom per spacetime point (event).
Using all of our gauge freedom, we have gone to a sub-gauge of the harmonic gauge, known as the

“transverse trace-less gauge”, or the “radiation gauge”. We shall denote A’ uv by BLT,T. The superscript
TT for denoting that it is in the Transverse Traceless gauge. Then we have
. 1
Wt =haT - 5nWh’TT. (9.50)
But
h/TT _ nuuhg’ET — nul/Hl/“/ezkpX/’ =0 (951)

since n“”h;;lr,-r = 0. Therefore, h;J,T = ELIT in the traceless transverse gauge. In this gauge, the
linearized Einstien equation then can be written as

0P,y = 0°0,h),, T = 0. (9.52)

§9.4 Physical Effects due to Gravitational Waves

Let us get a feeling for the physical effects due to gravitational waves. How would one detect a
gravitational wave? To detect such waves, an observer can set up a family of test particles locally.
Since the displacement vector S from the observer to any particle is governed by the geodesic deviation
equation, we can use it to predict what the observer will see. But, we need to do that analysis carefully,
as it would be to write out the geodesic deviation equation using the ’almost inertial’ coordinates, and
thereby, determine S*. The point is, S* are the components of S in a certain basis, so it would be
tough to determine which variation in S* is due to the (variation of the) basis and which variation
arises from S (due to the gravity-waves). One can make this approach work, but let us take a different
approach.

Let us consider a freely falling observer, i.e. one that is following a geodesic in a general space-
time. Our observer, in their frame, will have a set of measuring clocks with which they can measure
distances. At some point p on their worldline, we could introduce a local inertial frame (Riemann
normal coordinates) X, Y, Z in which the observer is at rest. Now, in the case that the observer sets up
measuring rods of unit length pointing in the XY, Z directions at p, T, M has an orthonormal basis
eq Where ef = u® is the 4-velocity of the observer, and e are the space-like vectors satisfying u,ef = 0
(meaning ep and e;’s are orthogonal) and gabe?e? (meaning e; and e; are orthogonal spacelike).

In Minkowski spacetime, this basis can be extended to the observer’s entire worldline by taking the
basis vectors to have constant components (in an inertial frame), i.e. they do not depend on proper
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time 7. This implies, in particular, that the orthonormal basis is non-rotating. (No surprises, since in
the Riemann normal coordinates, the connection components of the Levi-Civita connection, i.e. the
Christoffel symbols all vanish.) Since the basis vectors have constant components, they are parallelly
transported along the worldline.

In a curved spacetime, the analogue of this is to take the basis vectors e; to be parallelly transported
along the worldline, i.e. to let (Vyre;)® = 0 which implies U?(V,,e;)® = 0. This equation determines
the ef’s uniquely along the whole worldline of the observer if they were specified at any point p. They
are just being parallelly transported along the geodesic. [Fact: parallel transport preserves inner
product.| Since parallel transport preserves inner product, and since the el’s were orthogonal at p,
they will remain orthogonal.

The basis just constructed, is called a “parallelly transported frame”. It is the kind of basis that
would be constructed by an observer freely falling with 3 gyroscopes whose spin axes define the spatial
basis vectors. Using such a basis, we can be sure that an increase in a component of S is really an
increase in the distance to the particle in a particular direction, rather than a basis-independent effect.

Now, let us imagine that the observer sets up a family of test particles near his worldline. The
deviation vector to any infinitesimally nearby particles satisfies the geodesic deviation equation:

(VuVuS)® = R(U, S,U)"
— (Ubveb (UCVeCS))a — ROUUCS
— (Ubveb (UCVeCS)> = RupeaUPUCSY. (9.53)

Let us contract it with e% and use the fact that (Vye;)* = 0 to essentially push it inside the covariant
derivative:

Ruapeae2UCUST = UV, (U°V,. (e25,)) . (9.54)

Here €25, is a scalar, and hence we see that, V.(e%S,) = 0.54. So,

dzc S dz® 9 [/dS d2s
b c a _77b a ) S @
UV, (USV, (€2S,)) = UV, < = axc) = .0 < - ) o (9.55)
Therefore,
e _ Rupeqe®UPUCSY = RpoqeUPU e S8 9.56
dT2 = Igbed€q = LlghedCq eﬁ ) ( . )

where 7 is the proper time and S, = €S, is one of the components of S, in the parallely transported
frame. On the RHS, we have used e‘éSfB = 59

In the linearized theory, Rupeq is a quantity of first order, so we only need to evaluate the other
quantities to leading order, i.e. we can evaluate them as if the spacetime were flat. The extra
contributions would be negligible since they would end up being O(h2) or O(|8;h[?).

