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1 Singular Homology Theory

§1.1 Singular Homology Groups
Let R∞ denote the generalized Euclidean space EJ , with J being the set of positive integers. An
element of the vector space R∞ is an infinite sequence of real numbers (functions from N to R) with
finitely many nonzero entries. Let ∆p denote the p-simplex in R∞ having vertices

ε0 = (1, 0, 0, . . . , 0, . . .) ,

ε1 = (0, 1, 0, . . . , 0, . . .) ,

· · ·
εp = (0, 0, 0, . . . , 1︸︷︷︸

(p+ 1)-th entry

, . . .) .

We call ∆p the standard p-simplex. In this notation, ∆p−1 is a face of ∆p.

Definition 1.1 (Singular p-simplex). Let X be a topological space. We define a singular p-
simplex of X to be a continuous map T : ∆p → X. The free abelian group generated by singular
p-simplices of X is denoted by Sp (X), and is called the singular chain group of X in dimension
p. We shall denote an element of Sp (X) by a Z-linear combination of singular p-simplices of X.

Singular means that T could be a “bad” map, i.e. it may not be an imbedding. All we want that T
is just continuous. Now, recall that

∆p =

{
(x0, x1, . . . , xp, 0, . . .) ∈ R∞|0 ≤ xi ≤ 1 and

p∑
i=0

xi = 1

}
. (1.1)

Given a0, a1, . . . , ap ∈ R∞, there is a unique affine map l(a0,...,ap) : ∆p → R∞ that maps εi to ai. It is
defined by

l(a0,...,ap) (x0, x1, . . . , xp, 0, . . .) =

p∑
i=0

xiai =

p∑
i=0

xiai + a0 −
p∑
i=0

xia0

= a0 +

p∑
i=0

xi (ai − a0) . (1.2)

We call this map the linear singular simplex determined by a0, a1, . . . , ap ∈ R∞. Now, what is
l(ε0,...,εp)? Observe that

l(ε0,...,εp)εi = l(ε0,...,εp)(0, . . . , 0, 1︸︷︷︸
(i+ 1)-th entry

, 0, . . .) = εi. (1.3)

Therefore, l(ε0,...,εp) maps εi to itself, for every i = 0, 1, . . . , p. Also,

l(ε0,...,εp) (x0, x1, . . . , xp, 0, . . .) =

p∑
i=0

xiεi = (x0, x1, . . . , xp, 0, . . .) . (1.4)

Therefore, l(ε0,...,εp) is just the inclusion map of ∆p into R∞. Now, suppose (x0, x1, . . . , xp−1, 0, . . .) ∈
∆p−1, so that

∑p−1
i=0 xi = 1. Then

l(ε0,...,ε̂i,...,εp) (x0, x1, . . . , xp−1, 0, . . .) = x0ε0 + · · ·+ xi−1εi−1 + 0 · εi + xi+1εi+1 + · · ·+ xp−1εp

= (x0, . . . , xi−1, 0, xi+1, . . . , xp−1, 0, . . .) , (1.5)
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1 Singular Homology Theory 5

which is a point on the face of ∆p opposite to the vertex εi. In fact, l(ε0,...,ε̂i,...,εp) is a linear homomor-
phism of ∆p−1 into the face of ∆p that is opposite to the vertex εi. In other words,

l(ε0,...,ε̂i,...,εp) : ∆p−1 → ∆p

maps ∆p−1 to the face of ∆p opposite to the vertex εi. Therefore, given a singular p-simplex T : ∆p →
X, one can form the composite

T ◦ l(ε0,...,ε̂i,...,εp) : ∆p−1 → X,

which is a singular (p− 1)-simplex. We think of it as the i-th face of the singular p-simplex T .

Definition 1.2 (Boundary homomorphism). We define ∂ : Sp (X) → Sp−1 (X) as follows. If T :
∆p → X is a singular p-simplex, we define ∂T to be

∂T =

p∑
i=0

(−1)i T ◦ l(ε0,...,ε̂i,...,εp). (1.6)

In other words, ∂T is a formal sum of singular simplices of dimension p− 1, which are the faces
of T .

Remark 1.1 (IMPORTANT!). Note that only the singular p-simplices are maps, not the singular
p-chains. The p-chains are just formal sum of continuous maps from ∆p to X. If T1 and T2 are
two singular p-simplices, i.e. continuous maps ∆p → X, then T1 + T2 is NOT a map. The sum
present here is nothing but a formal notation. So one cannot act T1 + T2 on a point of ∆p. For
the same reason, ∂T1 is not a map. It is merely a formal linear combination of the continuous
maps T ◦ l(ε0,...,ε̂i,...,εp).

If f : X → Y is a continuous map, we define a group homomorphism f# : Sp (X)→ Sp (Y ) by defining
it on singular p-simplices by the equation

f# (T ) = f ◦ T (1.7)

for a singular p-simplex T .

∆p X YT

f◦T

f

Theorem 1.1
The homomorphism f# commutes with ∂. Furthermore, ∂2 = 0.

Proof. Given a singular p-simplex T ,

∂f# (T ) = ∂ (f ◦ T ) =
p∑
i=0

(−1)i (f ◦ T ) ◦ l(ε0,...,ε̂i,...,εp). (1.8)

f# (∂T ) = f#

(
p∑
i=0

(−1)i T ◦ l(ε0,...,ε̂i,...,εp)

)
=

p∑
i=0

(−1)i f ◦ T ◦ l(ε0,...,ε̂i,...,εp). (1.9)

Therefore, ∂f# (T ) = f# (∂T ). Now, to prove ∂2 = 0, we first compute ∂ for linear singular simplices
l(a0,...,ap).

∂l(a0,...,ap) =

p∑
i=0

(−1)i l(a0,...,ap) ◦ l(ε0,...,ε̂i,...,εp). (1.10)

5



1 Singular Homology Theory 6

Observe that

l(a0,...,ap) ◦ l(ε0,...,ε̂i,...,εp) (x0, . . . , xp−1, 0, . . .) = l(a0,...,ap) (x0, . . . , xi−1, 0, xixp−1, 0, )

= x0a0 + · · ·+ xi−1ai−1 + 0 · ai + xiai+1 + · · ·xp−1ap

= l(a0,...,âi,...ap) (x0, . . . , xp−1, 0, . . .) . (1.11)

Hence,
l(a0,...,ap) ◦ l(ε0,...,ε̂i,...,εp) = l(a0,...,âi,...ap). (1.12)

Therefore, from 1.10, it follows that

∂l(a0,...,ap) =

p∑
i=0

(−1)i l(a0,...,âi,...ap). (1.13)

Let’s now evaluate ∂∂l(a0,...,ap).

∂∂l(a0,...,ap) =

p∑
i=0

(−1)i ∂l(a0,...,âi,...ap)

=

p∑
i=0

(−1)i
∑
j<i

(−1)j l(a0,...,âj ,...âi,...ap) +
p∑
i=0

(−1)i
∑
j>i

(−1)j−1 l(a0,...,âi,...âj ,...ap)

=

p∑
i=0

∑
j<i

(−1)i+j l(a0,...,âj ,...âi,...ap) −
p∑
i=0

∑
j>i

(−1)i+j l(a0,...,âi,...âj ,...ap). (1.14)

Now fix 0 ≤ j0 < i0 ≤ p. In the first summand of 1.14, the contribution of i = i0, j = j0 is

(−1)i0+j0 l(a0,...,âj0 ,...âi0 ,...ap). (1.15)

On the other hand, in the second summand of 1.14, the contribution of i = j0, j = i0 is also

(−1)i0+j0 l(a0,...,âj0 ,...âi0 ,...ap). (1.16)

These two contributions cancel each other. This way, one finds that the RHS of 1.14 vanishes. Hence,

∂∂l(a0,...,ap) = 0. (1.17)

In particular,
∂∂l(ε0,...,εp) = 0. (1.18)

Now, l(ε0,...,εp) : ∆p → ∆p is continuous, so l(ε0,...,εp) ∈ Sp (∆p). Furthermore, it is the identity map as
we have seen in 1.4. Since T : ∆p → X is continuous, we can form T# : Sp (∆p)→ Sp (X).

T#
(
l(ε0,...,εp)

)
= T ◦ l(ε0,...,εp) = T ◦ id∆p = T. (1.19)

Therefore, using the fact that T# commutes with ∂, we obtain

∂∂T = ∂∂T#
(
l(ε0,...,εp)

)
= T#

(
∂∂l(ε0,...,εp)

)
= 0. (1.20)

Hence, ∂2T = 0. ■

Definition 1.3 (Singular homology groups). Th family of groups Sp (X) and homomorphisms ∂p :
Sp (X)→ Sp−1 (X) is called singular chain complex of X, and is denoted by S (X).

· · · Sp+1(X) Sp(X) Sp−1(X) · · ·
∂p+1 ∂p

The homology groups of this chain complex are called the singular homology groups of X,
and are denoted by Hp (X).
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1 Singular Homology Theory 7

Definition 1.4 (Augmentation map). The chain complex S (X) is augmented by the homomor-
phism ε : S0 (X) → Z defined by setting ε (T ) = 1 for each singular 0-simplex T : ∆0 → X. (A
generic singular 0-chain is a Z-linear combination of singular 0-simplices.)

It’s immediate that if T is a singular 1-simplex, then ε (∂T ) = 0. Indeed,

ε (∂T ) = ε
(
T ◦ l(ε̂0,ε1)

)
− ε
(
T ◦ l(ε0,ε̂1)

)
= 0. (1.21)

Definition 1.5 (Reduced homology groups). The homology groups of {S (X) , ε} are called the
reduced singular homology groups of X, and are denoted by H̃p (X).

Now, given continuous map f : X → Y and T : ∆0 → X a singular 0-simplex on X, then f# (T ) =
f ◦ T : ∆0 → Y .

∆0 X YT

f◦T

f

Now, consider the augmented singular chain complexes
{
S (X) , εX

}
and

{
S (Y ) , εY

}
. Noting contin-

uous T : ∆0 → X and f# (T ) : ∆0 → Y , one obtains εX (T ) = 1 and εY (f# (T )) = 1. In other words,
the following diagram commutes

S0(X) Z

S0(Y ) Z

ϵX

(f#)0 id

ϵY

Therefore, f# : Sp (X)→ Sp (Y ) is an augmentation preserving chain map between
{
S (X) , εX

}
and

{
S (Y ) , εY

}
. Thus, f# induces a homomorphism f∗ in both ordinary and reduced singular

homology.
In Theorem 1.1, we saw that the chain map f# commutes with the boundary operator ∂. In

other words, (f#)p : Sp (X) → Sp (Y ) takes cycles to cycles and boundaries to boundaries. Suppose
cp ∈ Zp (X) = Ker ∂Xp , so that ∂Xp cp = 0. Now,

∂Yp

(
(f#)p cp

)
= (f#)p−1

(
∂Xp cp

)
= 0. (1.22)

Hence, (f#)p cp ∈ Zp (Y ). On the other hand, let bp ∈ Bp (X) = Im ∂Xp+1. Then bp = ∂Xp+1dp+1 for
some dp+1 ∈ Sp+1 (X). Then

(f#)p bp = (f#)p
(
∂Xp+1dp+1

)
= ∂Yp+1

(
(f#)p+1 dp+1

)
. (1.23)

In other words, (f#)p bp ∈ Bp (Y ). This reflects the fact that (f#)p : Sp (X) → Sp (Y ) induces a
homomorphism between the singular homology groups (f∗)p : Hp (X)→ Hp (Y ). (f∗)p is given by

(f∗)p (cp +Bp (X)) = (f#)p cp +Bp (Y ) . (1.24)

If the reduced homology groups of X vanishes in all dimensions, we say that X is acyclic (in singular
homology).

7



1 Singular Homology Theory 8

Theorem 1.2
If i : X → X is the identity, then so is (i∗)p : Hp (X)→ Hp (X). If f : X → Y and g : Y → Z are
continuous, then ((g ◦ f)∗)p = (g∗)p ◦ (f∗)p.

Proof. It is sufficient to show that the equations hold at the chain level. We know from the definition
of (f#)p : Sp (X)→ Sp (Y ) that it maps T ∈ Sp (X) to f ◦T ∈ Sp (Y ). Since i : X → X is the identity
map,

(i#)p (T ) = i ◦ T = T. (1.25)

So (i#)p : Sp (X)→ Sp (X) is the identity homomorphism. As a result,

(i∗)p (cp +Bp (X)) = (i#)p cp +Bp (X) = cp +Bp (X) . (1.26)

Therefore, (i∗)p = idHp(X).
Given continuous f : X → Y and g : Y → Z,

(
(g ◦ f)#

)
p
: Sp (X)→ Sp (Z) is defined by

(
(g ◦ f)#

)
p
T = (g ◦ f) ◦ T = g ◦ (f ◦ T ) = (g#)p

(
(f#)p T

)
. (1.27)

Therefore,
(
(g ◦ f)#

)
p
= (g#)p ◦ (f#)p. Now, at the homology level, for cp + Bp (X) ∈ Hp (X) =

Zp (X) /Bp (X)

((g ◦ f)∗)p (cp +Bp (X)) =
(
(g ◦ f)#

)
p
cp +Bp (Z) = (g#)p

(
(f#)p cp

)
+Bp (Z) . (1.28)

Also,

(g∗)p ◦ (f∗)p (cp +Bp (X)) = (g∗)p

(
(f#)p cp +Bp (Y )

)
= (g#)p

(
(f#)p cp

)
+Bp (Z) . (1.29)

From 1.28 and 1.29, we can deduce that ((g ◦ f)∗)p = (g∗)p ◦ (f∗)p. ■

Corollary 1.3
If h : X → Y is a homeomorphims, then (h∗)p : Hp (X)→ Hp (Y ) is an isomorphism.

Proof. Both h : X → Y and h−1 : Y → X are continuous, and h ◦ h−1 = idY . Therefore,

(h∗)p ◦
((
h−1

)
∗
)
p
=
((
h ◦ h−1

)
∗
)
p
= ((idY )∗)p = idHp(Y ) . (1.30)

Similarly, starting with h−1 ◦ h = idX , we will get
((
h−1

)
∗
)
p
◦ (h∗)p = idHp(X). Therefore,

((
h−1

)
∗
)
p

is the inverse of (h∗)p. In other words, (h∗)p is an invertible homomorphism, i.e. an isomorphism. ■

Theorem 1.4
Let X be a topological space. Then H0 (X) is free abelian. If {Xα} is the collection of path
components of X, and if Tα is a singular 0-simplex with image in Xα for each α, then the
homology classes of the chains Tα form a basis for H0 (X). The group H̃0 (X) is also free abelian;
it vanishes if X is path connected. Otherwise, let α0 be a fixed index, then the homology classes
of the chains Tα − Tα0 for α 6= α0 form a basis for H̃0 (X).

8



1 Singular Homology Theory 9

Proof. Let xα = Tα (∆0) ∈ Xα, with Tα : ∆0 → X being a singular 0-simplex. Here, ∆0 consists of the
point ε0 = (1, 0, 0, . . .) ∈ R∞. Also, let T : ∆0 → X be any singular 0-simplex such that T (∆0) ∈ Xα.
Since Xα is path connected, there is a path connecting T (∆0) and Tα (∆0). In other words, there is
a singular 1-simplex f : ∆1 → X such that

f (1, 0, 0 . . .) = T (∆0) and f (0, 1, 0 . . .) = Tα (∆0) . (1.31)

Then we have
∂1f = f ◦ l(ε̂0,ε1) − f ◦ l(ε0,ε̂1). (1.32)

Now,

f ◦ l(ε0,ε̂1) (1, 0, 0, . . .) = f (1, 0, 0, . . .) = T (∆0) = T (1, 0, 0, . . .) , (1.33)
f ◦ l(ε̂0,ε1) (1, 0, 0, . . .) = f (0, 1, 0, . . .) = Tα (∆0) = Tα (1, 0, 0, . . .) . (1.34)

Therefore, ∂1f = Tα − T .
An arbitrary singular 0-chain is a Z-linear combination of singular 0-simplices. Let’s take c ∈ S0 (X).

Then c =
∑

βmβT
′
β, with mβ ∈ Z and T ′

β being singular 0-simplices. Each T ′
β (∆0) belongs to some

Xα, and hence homologous to Tα. Therefore, c is homologous to some Z-linear combination
∑

α nαTα
of the Tα’s. We will now show that no such nontrivial 0-chain

∑
α nαTα bounds.

Assume the contrary that
∑

α nαTα = ∂1d for some d ∈ S1 (X). Now, the singular 1-chain d is a
formal linear combination of singular 1-simplices with path connected image, i.e. the image lies in
one of the path components Xα. Thus we can write d =

∑
α dα, where dα consists of the terms whose

images are in Xα. Therefore, ∑
α

nαTα = ∂1d =
∑
α

∂1dα. (1.35)

Hence, we get
nαTα = ∂1dα (1.36)

for each α. Applying ε to both sides of 1.36, we get

ε (nαTα) = ε (∂1dα) =⇒ nα = 0. (1.37)

Therefore, no non-trivial 0-chain
∑

α nαTα bounds. Since every 0-chain is automatically a 0-cycle, an
element of H0 (X) is homologous to a 0-chain of the form

∑
α nαTα. Hence, the homology classes of

the singular 0-simplices {Tα} form a basis for the free abelian group H0 (X).

S1(X) S0(X) Z∂1 ϵ

H̃0 (X) is defined as H̃0 (X) = Ker ε/ Im ∂1. Given a singular 0-chain T ∈ S0 (X), we’ve seen that
T is homologous to a 0-chain of the form T ′ =

∑
α nαTα; and T ′ bounds iff T ′ = 0, i.e. nα = 0 for

every α. If further T ∈ Ker ε, then ε (T ) = 0. Since T and T ′ are homologous, T = T ′ + ∂1d for some
d ∈ S1 (X). Therefore,

0 = ε (T ) = ε
(
T ′)+ ε (∂1d) = ε

(∑
α

nαTα

)
=
∑
α

nα. (1.38)

If X is path connected, there is only one component, and hence there is only one nα involved. Thus
nα = 0 from 1.38. This gives us T ′ = 0, leading to the fact that every T ∈ Ker ε is homologous to
0, i.e. T = 0 + ∂1d for some d ∈ S1 (X). So Ker ε = Im ∂1. Therefore, H̃0 (X) = 0, when X is path
connected.

Now, suppose X has more than one path components. Fix α0. Then from 1.38, we get

0 =
∑
α

nα = nα0 +
∑
α ̸=α0

nα =⇒ nα0 = −
∑
α ̸=α0

nα. (1.39)

9



1 Singular Homology Theory 10

Then T ′ is

T ′ =
∑
α

nαTα =
∑
α ̸=α0

nαTα + nα0Tα0 =
∑
α ̸=α0

nαTα −
∑
α ̸=α0

nαTα0 =
∑
α ̸=α0

nα (Tα − Tα0) . (1.40)

1.40 suggests that T ′ is a linear combination of the singular 0-chains {Tα − Tα0}α ̸=α0
. And T ′ bounds

iff it is trivial, as shown earlier. Therefore, the homology classes of 0-chains {Tα − Tα0}α ̸=α0
form a

basis for H̃0 (X). ■

Theorem 1.4 illustrates the following result:

Hp (X) =

{
H̃p (X) if p > 0

H̃0 (X)⊕ Z if p = 0
. (1.41)

§1.2 Bracket Operation

Definition 1.6 (Star convex set). A set X ⊆ EJ is said to be star convex relative to the point
w ∈ X, if for each x ∈ X, the line segment from x to w lies in X.

Definition 1.7 (Bracket operation). Suppose X ∈ EJ is star convex relative to w. We define
bracket operation on singular chains of X. Let us first define it for singular p-simplices. Let
T : ∆p → X be a singular p-simplex of X. Define a singular (p+ 1)-simplex

[T,w] : ∆p+1 → X

by letting [T,w] carry the line segment from x to εp+1, for x ∈∈ ∆p (the collection of all such line
segments as x varies in ∆p constitutes ∆p+1), linearly onto the line segment T (x) to w in X. In
other words,

[T,w] (tεp+1 + (1− t)x) = tw + (1− t)T (x) , (1.42)

for t ∈ [0, 1]. Now, extend the definition of bracket operation to arbitrary p-chains as follows: if
c =

∑
niTi is a singular p-chain of X with each Ti being a singular p-simplex, then we define

[c, w] =
∑

ni [Ti, w] . (1.43)

In other words, [· , w] : Sp (X)→ Sp+1 (X), c 7→ [c, w] is a homomorphism.

From Figure 1.1, it’s immediate that the restriction of [T,w] to the face ∆p of ∆p+1 is just the map
T . Now, consider the case when T is the linear singular simplex l(a0,...,ap) for a0, . . . , ap ∈ R∞. We
want to calculate what

[
l(a0,...,ap), w

]
is.

Recall that l(a0,...,ap) : ∆p → R∞ is defined as

l(a0,...,ap) (x0, . . . , xp) =

p∑
i=0

xiai. (1.44)

Consider a point (x0, . . . , xp, xp+1, 0, . . .) ∈ ∆p+1. We want to see where
[
l(a0,...,ap), w

]
takes this point

to. Since (x0, . . . , xp, xp+1, 0, . . .) ∈ ∆p+1, each xi is nonnegative with
∑p+1

i=0 xi = 1. Now,
p∑
i=0

xi
1− xp+1

= 1, (1.45)

so
(

x0
1−xp+1

, x1
1−xp+1

, . . . ,
xp

1−xp+1
, 0, . . .

)
∈ ∆p. Therefore,

(x0, . . . , xp, xp+1, 0, . . .) = (1− xp+1)

(
x0

1− xp+1
,

x1
1− xp+1

, . . . ,
xp

1− xp+1
, 0, . . .

)
+ xp+1εp+1. (1.46)

10



1 Singular Homology Theory 11

x T
T (x)

∆p

∆p+1

x

εp+1

[T,w]

w

T (x)

Figure 1.1

By the definition of bracket operation,[
l(a0,...,ap), w

]
(x0, . . . , xp, xp+1, 0, . . .)

= (1− xp+1) l(a0,...,ap)

(
x0

1− xp+1
,

x1
1− xp+1

, . . . ,
xp

1− xp+1
, 0, . . .

)
+ xp+1w

= (1− xp+1)

p∑
i=0

xi
1− xp+1

ai + xp+1w

=

p∑
i=0

xiai + xp+1w. (1.47)

Furthermore,

l(a0,...,ap,w) (x0, . . . , xp, xp+1, 0, . . .) = x0a0 + · · ·+ xpap + xp+1w =

p∑
i=0

xiai + xp+1w. (1.48)

Equating 1.47 and 1.48, we get [
l(a0,...,ap), w

]
= l(a0,...,ap,w). (1.49)

Now we will showo that [T,w] : ∆p+1 → X is continuous. We have seen earlier that given x ∈ ∆p, a
point in ∆p+1 is expressed as tεp+1 + (1− t)x, with 0 ≤ t ≤ 1. Hence, we are concerened with the
following quotient map π : ∆p × [0, 1]→ ∆p+1 defined by

π (x, t) = tεp+1 + (1− t)x. (1.50)

If x = (x0, . . . , xp, 0, . . .) ∈ ∆p, then 1.50 takes the familiar form

π ((x0, . . . , xp, 0, . . .) , t) = ((1− t)x0, . . . , (1− t)xp, t, 0, . . .) . (1.51)

Observe that π
∣∣
∆p×[0,1)

: ∆p × [0, 1) → ∆p+1 is 1-1, and π (∆p × {1}) = {εp+1}, showing that π
collapses ∆p×{1} to the (p+ 1)-th vertex εp+1 of ∆p+1. Now, the continuous map f : ∆p× [0, 1]→ X
defined by

f (x, t) = tw + (1− t)T (x) (1.52)

11



1 Singular Homology Theory 12

is constant on ∆p × {1}. In fact, f (∆p × {1}) = {w}. Since π is 1 − 1 for other points, f is seen to
be constant for π−1 (y) with y ∈ ∆p+1 \ {εp+1}. In other words, f : ∆p × [0, 1] → X is constant for
each π−1 (y) with y ∈ ∆p+1. Therefore, f induces a unique continuous map f̃ : ∆p+1 → X such that
the following diagram commutes

∆p × [0, 1]

∆p+1 X

π
f

f̃

This unique map f̃ is precisely [T,w], since

([T,w] ◦ π) (x, t) = [T,w] (tεp+1 + (1− t)x) = tw + (1− t)T (x) = f (x, t) . (1.53)

Therefore, f̃ = [T,w], and hence it is continuous. So [T,w] is indeed a singular (p+ 1)-simplex.

Lemma 1.5
Let X be a star convex set with respect to w; let c be a singular p-chain of X. Then

∂ [c, w] =

{
[∂c, w] + (−1)p+1 c if p > 0

ε (c)Tw − c if p = 0
, (1.54)

where Tw is the singular 0-simplex mappting ∆0 to w.

Proof. If T is a singular 0-simplex, [T,w] is a singular 1-simplex. Then

∂ [T,w] = [T,w] ◦ l(ε̂0,ε1) − [T,w] ◦ l(ε0,ε̂1). (1.55)

Now, recall [T,w] : ∆1 → X maps the line joining ε1 to ε0 to the line joining w to T (ε0). So

[T,w] (1− t, t, 0, . . .) = tw + (1− t)T (ε0) . (1.56)

Now, (
[T,w] ◦ l(ε̂0,ε1)

)
(1, 0, . . .) = [T,w] (0, 1, 0, . . .) = w = Tw (1, 0, . . .) . (1.57)

Therefore,
(
[T,w] ◦ l(ε̂0,ε1)

)
= Tw.(

[T,w] ◦ l(ε0,ε̂1)
)
(1, 0, . . .) = [T,w] (1, 0, . . .) = T (ε0) = T (1, 0, . . .) , (1.58)

so [T,w] ◦ l(ε0,ε̂1) = T . By 1.55, we get

∂ [T,w] = Tw − T. (1.59)

Now, let c =
∑

i niTi be a singular 0-chain with Ti being singular 0-simplices. Then

∂

[∑
i

niTi, w

]
=
∑
i

ni∂ [Ti, w] =
∑
i

ni (Tw − Ti) =

(∑
i

ni

)
Tw −

∑
i

niTi. (1.60)

Now, applying the augmentation map to c, we get

ε (c) = ε

(∑
i

niTi

)
=
∑
i

niε (Ti) =
∑
i

ni. (1.61)

Therefore, 1.60 gives us
∂ [c, w] = ε (c)Tw − c. (1.62)

12



1 Singular Homology Theory 13

Now we shall consider the case when T is a singular p-simplex, and we shall prove that ∂ [T,w] =
[∂T,w] + (−1)p+1 T .