Let us assume that the observer is at rest in the “almost-inertial” coordinates, i.e. to leading order,
UF = (1,0,0,1). Hence, from 9.56, we see that the terms on RHS become 0 when b = ¢ # 0. Hence,
when b = ¢ = 0, we have

(if; = RapeaetUU%€4S” & RapoactesS”. (9.57)
Now,
Rate = 5 (Rt + Whaa = Wi~ Wocpa) = Fuovo = 5P (9.59)
Therefore, ,
% ~ RyuooveledS’ ~ % '0.00€55"
K d;f; ~ %h:w,ooefasﬁ- (9.59)
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In Minkowski spacetime, we could take e to be aligned with the X,Y, Z axes respectively, i.e. e =

(0,1,0,0), e, = (0,0,1,0) and €5 = (0,0,0,1) (in a basis, locally). We can use the same result here as
we only need to evaluate eh, upto leading order. Using ho, = hj,, = 0, we see that,

A2y 19%hy, 16°h! 1
= W shet P = -2 0§t P = — —k2hy,SY = :
a2 2 e 2005 = 55 055 ghohoyS" =0, (9.60)
since hg,, = 0. Similarly,
d2S;  19%h),, 10%h%, o, 1 ,
T2 =5 o 03058" = 553 058" = — S kihy, S =0 (9.61)

to this order of approximation. Hence, the observer sees no relative acceleration in the ¢ and z axes
(the z axis is thought to be the axis along which the gravitational wave is propagating). We can choose
our “almost-inertial” coordinates so that the observer has coordinates z* = (7,0,0,0) (i.e. ¢ =7 up
to leading order along the observer’s worldline).

For a +-polarized wave, we can let Hy = 0, and then,

d*S1  10%h, s 1OPHY, o s
drz 2 o2 SON0EST = 5o o %
162 162

= 2gr T =T

1
= —§k:§H+771"SU = —§k§H+n“Sl

1
= —§k§H+Sl. (9.62)
In essence, we should have (ETS; =Re (—1k3H,S1). So
d? 1 1
% =-3 w? Re <|H | ¢f Arg(H) ’(“’T)Sl> = —in |H | cos(wr — ) S. (9.63)
Similarly,
d%S,  19°hy, 102K
_ 5#5 B _ = 2v sv gf
arr ~ 2 o 205 =5 e 00

1 9 1 6? ihon
= 3op )" = g (M) '

1 . 1
= —§k3(—H+)172 Se = §7€3H+772252

1
= §k§H+Sg. (9.64)

In essence, similarly as before, we should have,

d2s 1 1 : : 1
de = Re (2k8H+Sg> = §w2 Re (]H+\ ezArg(HHemsz) o w?|Hy|cos(wr —a)Ss.  (9.65)
So, we have got two differential equations: C};S; = —1w?|Hy | cos(wr—a)S, and CgTSZQ = 1w? |Hy | cos(wr—

«)S2, where |Hy| is small. The exact solutions of these differential equations involve Mathieu func-
tions. Some plots of the solution of the ODE (with some initial value) are shared below (Figure 9.1
to Figure 9.6). They were plotted using Maple 2020.1.

Since |H,| is small, we see that upto O (|H4|?),

S1(1) =~ Sy (1 + %|H+| cos(wt — a)) (9.66)
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del = {diff(¥(x), ¥52) =—100-cos(x) ¥(x), ¥(0) = L, ¥'(0) =0}:
5
det = | () = ~100 cos(x) v 1(0) = 1, D(y) (0] =0
dx”
1 = dsolve(del. y(x). numeric)
1 = proc(x_rifd3) .. end proc
plots[odeplof] (f1. [x. y(x)].-1 1)
1

Figure 9.1: S1(7) when w = 1, Hy =100, $1(0) = 1, and 421 (0) = 0.

del = {diff (y(x). x52) =001 cos(x) -»(x). ¥(0) = L. »'(0) =0}
del = |7l ¥(x) = -0.01 cos(x) ¥(x), »(0) = . D(»)(0) = 0]