∂ [T,w] =

p+1∑
i=0

(−1)i [T,w] ◦ l(ε0,...ε̂i,...,εp+1)

=

p∑
i=0

(−1)i [T,w] ◦ l(ε0,...ε̂i,...,εp+1) + (−1)p+1 [T,w] ◦ l(ε0,...,εp,ε̂p+1). (1.63)

l(ε0,...,εp,ε̂p+1) is the inclusion map of ∆p into ∆p+1. So [T,w]◦l(ε0,...,εp,ε̂p+1) is nothing but the restriction
of [T,w] to ∆p, which is the same as T . Now we want to show that

[T,w] ◦ l(ε0,...ε̂i,...,εp+1) =
[
T ◦ l(ε0,...ε̂i,...,εp), w

]
. (1.64)

Both sides of 1.64 are maps from ∆p to X. Let (x0, . . . , xp, 0, . . .) ∈ ∆p. Then(
[T,w] ◦ l(ε0,...ε̂i,...,εp+1)

)
(x0, . . . , xp, 0, . . .) = [T,w] (x0, . . . , xi−1, 0, xi, . . . , xp−1, xp, 0, . . .) . (1.65)

Now, (x0, . . . , xi−1, 0, xi, . . . , xp−1, xp, 0, . . .) is a point in ∆p+1. We can write it as

(x0, . . . , xi−1, 0, xi, . . . , xp−1, xp, 0, . . .) = (1− xp)
(

x0
1− xp

, . . . ,
xi−1

1− xp
, 0,

xi
1− xp

, . . . ,
xp−1

1− xp
, 0, . . .

)
+xpεp+1.

(1.66)
Now,

(
x0

1−xp , . . . ,
xi−1

1−xp , 0,
xi

1−xp , . . . ,
xp−1

1−xp , 0, . . .
)

is a point in ∆p since its nonzero components are all
non-negative and they add to 1. Therefore,

[T,w] (x0, . . . , xi−1, 0, xi, . . . , xp−1, xp, 0, . . .)

= (1− xp)T
(

x0
1− xp

, . . . ,
xi−1

1− xp
, 0,

xi
1− xp

, . . . ,
xp−1

1− xp
, 0, . . .

)
+ xpw. (1.67)

On the other hand, we can write (x0, . . . , xp, 0, . . .) as

(x0, . . . , xp, 0, . . .) = (1− xp)
(

x0
1− xp

, . . . ,
xp−1

1− xp
, 0, . . .

)
+ xpεp, (1.68)

where
(

x0
1−xp , . . . ,

xp−1

1−xp , 0, . . .
)
∈ ∆p−1. So[

T ◦ l(ε0,...ε̂i,...,εp), w
]
(x0, . . . , xp, 0, . . .)

= xpw + (1− xp)
(
T ◦ l(ε0,...ε̂i,...,εp)

)( x0
1− xp

, . . . ,
xp−1

1− xp
, 0, . . .

)
= xpw + (1− xp)T

(
x0

1− xp
, . . . ,

xi−1

1− xp
, 0,

xi
1− xp

, . . . ,
xp−1

1− xp
, 0, . . .

)
. (1.69)

Combining 1.65, 1.67 and 1.69, we get that 1.64 indeed holds, i.e.

[T,w] ◦ l(ε0,...ε̂i,...,εp+1) =
[
T ◦ l(ε0,...ε̂i,...,εp), w

]
.

Now, from 1.63, we then get

∂ [T,w] =

p∑
i=0

(−1)i
[
T ◦ l(ε0,...ε̂i,...,εp), w

]
+ (−1)p+1 T

=

[
p∑
i=0

(−1)i T ◦ l(ε0,...ε̂i,...,εp), w

]
+ (−1)p+1 T

= [∂T,w] + (−1)p+1 T. (1.70)

Now, if c =
∑

i niTi is a singular p-chain with Ti being singular 0-simplices, then

∂ [c, w] =
∑
i

ni∂ [Ti, w] =
∑
i

ni [∂Ti, w] + (−1)p+1
∑
i

niTi = [∂c, w] + (−1)p+1 c. (1.71)

■
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1 Singular Homology Theory 14

Theorem 1.6
Let X ⊆ EJ be star convex with respect to w. Then X is acyclic in singular homology.

Proof. To show that H̃0 (X) = 0, let c ∈ Ker ε.

S1(X) S0(X) Z∂1 ϵ

So ε (c) = 0. Now, by Lemma 1.5,

∂1 [c, w] = ε (c)Tw − c = −c. (1.72)

Hence, c ∈ Im ∂1 leading to Ker ε ⊆ Im ∂1. We already know Hence, Im ∂1 ⊆ Ker ε. Therefore,
H̃0 (X) = 0.

Now we shall show that Hp (X) = 0 for p > 0. Let z ∈ Ker ∂p. Then ∂pz = 0. By Lemma 1.5 again,

∂p+1 [z, w] = [∂pz, w] + (−1)p+1 z = (−1)p+1 z. (1.73)

Hence, z ∈ Im ∂p+1. Therefore, Hp (X) = 0. In other words, H̃p (X) = 0 for all p, i.e. X is acyclic. ■

Corollary 1.7
Any simplex is acyclic in singular homology.

14



2 Axioms of Singular Homology
In this chapter, we shall verify that singular homology does, in fact, satisfy the Eilenberg-Steenrod

axioms. The axioms can be found in chapter 6 of [AT2 lecture notes].

§2.1 Relative Homology Groups
If X is a space and A is a subspace of X, there is a natural inclusion Sp (A) ↪→ Sp (X). The group of
relative singular chains is defined by

Sp (X,A) = Sp (X) /Sp (A) . (2.1)

The boundary operator ∂Xp : Sp (X) → Sp−1 (X) restricts to the boundary operator on Sp (A), i.e.
∂Xp
∣∣
Sp(A)

: Sp (A)→ Sp−1 (A). It, therefore, induces a boundary operator at the relative singular chain
level:

∂(X,A)p : Sp (X,A)→ Sp−1 (X,A) ,

T + Sp (A) 7→ ∂Xp T + Sp−1 (A) ,
(2.2)

with T =
∑

α nαTα being a singular p-chain, where nα ∈ Z and Tα singular p-simplices. If any of the
Tα’s are such that Tα (∆p) ⊆ A, then Tα ∈ Sp (A). So, we can assume Tα (∆p) \ A 6= ∅. Such Tα’s
generate the group Sp (X,A), and so Sp (X,A) is a free abelian group.

The family of groups Sp (X,A) and homomorphisms ∂(X,A)p is called the singular chain complex
of the pair (X,A), and is denoted by S (X,A). The homology groups of the chain complex S (X,A)
of the pair (X,A) are called the singular homology groups of the pair (X,A), and are denoted by
Hp (X,A).

The chain complex S (X,A) is free, i.e. Sp (X,A) is free for each p. The group Sp (X,A) has as
basis all the cosets of the form T + Sp (A), where T is a singular p-simplex with T (∆p) \A 6= ∅.

If f : (X,A)→ (Y,B) is a continuous map (recall that by the continuity of f between pairs (X,A)
and (Y,B), we actually mean that f : X → Y is continuous, with f (A) ⊆ B), then homomorphisms
(f#)p : Sp (X) → Sp (Y ) carries singular p-chains of A into singular p-chains of B. So it induces a
homomorphism (also denoted by (f#)p) at the level of relative singular p-chains:

(f#)p : Sp (X,A)→ Sp (Y,B) ,

T + Sp (A) 7→ (f#)p T + Sp (B) = f ◦ T + Sp (B) .
(2.3)

where T is a singular p-simplex with T (∆p) \ A 6= ∅. This map can be seen to commute with the
boundary oeprator at the relative singular chain level. To be precise,

(f#)p−1 ◦ ∂
(X,A)
p = ∂(Y,B)

p ◦ (f#)p . (2.4)

In other words, the following diagram commutes.

Sp(X,A) Sp−1(X,A)

Sp(Y,B) Sp−1(Y,B)

∂
(X,A)
p

(f#)p (f#)p−1

∂
(Y,B)
p

Therefore, f# induces a homomorphism

(f∗)p : Hp (X,A)→ Hp (Y,B) ,

c+ Im ∂
(X,A)
p+1 7→ (f#)p c+ Im ∂

(Y,B)
p+1 .

(2.5)
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2 Axioms of Singular Homology 16

Theorem 2.1
If i : (X,A) → (X,A) is the identity, then so is (i∗)p : Hp (X,A) → Hp (X,A). If h : (X,A) →
(Y,B) and k : (Y,B)→ (Z,C) are continuous, then ((k ◦ h)∗)p = (k∗)p ◦ (h∗)p.

Proof. Since (i#)p : Sp (X) → Sp (X) is the identity map (as proven while proving Theorem 1.2), so
is (i#)p : Sp (X,A) → Sp (X,A). Then from 2.5, we get that (i∗)p : Hp (X,A) → Hp (X,A) is the
identity, i.e. (i∗)p = idHp(X,A).

Now, let us prove
(
(k ◦ h)#

)
p
= (k#)p ◦ (h#)p. The equality at the homology level will then follow

from 2.5.
(h#)p : Sp (X,A)→ Sp (Y,B) , (k#)p : Sp (Y,B)→ Sp (Z,C) .

We choose a singular p-simplex T such that T (∆p) \ A 6= ∅. Then the cosets of the form T + Sp (A)
form a basis of Sp (X,A).

∆p X Y ZT h

k◦h

k

Using 2.3, we get

(h#)p (T + Sp (A)) = h ◦ T + Sp (B) , (2.6)

(k#)p

(
(h#)p (T + Sp (A))

)
= (k#)p (h ◦ T + Sp (B)) = k ◦ h ◦ T + Sp (C) , (2.7)(

(k ◦ h)#
)
p
(T + Sp (A)) = k ◦ h ◦ T + Sp (C) . (2.8)

Therefore, we can conclude that
(
(k ◦ h)#

)
p
= (k#)p ◦ (h#)p. ■

Theorem 2.2
There is a homomorphism (∂∗)p : Hp (X,A)→ Hp−1 (A), defined for A ⊂ X and all p, such that
the sequence

· · · Hp(A) Hp(X) Hp(X,A) Hp−1(A) · · ·
(i∗)p (π∗)p (∂∗)p

is exact, where i and π are the inclusions

(A,∅) (X,∅) (X,A).i π

The same holds if reduced homology is used for X and A, provided A 6= ∅.
A continuous map f : (X,A) → (Y,B) induces a homomorphism of the corresponding exact

sequences in singular homology, either ordinary or reduced.

Proof. Let us recall the Zig-Zag lemma (Lemma 4.4.1 in the lecture note of AT2). Given a short exact
sequence of chain complexes C =

{
Cp, ∂

C
p

}
, D =

{
Dp, ∂

D
p

}
and E =

{
Ep, ∂

E
p

}
, i.e.

0 C D E 0
ϕ ψ

with φ and ψ being chain maps, i.e. family of homomorphisms {φp} and {ψp} such that

0 Cp Dp Ep 0
ϕp ψp

is exact for each p, then there is a long exact homology sequence

16
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2 Axioms of Singular Homology 17

· · · · · ·

Hp (C) Hp (D) Hp (E)

Hp−1 (C) Hp−1 (D) · · ·

(ϕp)∗

(ψp)∗

(∂∗)p

(ϕp−1)∗

We shall use Zig-Zag lemma with Cp = Sp (A), Dp = Sp (X) and Ep = Sp (X,A), with chain maps
given as follows:

0 Sp (A) Sp (X) Sp (X,A) 0.
(i#)p (π#)p

Then the above sequence is exact, since Sp (X,A) = Sp (X) /Sp (A). Now, Zig-Zag lemma guaran-
tees the existence of the homomorphism (∂∗)p : Hp (X,A) → Hp−1 (A) and the following long-exact
sequence

· · · Hp(A) Hp(X) Hp(X,A) Hp−1(A) · · · .
(i∗)p (π∗)p (∂∗)p

Now, given a continuous map f : (X,A) → (Y,B), we shall verify that the following diagram
commutes:

0 Sp(A) Sp(X) Sp(X,A) 0

0 Sp(B) Sp(Y ) Sp(Y,B) 0

(i#)p((
f
∣∣∣
A

)
#

)
p

(π#)p((
f
∣∣∣
X

)
#

)
p

(f#)p

(i′#)p (π′
#)p

Here, by f
∣∣
X

, we mean the map f : X → Y . First, let’s show the commutativity of the left hand
square. Let’s take a singular p-simplex T of A, i.e. T : ∆p → A is continuous. Then

(i#)p T = i ◦ T = T , (f#)p

(
(i#)p T

)
= f ◦ T . (2.9)

((
f
∣∣
A

)
#

)
p
T = f

∣∣
A
◦ T = f ◦ T ,

(
i′#
)
p

(((
f
∣∣
A

)
#

)
p
T

)
= i′ ◦ f ◦ T = f ◦ T. (2.10)

f
∣∣
A
◦ T = f ◦ T because the image of T lies entirely in A. Therefore, the left hand square commutes.

Now we shall show that the right hand square commutes as well. Let’s take a singular p-simplex T of
X, i.e. T : ∆p → X is continuous.

(π#)p T = T + Sp (A) , (f#)p

(
(π#)p T

)
= (f#)p T + Sp (B) =

(
π′#
)
p

(
(f#)p T

)
. (2.11)

Therefore, the right hand square commutes. So the diagram is commutative. Now, applying Theorem
5.1.1 from the lecture note of AT2, we obtain that the following diagram commutes:

· · · Hp(A) Hp(X) Hp(X,A) Hp−1(A) · · ·

· · · Hp(B) Hp(Y ) Hp(Y,B) Hp−1(B) · · ·

(i∗)p((
f
∣∣∣
A

)
∗

)
p

(π∗)p

(f∗)p

(∂∗)p

(f∗)p

((
f
∣∣∣
A

)
∗

)
p−1

(i′∗)p (π′
∗)p (∂′∗)p

This establishes the induced homomorphisms between the respective long exact sequences of the
singular homology. Following the same procedure, one can show that the same result holds in reduced
homology. ■
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2 Axioms of Singular Homology 18

Theorem 2.3
If P is a one-point space, then Hp (P ) = 0 for p 6= 0, and H0 (P ) ∼= Z.

Proof. We provide a direct proof here. We first compute the chain complex S (P ). Observe that there
is exactly one singular p-simplex in each non-negative dimention p ≥ 0: Tp : ∆p → P , because P is a
singleton. Therefore, the group of p-chains Sp (P ) ∼= Z, which is infinite cyclic. Each of the “faces” of
Tp : ∆p → P is given

Tp ◦ l(ε0,...,ε̂i,...,εp) : ∆p → P

and is precisely Tp−1. All (p+ 1) faces of Tp are just Tp−1. Therefore, if p is even, then the singular
p-simplex (p+ 1) faces, which is an odd number. Hence, in the formula

∂pTp =

p∑
i=0

(−1)i Tp ◦ l(ε0,...,ε̂i,...,εp), (2.12)

only one term will survive, the others will cancel in pairs. Hence, we find that ∂pTp = Tp−1, when p
is even.

On the other hand, when p is odd, Tp will have an even number of faces, and all the terms in 2.12
will cancel in pairs. Therefore, ∂pTp = 0, when p is odd. The chain complex S (P ) is, thus, of the
following form:

· · · S2k(P ) S2k−1(P ) · · · S1(P ) S0(P ) 0

· · · Z Z · · · Z Z 0
∼= 0̄ 0̄

Here, 0̄ maps everything to 0. In dimension (2k − 1), every (2k − 1)-chain is a cycle, and every
(2k − 1)-chain can be seen to be a boundary of a 2k-chain. Hence, there is no nontrivial (2k − 1)-cycle
that is not a (2k − 1)-boundary. Therefore, H2k−1 (P ) = 0.

In dimension 2k, for k > 0, there is no nontrivial chain that is a cycle. Hence, H2k = 0. In dimension
0, every chain is a cycle, and no nontrivial 0-chain is a bounday. Therefore, H0 (P ) ∼= Z. ■

§2.2 Compact Support Axiom
In this section, we shall verify that singular homology theory satisfies the compact support axiom.

Definition 2.1 (Minimal carrier). If T : ∆p → X is a singular p-simplex of X, then the minimal
carrier of T is defined to be the image set T (∆p). If c =

∑
niTi is a singular p-chain, with Ti

being singular p-simplices and each ni nonzero, then the minimal carrier of c is defined to be the
union of the minimal carriers of the singular p-simplices Ti.

A singular p-simplex T is a continuous map from ∆p to X. Since ∆p is compact, so is T (∆p) since
continuous map takes compact sets to compact sets. Now, a finite union of compact sets is also
compact. Therefore, the minimal carrier of a singular p-chain is compact.

Theorem 2.4
Given α ∈ Hp (X,A), there is a compact pair (X0, A0) ⊆ (X,A), with ι : (X0, A0) ↪→ (X,A)
such that (ι∗)p (β) = α for some β ∈ Hp (X0, A0), where (ι∗)p : Hp (X0, A0) → Hp (X,A) is the
homomorphism induced by the inclusion ι.

Proof. Given α ∈ Hp (X,A) = Zp (X,A) /Bp (X,A), α is of the form C + Bp (X,A), with C ∈
Zp (X,A) ⊂ Sp (X,A) = Sp (X) /Sp (A). Therefore,

α = (cp + Sp (A)) +Bp (X,A) , (2.13)

18



2 Axioms of Singular Homology 19

where cp ∈ Sp (X) such that ∂pcp is carried by A. The minimal carrier of ∂pcp is a compact set
contained in A. Let us denote this compact set by A0. On the other hand, cp is minimally carried by
a compact set X0 contained in X. Now, we define

D = cp + Sp (A0) ∈ Sp (X0, A0) . (2.14)

Since ∂pcp is carried by A0, D ∈ Zp (X0, A0). Now, we claim that

β = D +Bp (X0, A0) = (cp + Sp (A0)) +Bp (X0, A0) ∈ Hp (X0, A0) (2.15)

is the required element of Hp (X0, A0) whose image under (ι∗)p is α. Now,

(ι∗)p (β) = (ι∗)p ((cp + Sp (A0)) +Bp (X0, A0)) =
(
(ι#)p cp + Sp (A)

)
+Bp (X,A) . (2.16)

If cp =
∑
niTi, with Ti being singular p-simplices, then

(ι#)p cp =
∑

ni (ι#)p (Ti) =
∑

ni (ι ◦ Ti) =
∑

niTi = cp. (2.17)

Therefore,
(ι∗)p (β) = (cp + Sp (A)) +Bp (X,A) = α. (2.18)

■

Theorem 2.5
Let i : (X0, A0) ↪→ (X,A) be inclusion, where (X0, A0) is a compact pair. If α ∈ Hp (X0, A0) with
(i∗)p (α) = 0, then there are a compact pais (X1, A1) and inclusions

(X0, A0) (X1, A1) (X,A)
j k

such that (j∗)p (α) = 0.

Proof. Let α = (cp + Sp (A0)) +Bp (X0, A0) ∈ Hp (X0, A0), where cp ∈ Sp (X0) and ∂pcp is carried by
A0. Now, (i∗)p : Hp (X0, A0)→ Hp (X,A), so (i∗)p (α) = 0 +Bp (X,A).

0 +Bp (X,A) = (i∗)p (α) =
(
(i#)p cp + Sp (A)

)
+Bp (X,A) . (2.19)

Using a similar method as in 2.17, one can show that (i#)p cp = cp. So 2.19 reads

0 +Bp (X,A) = (cp + Sp (A)) +Bp (X,A) . (2.20)

Therefore, cp + Sp (A) ∈ Bp (X,A). In other words, there exists a (p+ 1)-chain dp+1 such that
cp − ∂p+1dp+1 is carried by A. Now, dp+1 is carried by

X1 = X0 ∪ (minimal carrier of dp+1) ,

and cp − ∂p+1dp+1 is carried by

A1 = A0 ∪ (minimal carrier of cp − ∂p+1dp+1) .

Consider the inclusion maps

(X0, A0) (X1, A1) (X,A).
j

i=k◦j

k

19



2 Axioms of Singular Homology 20

Then (j∗)p (α) is

(j∗)p (α) = (j∗)p ((cp + Sp (A0)) +Bp (X0, A0)) =
(
(j#)p cp + Sp (A1)

)
+Bp (X1, A1) . (2.21)

Again, similarly as in 2.17, one can show that (j#)p cp = cp.

(j∗)p (α) = (cp + Sp (A1)) +Bp (X1, A1) . (2.22)
cp − ∂p+1dp+1 is carried by A1, so cp − ∂p+1dp+1 ∈ Sp (A1). Therefore,

cp + Sp (A1) = cp − (cp − ∂p+1dp+1) + Sp (A1) = ∂p+1dp+1 + Sp (A1)

= ∂p+1 (dp+1 + Sp+1 (A1)) ∈ Bp (X1, A1) . (2.23)
Combining 2.22 and 2.23, we get

(j∗)p (α) = ∂p+1 (dp+1 + Sp+1 (A1)) +Bp (X1, A1) = 0 +Bp (X1, A1) . (2.24)
■

§2.3 Chain Homotopy

Definition 2.2. Given chain complexes C = {Cp, ∂p} and C′ =
{
C ′
p, ∂

′
p

}
and chain maps φ, ψ :

C → C′, a chain homotopy of φ to ψ is a family of homomorphisms Dp : Cp → C ′
p+1 such that

the following holds
∂′p+1Dp +Dp−1∂p = ψp − φp. (2.25)

The following diagram might be useful for to understand the above formula in 2.25. Note that this is
NOT a commutative diagram.

C ′
p+1

Cp C ′
p

Cp−1

∂′p+1
Dp

∂p

ϕp

ψp

Dp−1

Now, consider the inclusions i, j : X → X × I (I is the unit interval [0, 1]) given by
i (x) = (x, 0) and j (x) = (x, 1) . (2.26)

The corresponding chain maps are denoted by (i#)p , (j#)p : Sp (X)→ Sp (X × I). Construct a chain
homotopy DX between the chain map i# and j# as follows:

DX : S (X)→ S (X × I) ,
DX
p : Sp (X)→ Sp (X × I) .

(2.27)

For DX to be a chain homotopy, the following equation must hold:
∂X×I
p+1 ◦D

X
p +DX

p−1 ◦ ∂Xp = (j#)p − (i#)p . (2.28)

Sp+1(X × I)

Sp(X) Sp(X × I)

Sp−1(X)

∂X×I
p+1

DX
p

∂Xp

(i#)p

(j#)p

DX
p−1
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2 Axioms of Singular Homology 21

One can now construct the following diagram to find that F# ◦DX is a chain homotopy between the
chain maps f#, g# : S (X) → S (Y ), where X and Y are topological spaces and F is a homotopy
between the maps f, g : X → Y , i.e. F : X × I → Y is a continuous map such that

F (x, 0) = f (x) and F (x, 1) = g (x) .

Using 2.26, we then have
F ◦ i = f and F ◦ j = g. (2.29)

F# : S (X × I)→ S (Y ). In order to show that F# ◦DX is a chain homotopy between f# and g#, one
needs to prove that

∂Yp+1 ◦ (F#)p+1 ◦D
X
p + (F#)p ◦D

X
p−1 ◦ ∂Xp = (g#)p − (f#)p . (2.30)

Sp+1(Y )

Sp+1(X × I)

Sp(X) Sp(Y )

Sp(X × I)

Sp−1(X)

∂Yp+1

(F#)p+1

(f#)p

(g#)p

DX
p

∂Xp+1

(F#)p

DX
p−1

Let us quickly see how 2.30 comes from 2.28. Since chain maps commute with the boundary operator,
we have the following commutative diagram:

Sp+1(X × I) Sp+1(Y )

Sp(X × I) Sp(Y )

(F#)p+1

∂X×I
p+1 ∂Yp+1

(F#)p

i.e. ∂Yp+1 ◦ (F#)p+1 = (F#)p ◦ ∂
X×I
p+1 . Therefore, one obtains

∂Yp+1 ◦ (F#)p+1 ◦D
X
p = (F#)p ◦ ∂

X×I
p+1 ◦D

X
p

= (F#)p ◦
[
(j#)p − (i#)p −D

X
p−1 ◦ ∂Xp

]
=
(
(F ◦ j)#

)
p
−
(
(F ◦ i)#

)
p
− (F#)p ◦D

X
p−1 ◦ ∂Xp

= (g#)p − (f#)p (F#)p ◦D
X
p−1 ◦ ∂Xp , (2.31)

which can be rearranged to obtain 2.30. The existence of the chain map DX : S (X) → S (X × I) is
governed by the following lemma.

Lemma 2.6
There exists, for each space X, and each non-negative integer p, a homomorphism DX

p : Sp (X)→
Sp+1 (X × I) having the following properties:

(a) If T : ∆p → X is a singular p-simplex then

∂X×I
p+1 D

X
p T +DX

p−1∂
X
p T = (j#)p T − (i#)p T. (2.32)

Here, the map i : X → X × I carries x to (x, 0) and the map j : X → X × I carries x to
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2 Axioms of Singular Homology 22

(x, 1).

(b) DX
p is natural; i.e. given f : X → Y continuous, the following diagram commutes:

Sp(X) Sp+1(X × I)

Sp(Y ) Sp+1(Y × I)

DX
p

(f#)p ((f×idI)#)p+1

DY
p

Note that continuous f : X → Y induces a continnuous map f × idI : X × I → Y × I given
by (x, t) 7→ (f (x) , t). Hence there is a group homomorphism(

(f × idI)#

)
p
: Sp (X × I)→ Sp (Y × I)

for each non-negative integer p.

Proof of the lemma is omitted.

Theorem 2.7
If f, g : (X,A)→ (Y,B) are homotopic, then (f∗)p = (g∗)p for all p, with (f∗)p , (g∗)p : Hp (X,A)→
Hp (Y,B) group homomorphisms. The same holds in the reduced homology if A = B = ∅.