A1 1= dsolveldel, y(x), mmeric);
1 += proc(x_rif5)  end proc
plots[odeplof] (f1. [x, ¥(x)1.-20..20);

Figure 9.2: S)(7) when w = 1, Hy = 0.01, S1(0) = 1, and 921(0) = 0.

is a solution where S is a constant. We verify this by plugging it into the differential equation. Indeed,

s, d? 1
2 Y a2 <Sl <1 + §|H+] cos(wt — 04)))

_ d?
= 551]H+\@(cos(w7' —a))

1 _
= —§w2|H+| cos(wt — a)S1. (9.67)
Also,
Lo Ly & 51
—5w |Hy|cos(wr — a)S) ~ —gw |Hy|cos(wr —a) | S1+ — |H+| cos(wT — )
= —7w2]H+] cos(wr — a)S; + O (\H+\ ) (9.68)

So we see that, Sl 7'2 S1(1+ £|H|cos(wr — ) works upto leading order term. Similarly, we

would have S5(7) & S5 (1 — 3|H | cos(wr — a)) to work upto leading order term for the differential
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del = (diff(¥(x), ¥2) =1 -cos(x) ¥(x). »(0) =0, v'(0) =1}
2
del = | yx) = ~cos(x) y(x). ¥(0) =0.D(p)(0) = 1
v

A = dselve(del. y(x). numeric);
S = proc(x_rkf45) ... end proc
plots[odeplof] (f1. [x. ¥(x)].-2.2);

L

Figure 9.3: S1(7) when w =1, Hy =1, S1(0) =0, and ‘%1(0) =1

del = {diff(y(x). x82) = 0.01 cos{x) ¥(x). ¥(0) =0, ¥'(0) =1}
2
del = |%]'(,\)=U,Ulcns())}()) ¥(0)=0 D(;)(O):l}
&

A 1= dsolve(del, y(x), momeric);

1= proc(x_rif5) _ end proc
plots[odeplot] (f1. [x, ¥(x)].-1..20);

I

Figure 9.4: So(7) when w =1, Hy = 0.01, S3(0) = 0, and %(O) = 1. Notice that this is not entirely
a straight line. There are some “wiggles”.

equation we got for S3. We see that,

(51;:))2 - (ng(;)>2 = <1 + %|H+|cos(w7' —a)>2 + (1 - %|H+|cos(wr— a)>2

=1+ |Hy|cos(wr — a) + 1 — |Hy| cos(wr —a) + O (\H+\2)

~ 2, (9.69)

ignoring terms O (|H|?). Therefore,

Si(m)\* . [ Sa(m)\?
(1(7_)) + (2(7_)> ~ 1. (9.70)
V25, V25,
This is (almost) an ellipse. Thus, particles initially separated in the z-direction will oscillate back and
forth in the z-direction, and likewise for those with an initial y-separation. Thus, if we start a ring of

stationary particles in the zy-plane, as the wave passes, they will bounce back and forth in the shape
of a “4”. See Figure 9.7.

75



9 Linearized Theory Revisited 76

del = {diff(y(x). x82) =0.000001-cos(x) v(x). »(0)=0.»'(0)=1}
2
del = | S y(x) =1 10F cos(x) y(x). (0) =0, D(¥)(0) = 1
a?

S1 = dsolve(del, y(x), numeric);
A1 = proc(x_rkfA45) ... end proc
plots[edeplof] (f1. [x, ¥(x)].-1.20);

Figure 9.5: So(7) when w = 1, Hy = 0.000001, S2(0) = 0, and %—STQ(O) = 1. No wonder this is a
linearized theory.

del = {diff (v(x). x52) = 0.000001 -cos(x) w(x). »(0) = 1, ¥'(0) = 0};
Py
del == |“—7.‘-(,\-)=1, 1075 cos(x) () 1(0):13(;-)(0):01
2

b ”
1 += dsolveldel, y(x). numeric)
1 += proc(x_rif5) . end proc
Pplotsadeplar] (J1. [x, ¥(x)].-1.20);

1.0000018
1.0000016
1.0000014
1.0000012 4
> 1.0000010 1
1.0000008
1.0000006
1.000001

1.000000:

i

Figure 9.6: Sy(7) when w =1, Hy = 0.000001, S3(0) = 1, and %(0) =0.