Proof. Let F : (X × I, A× I) → (Y × I,B × I) be the homotopy between f, g : (X,A) → (Y,B).
Let i, j : (X,A) → (X × I, A× I) be given by i (x) = (x, 0) and j (x) = (x, 1), for x ∈ X. Let
DX
p : Sp (X) → Sp (X × I) be the group homomorphism associated with the chain homotopy DX :

S (X) → S (X × I) constructed in Lemma 2.6. Naturality of DX with respect to the inclusion map
ι : A ↪→ X dictates that the following diagram commutes:

Sp(A) Sp+1(A× I)

Sp(X) Sp+1(X × I)

DA
p

(ι#)p ((ι×idI)#)p+1

DX
p

Consider T ∈ Sp+1 (A× I) such that T is a (p+ 1)-singular simplex of A× I, i.e. T : ∆p+1 → A× I
is continuous. For a given x ∈ ∆p+1, let T (x) = (a, t) ∈ A× I. Now,(

(ι× idI)#

)
p+1

T (x) = (ι× idI) ◦ T (x) = (ι× idI) (a, t) = (a, t) = T (x) . (2.33)

Hence,
(
(ι× idI)#

)
p+1

T = T . So, we have

(
(ι× idI)#

)
p+1
◦DA

p = DA
p . (2.34)

Now, commutativity of the above diagram yields(
(ι× idI)#

)
p+1
◦DA

p = DX
p ◦ (ι#)p = DX

p

∣∣
Sp(A)

. (2.35)

Therefore, combining 2.34 and 2.35, we get

DX
p

∣∣
Sp(A)

= DA
p . (2.36)

In other words, DX
p : Sp (X)→ Sp+1 (X × I) carries Sp (A) into Sp (X × I), and thus induces a chain

homotopy on the relative level. The constituent group homomorphisms are given by

D(X,A)
p : Sp (X,A)→ Sp+1 (X × I, A× I) . (2.37)
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2 Axioms of Singular Homology 23

Now, 2.32 indeed holds for D(X,A)
p as it is induced by DX

p . Then we have

(F#)p+1 ◦D
(X,A)
p : Sp (X,A)→ Sp+1 (Y,B) ,

where the homomorphism (F#)p+1 associated with the chain map F# : S (X × I, A× I)→ S (Y,B) is

(F#)p+1 : Sp+1 (X × I, A× I)→ Sp+1 (Y,B) .

Then

∂Yp+1 ◦ (F#)p+1 ◦D
(X,A)
p = (F#)p ◦ ∂

X×I
p+1 ◦D

(X,A)
p

= (F#)p ◦
[
(j#)p − (i#)p −D

(X,A)
p−1 ◦ ∂Xp

]
=
(
(F ◦ j)#

)
p
−
(
(F ◦ i)#

)
p
− (F#)p ◦D

(X,A)
p−1 ◦ ∂Xp

= (g#)p − (f#)p − (F#)p ◦D
(X,A)
p−1 ◦ ∂Xp . (2.38)

This proves that F# ◦D(X,A) : S (X,A)→ S (Y,B) is a chain homotopy between f#, g# : S (X,A)→
S (Y,B). It now remains to prove that (f∗)p = (g∗)p for all p.

Let α ∈ Zp (X,A). It suffices to show that (f#)p (α) and (g#)p (α) differ by a boundary term. Given
α ∈ Zp (X,A), α = cp + Sp (A) for some cp ∈ Sp (X) such that ∂pcp is carried by A. By 2.38,

(g#)p (α)− (f#)p (α) = ∂Yp+1 ◦ (F#)p+1 ◦D
(X,A)
p (α) + (F#)p ◦D

(X,A)
p−1 ◦ ∂Xp (α)

= ∂Yp+1 ◦ (F#)p+1 ◦D
(X,A)
p (α) , (2.39)

proving that (f#)p (α) and (g#)p (α) differ by a boundary term. Therefore, (f∗)p (α+Bp (X,A)) =

(f∗)p (α+Bp (X,A)).
The result in reduced homology is left as an exercise. ■

§2.4 Homotopy Equivalence

Definition 2.3 (Retraction). Let A ⊂ X. A retraction ofX onto A is a continuous map r : X → A
such that r (a) = a for every a ∈ A, i.e. r

∣∣
A
= idA. If there is a retraction of X onto A, we say

that A is a retract of X,

Definition 2.4 (Deformation retraction). A deformation retraction of X onto A is a continuous
map F : X × I → X such that

F (x, 0) = x , F (x, 1) ∈ A , and F (a, t) = a (2.40)

for all x ∈ X, a ∈ A, t ∈ I.

If F is a deformation retraction of X onto A, then one can define

r (x) = F (x, 1) . (2.41)

Then 2.40 tells us that r is a map from X to A, and r (a) = a for all a ∈ A. Hence, r is indeed a
retraction of X onto A. Now, 2.40 also tells us that

F (x, 0) = x = idX (x) and F (x, 1) = j ◦ r (x) , (2.42)

where j : A ↪→ X is the inclusion. Therefore, F is a homotopy between the identity map idX : X → X
and j ◦ r : X → X.
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Lemma 2.8
Deformation retract spaces have identical homology groups. In other words, if there exists a
deformation retraction of X onto A, then j : A ↪→ X induces isomorphism in homology.

Proof. Suppose F is a deformation retraction of X onto A. If j : A ↪→ X is the inclusion map, and
r : X → A is defined as r (x) = F (x, 1), then r ◦ j = idA. Therefore,

(r∗)p ◦ (j∗)p = idHp(A) . (2.43)

Furthermore, F is a homotopy between j ◦ r and idX . Therefore,

(j∗)p ◦ (r∗)p = idHp(X) . (2.44)

Therefore, (j∗)p : Hp (A)→ Hp (X) is an isomorphism for all p. ■

Lemma 2.9
If the inclusion j : A ↪→ X induces homology isomorphism in all dimension, then Hp (X,A) = 0
for all p.

Proof. Consider the long exact homology sequence

· · · Hp(A) Hp(X) Hp(X,A) Hp−1(A) Hp−1 (X) · · ·
(j∗)p (π∗)p (∂∗)p (j∗)p−1

Im (∂∗)p = Ker (j∗)p−1, and (j∗)p−1 is an isomorphism. Therefore, Im (∂∗)p = 0. So Ker (∂∗)p =
Hp (X,A). By exactness, this is equal to Im (π∗)p. Hence, (π∗)p is a surjective map. Now, Ker (π∗)p =
Im (j∗)p = Hp (X). So (π∗)p is the zero map. Hence, Hp (X,A) = 0. ■

Combining Lemma 2.8 and Lemma 2.9 together, we get that if A is a deformation retract of X, then
Hp (X,A) = 0 for all p.

Definition 2.5. Let f : (X,A)→ (Y,B) be continuous. If there is a continuous map g : (Y,B)→
(X,A) such that g ◦ f is homotopic to the identity map id(X,A) : (X,A) → (X,A) and f ◦ g is
homotopic to the identity map id(Y,B) : (Y,B)→ (Y,B), then we call f a homotopy equivalence,
and we call g a homotopy inverse for f .

Theorem 2.10
Let f : (X,A)→ (Y,B) be continuous.

(a) If f is a homotopy equivalence, then f∗ is an isomorphism in relative homology.

(b) More generally, if f : X → Y and f
∣∣
A
: A → B are homotopy equivalences, then f∗ is an

isomorphism in relative homology.

Proof. Let f : (X,A) → (Y,B) be a homotopy equivalence, and g : (Y,B) → (X,A) its homotopy
inverse. Then f ◦ g ' id(Y,B) and g ◦ f ' id(X,A). Then by Theorem 2.7,

((f ◦ g)∗)p =
((

id(Y,B)

)
∗

)
p

and ((g ◦ f)∗)p =
((

id(X,A)
)
∗

)
p
.

In other words,
(f∗)p ◦ (g∗)p = idHp(Y,B) and (g∗)p ◦ (f∗)p = idHp(X,A) . (2.45)

Therefore, (f∗)p : Hp (X,A)→ Hp (Y,B) is an isomorphism.
Now we shall prove (b). Consider the long exact sequence of the pairs (X,A) and (Y,B), separately

with (f∗)p being the respective connecting homomorphisms.
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· · · Hp(A) Hp(X) Hp(X,A) Hp−1(A) Hp−1(X) · · ·

· · · Hp(B) Hp(Y ) Hp(Y,B) Hp−1(B) Hp−1(X) · · ·

(i∗)p

((
f
∣∣∣
A

)
∗

)
p

(π∗)p

(f∗)p

(∂∗)p

(f∗)p

(i∗)p−1

((
f
∣∣∣
A

)
∗

)
p−1

(f∗)p−1

(i′∗)p (π′
∗)p (∂′∗)p (i′∗)p−1

By hypothesis, f : (X,∅) → (Y,∅) is a homotopy equivalence, and hence (f∗)p : Hp (X) → Hp (Y )

is an isomorphism. Similarly, by hypothesis, f
∣∣
A
: (A,∅) → (B,∅) is a homotopy equivalence, and

hence
((
f
∣∣
A

)
∗

)
p
: Hp (A) → Hp (B) is an isomorphism. Now, applying Steenrod five lemma to the

diagram above, one obtains that
(f∗)p : Hp (X,A)→ Hp (Y,B)

is an isomorphism. ■

Remark 2.1. Let A and B be subspaces of X and Y , respectively. If X is homotopy equivalent
to Y , and A is homotopy equivalent to B, then it is not, in general, true that (X,A) is homotopy
equivalent to (Y,B). It is not either true that their relative homology groups will agree in general.

Note that in Theorem 2.10, the homotopy equivalences f : X → Y and f
∣∣
A
: A→ B are homo-

topy equivalences that come from the same continuous map f . On the contrary, in our setup, we
just know that X and Y are homotopy equivalent, and A and B are homotopy equivalent. There
is a priori no connection between the two homotopy equivalences. Following is a counterexample
that illustrates a case where even though X and Y are homotopy equivalent, and A and B are
homotopy equivalent, the relative homology groups Hp (X,A) and Hp (Y,B) do not agree in all
dimensions.

Example 2.1. We choose X = Y = S1 × B2 as a subspace of C2; and A = S1 × {0}, B = {1} × S1.
X and Y are the same space, so they are trivially homotopy equivalent. A and B are homeomorphic
through the map (z, 0) 7→ (1, z); so they are also homotopy equivalent. However, the homology groups
of the pair (X,A) are not isomorphic to the homology groups of the pair (X,B), as we shall now
prove.
B2 deformation retracts to 0. Indeed, the map F : B2 × I → B2 given by F (z, t) = (1− t) z

takes (z, 0) to z, (z, 1) to 0, (0, t) to 0. So F is a deformation retract of B2 onto 0. Therefore,
S1 × B2 deformation retracts to S1 × {0}. To be precise, the deformation retraction is given by
G : S1 ×B2 × I → S1 ×B2,

G (s, z, t) = (s, (1− t) z) . (2.46)
So A is a deformation retraction of X. Therefore, by Lemma 2.8 and Lemma 2.9,

Hp (X,A) = 0, (2.47)
for each p.

Now we shall prove that there exists p such that Hp (X,B) 6= 0. In fact we are going to show that
H2 (X,B) 6= 0. Consider the inclusions

{1} × S1 {1} ×B2 S1 ×B2.

k

(2.48)

{1} ×B2 is homeomorphic to B2, which is convex. So, at the homology level, we have

Hp(B) Hp({1} ×B2) = 0 Hp(X)

(k∗)p

, for p ≥ 1. (2.49)

25



2 Axioms of Singular Homology 26

Therefore, if k : B ↪→ X is the inclusion map, (k∗)p = 0 for p ≥ 1. Now, we consider the long exact
sequence of the pair (X,B).

· · · Hp(X,B) Hp−1(B) Hp−1(X) · · ·
(∂∗)p (k∗)p−1

H1 (B) = H1

(
{1} × S1

) ∼= Z, and (k∗)1 is the zero map. Therefore,

Im (∂∗)2 = Ker (k∗)1 = H1 (B) ∼= Z. (2.50)

So Im (∂∗)2 is surjective. IfH2 (X,B) = 0, (∂∗)2 could not have been surjective. Therefore, H2 (X,B) 6=
0. So H2 (X,A) 6∼= H2 (X,B).

Remark 2.2. If f : (X,A) → (Y,B) is a homotopy equivalence, then f : X → Y and f
∣∣
A

:
A → B are automaatically homotopy equivalences. However, the converse is not true. One
counterexample is presented below.

Example 2.2. Consider the inclusion map j :
(
Bn, Sn−1

)
↪→ (Rn,Rn \ {0}). j : Bn ↪→ Rn has a

homotopy inverse, so that Bn and Rn are homotopy equivalent. The homotopy inverse is given by
f : Rn → Bn,

f (x) =

{
x if ‖x‖ ≤ 1
x

∥x∥ if ‖x‖ > 1
. (2.51)

Then f (j (x)) = x, so f ◦ j = idBn . j (f (x)) = f(x) ∈ Bn. So F : Rn × I → Rn given by

F (x, t) = (1− t)x+ tj ◦ f(x) (2.52)

is a homotopy between idRn and j ◦ f . Therefore, f is the homotopy inverse of j.
In a similar manner, one can show that j

∣∣
Sn−1 : Sn−1 ↪→ Rn \ {0} also has a homotopy inverse. The

homotopy inverse is h : Rn \ {0} → Sn−1 given by

h (x) =
x

‖x‖
. (2.53)

Then h ◦ j
∣∣
Sn−1 = idSn−1 . Furthermore, G : (Rn \ {0})× I → Rn \ {0} given by

G (x, t) = (1− t)x+ tj
∣∣
Sn−1 ◦ h (x) =

(
(1− t) + t

‖x‖

)
x (2.54)

is a homotopy between idRn\{0} and j
∣∣
Sn−1 ◦ h. Therefore, h is the homotopy inverse of j.

However, j :
(
Bn, Sn−1

)
↪→ (Rn,Rn \ {0}) has no homotopy inverse although both j : Bn ↪→ Rn

and j
∣∣
Sn−1 : Sn−1 ↪→ Rn \ {0} have homotopy inverses. To show this, assume the contrary that

g : (Rn,Rn \ {0}) →
(
Bn, Sn−1

)
is a homotopy inverse of j. Then g is continuous, and it maps

Rn \ {0} into Sn−1. But 0 is a limit point of Rn \ {0}, and Sn−1 is closed. Therefore, g (0) ∈ Sn−1.
In other words, g maps all of Rn into Sn−1. Hence, the composite

g ◦ j :
(
Bn, Sn−1

)
→
(
Bn, Sn−1

)
(2.55)

maps all of Bn to Sn−1. If T : ∆p → Bn is a singular p-simplex, then for T+Sp
(
Sn−1

)
∈ Sp

(
Bn, Sn−1

)
,(

(g ◦ j)#
)
p

(
T + Sp

(
Sn−1

))
= g ◦ j ◦ T + Sp

(
Sn−1

)
. (2.56)

But the image of g ◦ j ◦ T lies entirely on Sn−1. So
(
(g ◦ j)#

)
p

is the trivial chain map. Therefore,

((g ◦ j)∗)p : Hp

(
Bn, Sn−1

)
→ Hp

(
Bn, Sn−1

)
is the trivial map. However, since g ◦ j is homotopic

with id(Bn,Sn−1), ((g ◦ j)∗)p is the identity homomorphism on Hp

(
Bn, Sn−1

)
. This can only be true if

Hp

(
Bn, Sn−1

)
= 0. We shall soon see this is not true.
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§2.5 Subdivision

Definition 2.6. Given a topological space X and a collection A of subsets of X whose interiors
cover X, a singular simplex of X is said to be A-small if its image set lies in an element of A.

Given a singular chain of X, we show how to “chop it up” so that all its simplices are A-small.

Definition 2.7 (Barycentric subdivision operator). Let X be a topological space, we define a ho-
momorphism sdX : Sp (X) → Sp (X) by induction. If T : ∆0 → X is a singular 0-simplex, we
define

sdX T = T. (2.57)

Now suppose sdX is defined in dimensions less than p. We will first take X : ∆p and choose the
identity map ip : ∆p → ∆p, which is a singular p-simplex of ∆p, i.e. ip ∈ Sp (∆p). Let us denote
by ∆̂p the barycenter of ∆p. Then we define sd∆p ip as follows:

sd∆p ip = (−1)p
[
sd∆p ∂ip, ∆̂p

]
. (2.58)

Now, if T : ∆p → X is any singular p-simplex on X, then we define

sdX T = (T#)p
(
sd∆p ip

)
. (2.59)

Observe that sd∆p ip is expected to be in Sp (∆p). Since ∂ip ∈ Sp−1 and sd∆p is assumed to be defined
in dimension less than p, sd∆p ∂ip ∈ Sp−1 (∆p). The bracket operation on the RHS of 2.58, therefore,
yields

[
sd∆p ∂ip, ∆̂p

]
∈ Sp (∆p) so that indeed by 2.58, one obtains sd∆p ip ∈ Sp (∆p).

Lemma 2.11
The homomorphism sdX is an augmentation preserving chain map. Furthermore, it is natural in
the sense that for any continuou map f : X → Y , one has (f#)p ◦ sdX = sdY ◦ (f#)p. In other
words, the following diagram commutes:

Sp(X) Sp(Y )

Sp(X) Sp(Y ).

(f#)p

sdX sdY

(f#)p

Proof. Recall that in dimension 0, for T : ∆0 → X, one has sdX T = T . In other words, sdX :
S0 (X) → S0 (X) is the identity map. Hence, in dimension 0, sdX : S0 (X) → S0 (X) is trivially
augmentation preserving as the following diagram commutes:

S0(X) S0(X)

Z Z.

sdX

ϵ ϵ

idZ

Let us immediately find that the naturality of sdX in dimension 0 holds. It follows trivially from the
following commutative diagram.

S0(X) S0(Y )

S0(X) S0(Y ).

(f#)0

sdX=id sdY =id

(f#)0
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Now, let’s verify naturality in positive dimensions. Let T : ∆p → X be continuous. Then

(f#)p (sdX T ) = (f#)p

[
(T#)p

(
sd∆p ip

)]
=
(
(f ◦ T )#

)
p

(
sd∆p ip

)
. (2.60)

Now, f ◦ T : ∆p → Y is a singular p-simplex on Y . So we have

sdY (f ◦ T ) =
(
(f ◦ T )#

)
p

(
sd∆p ip

)
. (2.61)

Now, 2.60 and 2.61 together imply

(f#)p (sdX T ) = sdY (f ◦ T ) = sdY

(
(f#)p T

)
. (2.62)

Therefore, (f#)p ◦ sdX = sdY ◦ (f#)p.
Finally, we shall prove that sdX is a chain map by induction. We need to verify that sd com-

mutes with the boundary operator. The fact that sd commutes with the boundary homomorphism in
dimension 0 follows trivially from the following commutative diagram.

S0(X) S0(X)

0 0.

sdX=idS0(X)

∂0 ∂0

id

Now, assume that the result holds true in dimension less than p. Now,

∂p
(
sd∆p ip

)
= (−1)p ∂p

[
sd∆p ∂ip, ∆̂p

]
, (2.63)

where ip : ∆p → ∆p is the identity map. ∆p is star convex with respect to ∆̂p, and sd∆p ∂ip is a
(p− 1)-chain of ∆p. Then by Lemma 1.5,

∂p

[
sd∆p ∂ip, ∆̂p

]
=

{[
∂p−1

(
sd∆p ∂pip

)
, ∆̂p

]
+ (−1)p sd∆p ∂pip if p− 1 > 0

ε
(
sd∆p ∂pip

)
T0 − sd∆p ∂ip if p− 1 = 0

=

{[
∂p−1

(
sd∆p ∂pip

)
, ∆̂p

]
+ (−1)p sd∆p ∂pip if p > 1

ε (sd∆1 ∂1i1)T0 − sd∆1 ∂1i1 if p = 1
, (2.64)

where T0 is the singular 0-simplex whose image point is ∆̂1, the barycenter of ∆1. If p = 1, since sd
is augmentation preserving, the following diagram commutes:

S0(∆1) S0(∆1)

Z Z.

sd∆1
=idS0(∆1)

ϵ ϵ

idZ

So we get for ∂1i1 ∈ S0(∆1),
ε (sd∆1 ∂1i1) = ε (∂1i1) = 0. (2.65)

For p > 1, by the inductive hypothesis, the following diagram commutes:

Sp−1(∆p) Sp−1(∆p)

Sp−2(∆p) Sp−2(∆p).

sd∆p

∂p−1 ∂p−1

sd∆p
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Hence, for ∂pip ∈ Sp−1,
∂p−1

(
sd∆p ∂pip

)
= sd∆p ∂p−1∂pip = 0. (2.66)

Now, combining 2.65, 2.66 and plugging them into 2.64, we get

∂p

[
sd∆p ∂ip, ∆̂p

]
= (−1)p sd∆p ∂pip (2.67)

in both cases. Therefore, 2.63 gives us

∂p
(
sd∆p ip

)
= sd∆p ∂pip, ∀ p. (2.68)

Now, in general, for T : ∆p → X continuous,

∂p (sdX T ) = ∂p

[
(T#)p

(
sd∆p ip

)]
= (T#)p−1

[
∂p
(
sd∆p ip

)]
, (2.69)

since T# is a chain map and hence the following diagram commutes.

Sp(∆p) Sp(X)

Sp−1(∆p) Sp−1(X)

(T#)p

∂p ∂p

(T#)p−1

So
∂p (sdX T ) = (T#)p−1

[
∂p
(
sd∆p ip

)]
= (T#)p−1

(
sd∆p ∂pip

)
= sdX (T#)p−1 (∂pip) , (2.70)

using the naturality of sd. Hence,

∂p (sdX T ) = sdX (T#)p−1 (∂pip) = sdX ∂p

(
sdX (T#)p ip

)
. (2.71)

Now, (T#)p ip = T ◦ ip = T . Therefore,

∂p (sdX T ) = sdX ∂pT. (2.72)

So sdX indeed commutes with the boundary operator, and hence is a chain map. ■

Consider σ = ∆2 and its first barycentric subdivision.

v1 v2

v3

ŝ12

ŝ23ŝ31

σ̂

Denote v1v2, v2v3 and v3v1 by s12, s23 and s31, respectively. Denote the barycenter of σ by σ̂,
barycenter of s12 by ŝ12 and so on. Observe that, for 0-simplices v1, v2, v3, their barycenters are just
themselves, i.e. v̂i = vi for i = 1, 2, 3. Then we have a natural ordering. For example, σ � s12 � v2,
meaning s12 is a proper face of σ, v2 is a proper face of s12. Then we have a distinct 2-simplex σ̂ŝ12v̂2
(colored gray in the above image) by joining the 3 barycenters σ̂, ŝ12, v̂2. This 2-simplex belongs to
the first barycentric subdivision of ∆2, which we denote by Sd∆2

1.
The first barycentric subdivision of ∆2 contains also the following 2-simplices: σ̂ŝ12v̂1, σ̂ŝ23v̂2, σ̂ŝ23v̂3,

σ̂ŝ31v̂1, σ̂ŝ31v̂3. It contains the following 1-simplices: ŝ12v̂1, ŝ12v̂2, ŝ23v̂2, ŝ23v̂3, ŝ31v̂1, ŝ31v̂3 and the
0-simplices v̂1, v̂2, v̂3, ŝ12, ŝ23, ŝ31, σ̂. We then have the following result:

1Note that, the subdivision operator sdX : Sp (X) → Sp (X) is written sd, and the barycentric subdivision of a simplicial
complex (which we studied in AT2) is denoted by Sd, to avoid confusion.
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Lemma 2.12
Let K be a simplicial complex. The complex SdK equals the collection of all simplices of the
form

σ̂1σ̂2 · · · σ̂n,

where σ̂1 � σ̂2 � · · · � σ̂n.

The proof of this lemma is omitted.

Lemma 2.13
Let T : ∆p → σ be a linear homeomorphism of ∆p with the p-simplex σ. Then each term of sdσ T
is a linear homeomorphism of ∆p with a simplex in the first barycentric subdivision of σ.

Proof. When p = 0, σ is a 0-simplex and the first barycentric subdivision of σ contains just the
0-simplex σ. And, given linear homeomorphism T : ∆0 → σ, sdσ T = T is the same linear homeomor-
phism of ∆0 with the only simplex σ in the first barycentric subdivision of σ.

Now, suppose the lemma is true in dimension less than p. Consider the identity homeomorphism
ip : ∆p → ∆p. Now,

sd∆p ip = (−1)p
[
sd∆p ∂ip, ∆̂p

]
.

Note that

∂ip =

p∑
j=0

(−1)j ip ◦ l(ε0,...,ε̂j ,...,εp)

so that each term in this sum is a linear homeomorphism of ∆p−1 with a (p− 1)-simplex in Bd∆p.

sd∆p ∂ip =

p∑
j=0

(−1)j sd∆p

(
ip ◦ l(ε0,...,ε̂j ,...,εp)

)
.

By the inductive hypothesis, each term of sd∆p

(
ip ◦ l(ε0,...,ε̂j ,...,εp)

)
is a linear homeomorphism of ∆p−1

with a (p− 1)-simplex ŝ1ŝ2 · · · ŝp in the first barycentric subdivision of Bd∆p.

sd∆p

(
ip ◦ l(ε0,...,ε̂j ,...,εp)

)
=
∑
k

±Tjk, (2.73)

where Tjk is a linear homeomorphism of ∆p−1 with a (p− 1)-simplex ŝ1ŝ2 · · · ŝp in the first barycentric
subdivision of Bd∆p. So

sd∆p ∂ip =

p∑
j=0

∑
k

±Tjk. (2.74)

Then
[
Tjk, ∆̂p

]
is by definition a linear homeomorphism of ∆p with the p-simplex ∆̂pŝ1ŝ2 · · · ŝp, which

belongs to the first barycentric subdivision of ∆p. Now,

sd∆p ip =

p∑
j=0

∑
k

±
[
Tjk, ∆̂p

]
. (2.75)

Therefore, each term of sd∆p ip is a linear homeomorphism of ∆p with a p-simplex in the first barycen-
tric subdivision of ∆p.