For a x-polarised wave, H; = 0, and then we would have:

dQSl 182h:”’ wev QB 182 /11/ v
drz ~ 2 o2 0055 T2 or2 5
1 9 1 9 -
T 9012 (ha) S2 = 2082 (H{ZG e p) So

1 1
= ShGHxn™ Sy = Sk Hxn™ S

1
— 5k;SHXSg. (9.71)

Again, similarly as before, we should have

d2Sl 1 2 1 2 1 Arg(Hyx ) iwT
W = Re <2k0H><SQ = 5(4.1 Re (‘HX‘€ 8 )6 SQ)
1
= 50.:2 |H | cos(wT — ) Ss. (9.72)
Similarly, for Sy, we will have
d2
df; = §w2 |Hx| cos(wr — ) S (9.73)
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y

X

SISIOTIOINI:

Figure 9.7: Effect of a +-polarised Gravitational Wave as it passes through a ring of stationary particles

in the zy-plane

OROEONG

Figure 9.8: Effect of a x-polarised Gravitational Wave as it passes through a ring of stationary particles

in the zy-plane

We have got two coupled differential equations. We see that,

d2(51 + SQ)

1,
= — H —
2 2w |H| cos(wr — ) (S1 + S2)

Therefore,

- 1
S1 + So & S <1 + B |H| cos(wr — a)) ,
ignoring terms O (\HX \2> Also,

d? (S; — S2) 1

= ——w? |Hy| cos(wr — a) (S — Sa).

dr2 2
Therefore, again ignoring terms O (\H % \2),
- 1
S1— S~ Sy <1 ~3 |H | cos(wT — a)> .

After solving for S1(7) and Sa(7), we get
_ glg + §21 + 512 - 521

S1(7) 5 1 |H | cos(wT — ),
Sig — S S S.
So(T) = 12 5 A 121_ 21 |H | cos(wT — a).

We see that the solutions, upto first order in |H|, are:

D
Si(r)=C+ 5} |H|cos(wr — «) and Sy (1) = D + % |H | cos(wT — ).

(9.74)

(9.75)

(9.76)

(9.77)

(9.78)

(9.79)

(9.80)

It will also fall into an equation of an ellipse whose major and minor axes are a bit ’crossed’/rotated
in the coordinate we are using. In this case, the circle/ring of particles would bounce back and forth
in the shape of a “x”. See Figure 9.8. [Hence, the notation “H” and “H” should make sense now.|
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We could also consider right and left-handed circularly polarized modes by defining;:
Hp = ! (Hy +iHy) and Hy = 1 (H Hy) (9.81)
= — i an =—(Hy—1 .
= \/5 X L \/§ X

The effect of a pure Hr wave would be to rotate the particles in a right-handed sense (see Figure 9.9),
and similarly for the left-handed mode Hy. [Note that the individual particles do not travel around
the ring; they just move in epicycles.]

O RERICIR Iy

X

y

Figure 9.9: Effect of an Hp gravitational wave to an bunch of particles put on an ellipse. The effect
is as though the ellipse gets being rotated in a right hand sense.

Now, we want to see that the two polarizations are 45° apart. Let us rotate our local “almost
inertal” coordinates clockwise by 45° about the z-axis. Then,

t,x,y,z) = (t', 2y, :<t,$—y,x—|—y,z>. 9.82

In this coordinate,

oxf 0x°
H;,w = Ok Qv PO (983)
From 9.82, we get
x/ y/ x/ y/
r="td andy=-——"t L. 9.84
VRV H e AN NG .
Therefore,
Oz Ox oz Oy Oy Ox dy Ox
! il i T el
Hn = oz’ 9z’ M * oa Oz’ 2 + ox' Oz’ Ho + oy’ oz’ Ha
1 1 1 1
= -H,— —Hy — ~Hy+ = (—H,) = —Hy. 9.85
2 + 2 X 9 x T 2 ( +) X ( )
Or Ox or Oy 0y Ox 0y Ox
Hi, === — 2 H 2" H ke bady =}
127 5 oy 11+ 92’ Dy 12+ 92’ 0y 21 + 9y Oy 22
1 1 1 1

So, in H — H', we see that the (independent) components have switched places so that the polariza-
tions have switched places. What we called x-polarization initially, after rotating clockwise by 45°
around the z-axis, will now seem to be a +-polarization and vice versa for + to x.
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