Now consider a general linear homeomorphism T : ∆p → σ. It’s clear that T defines a linear
homeomorphism between the first barycentric subdivision of ∆p with that of σ, because T takes
barycenter of ∆p to the barycenter of σ (since T is linear).

sdσ T = (T#)p
(
sd∆p ip

)
,
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with T : ∆p → σ being a linear homeomorphism. Using 2.75,

sdσ T =

p∑
j=0

∑
k

±T ◦
[
Tjk, ∆̂p

]
. (2.76)

By construction,
[
Tjk, ∆̂p

]
: ∆p → Sd (∆p) is a linear homeomorphism onto its image, and T :

∆p → σ is a given linear homeomorphism. Hence, the composite T ◦
[
Tjk, ∆̂p

]
: ∆p → σ is a linear

homeomorphism.[
Tjk, ∆̂p

]
takes ∆p linear homeomorphically to a p-simplex in the first barycentruc subdivision of

∆p and we have seen that T is a linear homeomorphism between the first barycentric subdivision
of ∆p with that of σ. Hence, T ◦

[
Tjk, ∆̂p

]
takes ∆p linear homeomorphically to a p-simplex in the

first barycentruc subdivision of σ. So the terms of sdσ T are linear homeomorphisms of ∆p with a
p-somplex in the first barycentric subdivision of σ. ■

Theorem 2.14
Let A be a collection of subsets of X whose interiors cover X. Given T : ∆p → X, there is an m
such that each term of sdmX T is A-small.

Proof. Apply Lemma 2.13 to each term of sdσ L, where L : ∆p → σ is a linear homeomorphism of ∆p

with a p-simplex σ. Each term of sdσ L is a linear homeomorphism of ∆p with a simplex in Sdσ. Then
each term of sd2σ L is a linear homeomorphism of ∆p with a simplex in Sd2 σ. More generally, each
term of sdmσ L is a linear homeomorphism of ∆p with a simplex in the m-th barycentric subdivision
of σ, i.e. Sdm σ.

Now, {IntA | A ∈ A} covers X. Let us first cover ∆p by open sets T−1 (IntA) with A ∈ A. ∆p is a
compact metric space. Let λ be the Lebesgue number associated with this cover

{
T−1 (IntA) | A ∈ A

}
of ∆p. So every subset of ∆p with diameter less than λ must be contained in T−1 (IntA) for some
A ∈ A.

Now, choose m large enough such that each simplex in the m-th barycentric subdivision has diameter
less than λ. Now, in the opening paragraph of the proof, take L = ip : ∆p → ∆p, the identity map
from ∆p to itself. Then each term of sdm∆p

ip is a linear homeomorphism of ∆p with a p-simplex in the
m-th barycentric subdivision of ∆p, each of which has diameter smaller than λ.

Then by Lebesgue number lemma, the image of each term of sdm∆p
ip is contained in T−1 (IntA) for

some A ∈ A. So, T composed with each term of sdm∆p
ip is contained in IntA for some A ∈ A. But T

composed with each term of sdm∆p
ip is nothing but each term of

(T#)p

(
sdm∆p

ip

)
= sdmX T. (2.77)

Hence, each term of sdmX T has its image set contained in IntA. In other words, each term of sdmX T is
A-small. ■

Remark 2.3. sdmX : Sp (X) → Sp (X) is of course a map. In fact, it is a group homomorphism.
But we can’t talk about the image set of sdmX T even when T : ∆p → X is a singular p-simplex of
X, as sdmX T is, in general, a p-chain, not a singular p-simplex.

Having shown how to chop up singular chains so that they are A-small, we now show that these
A-small singular chains suffice to generate the homology of X. We first need a lemma.

Lemma 2.15
Let m be given. For each space X, there is a homomorphism DX

p : Sp (X)→ Sp+1 (X) such that
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for each singular p-simplex T of X,

∂p+1D
X
p T +DX

p−1∂pT = sdmX T − idSp(X) T. (2.78)

Furthermore, DX is natural; i.e., for continuous f : X → Y , the following diagram commutes

Sp(X) Sp(Y )

Sp+1(X) Sp+1(Y ).

(f#)p

DX
p DY

p

(f#)p+1

In other words, DY
p ◦ (f#)p = (f#)p+1 ◦D

X
p .

Remark 2.4. The above lemma guarantees that there is a chain homotopy DX between the chain
maps sdmX , idS(X) : S (X) → S (X). Also, note that the naturality of sdmX and DX shows that
if A is a subspace of X, then sdmX and DX carry Sp (A) into Sp (A) and Sp+1 (A), respectively.
Thus they induce a chain map and a chain homotopy, respectively, on the relative chain complex
S (X,A) as well.

§2.6 Excision

Definition 2.8. Let X be a topological space; let A be a covering of X. Let SA
p (X) be the

subgroup of Sp (X) generated by singular p-simplices of X that are A-small. Let SA (X) denote
the chain complex whose chain groups are the groups SA

p (X). SA (X) is a subchain complex of
S (X), because if the singular p-simplex T : ∆p → X has its image set in A ∈ A, then each term
of ∂pT also has its image set contained in the same A ∈ A.

Note that each singular 0-chain is automatically A-small. Hence, SA
0 (X) = S0 (X), and consequently

ε defines an augmentation for SA (X). Hence, by Remark 2.4, sdmX and DX carry SA (X) into itself.
In other words, if the image set of a singular p-simplex T : ∆p → X lies in A ∈ A, then each term of
sdmX T and DX

p T also has its image set lying in A ∈ A.

Theorem 2.16
Let X be a topological space; let A be a collection of subsets of X whose interiors cover X. Then
the inclusion map SA (X) ↪→ S (X) induces an isomorphism in homology, both ordinary and
reduced.

Proof. Consider the short exact sequence of chain complexes

0 SA(X) S(X) S(X)/SA(X) 0.i

This, in fact, is a collection of short exact sequence of chain groups in each dimension p:

0 SA
p (X) Sp(X) Sp(X)/SA

p (X) 0.
(i#)p

It gives rise to a long exact sequence in homology (either ordinary or reduced). Now, if we can prove
that the homology groups of the chain complex

{
Sp(X)/SA

p (X), ∂Xp
}

vanish in every dimension p,
then the long exact sequence in homology obtained from the short exact sequence above using Zig-Zag
lemma will yield the following exact sequence:
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0 HA
p (X) Hp(X) 0.

(i∗)p

The exactness of this sequence will then dictate that (i∗)p : H
A
p (X)→ Hp(X) is an isomorphism. Let

us now prove that the homology groups of the chain complex
{
Sp(X)/SA

p (X), ∂Xp
}

vanish in every
dimension p.

Let cp+SA
p (X) ∈ Sp (X) /SA

p (X), for cp ∈ Sp (X), such that it represents a cycle in Sp (X) /SA
p (X).

In other words, ∂Xp cp belongs to SA
p−1(X). We now want to show that this cp necessarily represents a

boundary, i.e. there exists some dp+1 ∈ Sp+1 (X) such that cp − ∂Xp+1dp+1 belongs to SA
p (X).

Note that cp is a finite formal linear combination of singular p-simplices. In view of Theorem 2.14,
we chan choose m large enough so that each singular p-simplex appearing in the expression for sdmX cp
is A-small. Once m is chosen, let DX be the chain homotopy of Lemma 2.15. DX

p : Sp (X)→ Sp+1 (X).
In fact, we shall show that −DX

p cp is precisely the dp+1 ∈ Sp+1 (X) that we are looking for. In other
words, we will show that cp + ∂Xp+1D

X
p cp belongs to SA

p (X) and we are done!
By Lemma 2.15, we know that

∂Xp+1D
X
p cp +DX

p−1∂
X
p cp = sdmX cp − cp =⇒ cp + ∂Xp+1D

X
p cp = sdmX cp −DX

p−1∂
X
p cp. (2.79)

We have chosen m large enough so that sdmX cp ∈ SA
p (X). Also, ∂Xp cp ∈ SA

p−1 (X), so that DX
p−1∂

X
p cp ∈

SA
p−1 (X). Therefore, from 2.79, we can conclude that cp + ∂Xp+1D

X
p cp. ■

Corollary 2.17
Let X and A be as in the previous theorem. If B ⊆ X, let SA

p (B) be generated by those singular
p-simplices T : ∆p → B whose image sets lie in elements of A. Obviously, SA

p (B) ⊆ SA
p (X). Let

us denote the quotient group by

SA
p (X,B) = SA

p (X) /SA
p (B) .

Then the inclusion
ip : S

A
p (X,B) ↪→ Sp (X,B)

induces a homology isomorphism.

Proof. Consider the following inclusion maps

SA (B)
iB
↪−→ S (B) ,

SA (X)
iX
↪−→ S (X) ,

SA (X,B)
i(X,B)

↪−−−→ S (X,B) ,

and the 2 short exact sequences of chain complexes connected by the above 3 inclusions:

0 SA(B) SA(X) SA(X,B) 0

0 S(B) S(X) S(X,B) 0

iB iX i(X,B)

The above diagram commutes. To show that, it suffices to show that commutativity of the following
diagram:

0 SA
p (B) SA

p (X) SA
p (X,B) 0

0 Sp(B) Sp(X) Sp(X,B) 0.

iB iX i(X,B)
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If we take c ∈ SA
p (B), the inclusion maps take it to itself. So the left hand square commutes trivially.

Now, we take d ∈ SA
p (X). Then under the map SA

p (X)→ SA
p (X,B), d goes to

d+ SA
p (B) .

Then under i(X,B), it goes to
d+ Sp (B) .

On the other hand, iX takes d to itself. Then the map Sp (X)→ Sp (X,B) takes it to

d+ Sp (B) .

Therefore, the right hand square commutes as well. Therefore, one obtains the following commutative
diagram with the two corresponding long exact sequences connnected via induced group homomor-
phisms:

· · · HA
p (B) HA

p (X) HA
p (X,B) HA

p−1(B) HA
p−1(X) · · ·

· · · Hp(B) Hp(X) Hp(X,B) Hp−1(B) Hp−1(X) · · ·

((iB)∗)p ((iX)∗)p ((i(X,B))∗)p ((iB)∗)p−1
((iX)∗)p−1

Now, ((iB)∗)p, ((iX)∗)p, ((iB)∗)p−1, ((iX)∗)p−1 are all isomorphisms by Theorem 2.16. Therefore,
applying Steenrod five lemma, we conclude that

((
i(X,B)

)
∗

)
p
: HA

p (X,B) → Hp (X,B) is an isomor-
phism. ■

Theorem 2.18 (Excision for singular theory)
Let A ⊆ X. If U is a subset of X such that U ⊆ IntA, then the inclusion

j : (X \ U,A \ U) ↪→ (X,A)

induces an isomorphism in singular homology.

Proof. Let A denote the collection {X \ U,A}. Observe that the open set X\U is precisely Int (X \ U).
Also, since U ⊆ IntA,

X \ (IntA) ⊆ X \ U = Int (X \ U) .

Therefore,
X = [X \ (IntA)] ∪ (IntA) ⊆ Int (X \ U) ∪ IntA =

⋃
S∈A

Int (S) .

Therefore, the interiors of sets in A cover X.

X

A

U

Now, consider the homomorphisms induced by inclusions

Sp (X \ U)

Sp (A \ U)
↪→

SA
p (X)

SA
p (A)

and
SA
p (X)

SA
p (A)

↪→ Sp (X)

Sp (A)
.

The first one is an inclusion since a p-chain in X \ U is clearly in SA
p (X) as A = {X \ U,A}; and a

p-chain in A \ U is also clearly in SA
p (A). The second inclusion is just SA

p (X,A) ↪→ Sp (X,A).
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By Corollary 2.17, the latter homomorphism induces group isomorphism at the level of homology
groups. We now intend to prove that

Sp (X \ U)

Sp (A \ U)
↪→

SA
p (X)

SA
p (A)

is already an isomorphism at the chain level. Consider the map

φ : Sp (X \ U)→
SA
p (X)

SA
p (A)

, cp 7→ cp + SA
p (A) , (2.80)

for cp ∈ Sp (X \ U). Note that φ is surjective. If cp is a p-chain in SA
p (X), then each term of cp has

image set lying in either X \ U or in A. While forming the coset cp + SA
p (A), we can safely throw

away the terms that have image sets in A. So every coset element in SA
p (X)

SA
p (A)

is of the form

dp + SA
p (A)

for dp ∈ Sp (X \ U). Hence, φ is surjective. Now, cp ∈ Kerφ if cp ∈ SA
p (A). Since Kerφ ⊂ Sp (X \ U),

we have
cp ∈ Sp (X \ U) ∩ SA

p (A) = Sp ((X \ U) ∩A) = Sp (A \ U) . (2.81)
Therefore, Kerφ = Sp (A \ U). Hence, by the first isomorphisim theorem,

Sp (X \ U)

Sp (A \ U)
∼=
SA
p (X)

SA
p (A)

. (2.82)

Therefore, Hp (X \ U,A \ U) ∼= HA
p (X,A). We already have HA

p (X,A) ∼= Hp (X,A) by Corollary 2.17.
Therefore,

Hp (X \ U,A \ U) ∼= Hp (X,A) .

■

Theorem 2.19
Let n ≥ 0. The group Hi

(
Bn, Sn−1

)
is infinite cyclic for i = n and vanishes otherwise. The group

H̃i (S
n) is infinite cyclic for i = n and vanishes otherwise. The homomorphism of H̃n (S

n) with
itself induced by the reflection map

ρ (x1, x2, . . . , xn+1) = (−x1, x2, . . . , xn+1)

equals multiplication by −1.

Proof. First, we shall prove that Hi

(
Bn, Sn−1

) ∼= H̃i (S
n).

Claim 1: Hi

(
Bn, Sn−1

) ∼= H̃i−1

(
Sn−1

)
for i > 0.

Proof. The long exact (reduced) homology sequence of the pair
(
Bn, Sn−1

)
is

· · · H̃p(B
n) H̃p(Bn, S

n−1) H̃p−1(S
n−1) H̃p−1(B

n) · · ·

Bn is convex, so it is acyclic in singular homology. Therefore, H̃p (B
n) = 0 for all p. Therefore,

we have the following exact sequence

0 H̃p(Bn, S
n−1) H̃p−1(S

n−1) 0.

Hence, H̃p(Bn, S
n−1) ∼= H̃p−1(S

n−1). This holds for p > 0. For p > 0, the ordinary and the
reduced homology groups are identical. Hence, Hp(Bn, S

n−1) ∼= H̃p−1(S
n−1). □
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Claim 2: H0

(
Bn, Sn−1

) ∼= Z if n = 0. Otherwise, H0

(
Bn, Sn−1

)
= 0.

Proof. If n = 0, Bn is a singleton and Sn−1 is ∅. So H0

(
Bn, Sn−1

)
= H0

(
B0,∅

) ∼= Z. Now
suppose n > 0. The 0-th chain group S0

(
Bn, Sn−1

)
is generated by elements of the form

T + S0
(
Sn−1

)
, (2.83)

where T is a singular 0-simplex whose image is in Bn \ Sn−1. Now, fix a point x ∈ Sn−1. (We
need n > 0 for this, because Sn−1 is nonempty when n > 0.)

Since Bn is path connected, there is a singular 1-simplex f : ∆1 → Bn such that f (ε1) = T (∆0)
and f (ε0) = x. Then ∂1f = f ◦ l(ε̂0,ε1) − f ◦ l(ε0,ε̂1). Now,

f ◦ l(ε0,ε̂1) (1, 0, 0, . . .) = f (1, 0, 0, . . .) = x = Tx (∆0) = Tx (1, 0, 0, . . .) , (2.84)
f ◦ l(ε̂0,ε1) (1, 0, 0, . . .) = f (0, 1, 0, . . .) = T (∆0) = T (1, 0, 0, . . .) , (2.85)

where Tx : ∆0 → Bn is the constant map that maps ∆0 to x ∈ Sn−1 ⊆ Bn. Therefore, ∂1f =
T − Tx. Hence,

∂1
(
f + S1

(
Sn−1

))
= T − Tx + S0

(
Sn−1

)
= T + S0

(
Sn−1

)
. (2.86)

Therefore, every relative 0-chain is a boundary. Hence, H0

(
Bn, Sn−1

)
is trivial. □

Now we shall prove that H̃p (S
n) = Hp

(
Bn, Sn−1

)
.

Claim 3: H̃p (S
n) ∼= Hp

(
Bn, Sn−1

)
.

Proof. Let’s first verify this in p = 0 case. For n = 0, S0 has two path components. So H0

(
S0
) ∼=

Z ⊕ Z, hence H̃0

(
S0
) ∼= Z ∼= H0

(
B0, S0−1

)
. For n > 0, Sn is path connected, so H̃0 (S

n) = 0.
H0

(
Bn, Sn−1

)
is also trivial as proved in the previous claim. Therefore, H̃0 (S

n) ∼= H0

(
Bn, Sn−1

)
.

Now, we shall prove the claim for p > 0. Let n = (0, 0, . . . , 0, 1) ∈ Rn+1 be the “north pole” of
Sn. Consider U = Sn \ {n}. It is homeomorphic to Rn by the stereographic projection map from
north pole. Therefore, H̃p (U) ∼= H̃p (Rn) = 0, as Rn is convex. Therefore, considering the long
exact homology sequence of the pair (Sn, U), we get

· · · H̃p(U) H̃p(S
n) H̃p(S

n, U) H̃p−1(U) · · ·

Since H̃p (U) = 0, we have the following exact sequence

0 H̃p(S
n) H̃p(S

n, U) 0

So H̃p(S
n) ∼= H̃p(S

n, U). Since we are dealing with p > 0 now, Hp(S
n) ∼= Hp(S

n, U). Now, let A
be the open lower hemisphere

A = {(x1, x2, . . . , xn+1) ∈ Sn|xn+1 < 0} . (2.87)

Then
A = {(x1, x2, . . . , xn+1) ∈ Sn|xn+1 ≤ 0} ⊆ U = IntU. (2.88)

Therefore, by excision theorem,

Hp(S
n, U) ∼= Hp(S

n \A,U \A). (2.89)
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Now, Sn \A is the closed upper hemisphere

Sn \A = {(x1, x2, . . . , xn+1) ∈ Sn|xn+1 ≥ 0} . (2.90)

Under the projection map Rn+1 → Rn onto the first n coordinates, Sn \ A is homeomorphic to
Bn, and U \A is homeomorphic to Bn \ {0}. As a result,

Hp(S
n \A,U \A) ∼= Hp (B

n, Bn \ {0}) . (2.91)

Let i :
(
Bn, Sn−1

)
↪→ (Bn, Bn \ {0}) be the inclusion map. i : Bn → Bn is the identity, so it is

trivially a homotopy equivalence. So consider j = i
∣∣
Sn−1 : Sn−1 ↪→ Bn \ {0}. Let h : Bn \ {0} →

Sn−1 be defined as h (x) = x
∥x∥ . h◦ j is the identity of Sn−1. We shall now show that j ◦h ' idBn .

Define F : Bn × I → Bn as
F (x, t) =

(
t+

1− t
‖x‖

)
x. (2.92)

F (x, 0) = (j ◦ h) (x), and F (x, 1) = x. Therefore, j ◦ h ' idBn . So j = i
∣∣
Sn−1 is a homotopy

equivalence. Hence,
Hp

(
Bn, Sn−1

) ∼= Hp (B
n, Bn \ {0}) . (2.93)

Combining (2.89), (2.91) and (2.93), we get Hp (S
n) ∼= Hp

(
Bn, Sn−1

)
. □

Combining Claim 1 and Claim 3, we get

H̃p (S
n) ∼= H̃p−1

(
Sn−1

)
. (2.94)

We shall now compute the homology groups of Sn.

Claim 4: H̃p (S
n) ∼= Z if p = n, and 0 otherwise.

Proof. We shall prove it by induction on n. S0 = {−1, 1} has two path components. So H0

(
S0
) ∼=

Z⊕ Z. Then H̃0

(
S0
) ∼= Z.

Let T : ∆p → S0 be a singular p-simplex. ∆p is connected. By Theorem 23.5 of Munkres’
Topology textbook, the image of a connected space under a continuous map is connected. As
S0 is a discrete space, T must be constant. So there are only two singular p-simplices: one that
maps all of ∆p to 1, the other maps all of ∆p to −1. Let’s call them Fp and Gp respectively. The
“faces” of Fp are all equal to Fp−1, and the “faces” of Gp are all equal to Gp−1. Now,

∂pFp =

p∑
i=0

(−1)p Fp ◦ l(ε0,...,ε̂i,...,εp). (2.95)

If p is odd, all the terms will cancel in pairs. So ∂pFp = 0. If p is even, only the last term survives.
So ∂pFp = Fp−1. The same holds for Gp as well.

For even p, ∂pFp = Fp−1 and ∂pGp = Gp−1. So the p-cycles are the trivial chains only, i.e.
Ker ∂p is trivial. Hence, Hp

(
S0
)
= 0 for even p.

For odd p, ∂p+1Fp+1 = Fp and ∂p+1Gp+1 = Gp. So all the p-chains are p-boundaries. Hence,
Hp

(
S0
)
= 0 for odd p. Therefore, we have proved the base case that

H̃p

(
S0
) ∼= {Z if p = 0

0 otherwise.
(2.96)

Now, assume the inductive hypothesis that

H̃p

(
Sn−1

) ∼= {Z if p = n− 1

0 otherwise.
(2.97)
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Since H̃p (S
n) ∼= H̃p−1

(
Sn−1

)
, we have

H̃p (S
n) ∼= H̃p−1

(
Sn−1

) ∼= {Z if p− 1 = n− 1

0 otherwise.
=

{
Z if p = n

0 otherwise.
(2.98)

Therefore, we have proved by induction that H̃p (S
n) ∼= Z if p = n, and 0 otherwise. □

Now, using Claim 1 and Claim 2, we finally have

Hp

(
Bn, Sn−1

) ∼= {Z if p = n

0 otherwise.
(2.99)

Now we shall prove that (ρ∗)n : Hn (S
n) → Hn (S

n) is multiplication by −1. ρ is a homeomorphism,
so (ρ∗)n is an isomorphism. Hn (S

n) is infinite cyclic. So it has exactly two generators, and they are
inverses of one another. An isomorphism of a cylic group onto another cyclic group maps a generator
to another generator. Therefore, (ρ∗)n is either the identity map, or the inverse map (the map that
takes a to −a).

Claim 5: Let f : Rn+1 → Rn+1 be a map that is does not change the first coordinate. Then
f ◦ ρ = ρ ◦ f .

Proof. Since f does not change the first coordinate,

f (x) = f (x0, x1, . . . , xn) =
(
x0, f

1 (x) , . . . , fn (x)
)
. (2.100)

Using this, we get

(f ◦ ρ) (x) = (f ◦ ρ) (x0, x1, . . . , xn) = f (−x0, x1, . . . , xn) =
(
−x0, f1 (x) , . . . , fn (x)

)
.

On the other hand,

(ρ ◦ f) (x) = ρ
(
x0, f

1 (x) , . . . , fn (x)
)
=
(
−x0, f1 (x) , . . . , fn (x)

)
.

So our claim is proved. □

Now we follow the proof of H̃p

(
Bn, S

n−1
) ∼= H̃p (S

n, U).(
Bn, S

n−1
) inclusion−−−−−−→ (Bn, B

n \ {0}) projection−−−−−−−→ (Sn \A,U \A) inclusion−−−−−−→ (Sn, U) . (2.101)

Each of these maps induces an isomorphism at the homology level, as shown earlier. The projection
map is projection onto the first n-coordinates. Therefore, each of these three maps keeps the first
coordinate invariant. Therefore, if we let f denote the composition of these three maps, f ◦ ρ = ρ ◦ f .
So we have the following commutative diagram:

H̃n(Bn, S
n−1) H̃n(S

n, U)

H̃n(Bn, S
n−1) H̃n(S

n, U)

(f∗)n

(ρ∗)n (ρ∗)n

(f∗)n

We proved H̃n(Bn, S
n−1) ∼= H̃n−1

(
Sn−1

)
by means of a long exact sequence. A continuous map gives

rise to a commutative diagram whose rows are the corresponding long exact sequences. In particular,
the following diagram commutes:
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H̃n(Bn, S
n−1) H̃n−1(S

n−1)

H̃n(Bn, S
n−1) H̃n−1(S

n−1)

(∂∗)n

(ρ∗)n (ρ∗)n−1

(∂∗)n

For the same reason, we get the commutativity of the following diagram:

H̃n(S
n) H̃n(S

n, U)

H̃n(S
n) H̃n(S

n, U)

(π∗)n

(ρ∗)n (ρ∗)n

(π∗)n

Combining the three commutative diagrams, if ϕ = (π∗)
−1
n ◦ (f∗)n ◦ (∂∗)

−1
n denotes the isomorphism

from H̃n−1

(
Sn−1

)
to H̃n (S

n), we get the following commutative diagram:

H̃n−1(S
n−1) H̃n(S

n)

H̃n−1(S
n−1) H̃n(S

n)

φ

(ρ∗)n−1 (ρ∗)n

φ

Claim 6: (ρ∗)n : H̃n (S
n)→ H̃n (S

n) is the “multiplication by −1” map.

Proof. We prove it by induction on n. The base case is n = 0. For n = 0, S0 = {−1, 1}. H0

(
S0
)

is generated by T1 − T−1, where Ti is the map that takes ∆0 to i. ρ exchanges 1 and −1. So

(ρ∗)0 (T1 − T−1 + im ∂1) = (ρ#)0 T1 − (ρ#)0 T−1 + im ∂1 = − (T1 − T−1) + im ∂1. (2.102)

So (ρ∗)0 is the “multiplication by −1” map.
Now, suppose (ρ∗)n−1 is the “multiplication by −1” map. Let x ∈ H̃n−1(S

n−1). Then using
the above commutative diagram,

(ρ∗)n (ϕ (x)) = ϕ
(
(ρ∗)n−1 x

)
= ϕ (−x) = −ϕ (x) . (2.103)

Since ϕ is an isomorphism, it is surjective. Therefore, if we vary x over H̃n−1(S
n−1), ϕ (x) takes

all values of H̃n(S
n). Therefore, (ρ∗)n is the “multiplication by −1” map on H̃n(S

n). So our
proof by induction is complete. □

Therefore, the homomorphism of H̃n (S
n) with itself induced by the reflection map ρ is the inverse

map, i.e. the multiplication by −1 map. ■
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§3.1 The Topology of CW Complexes

Definition 3.1. If X is a topological space and C is a collection of subspaces of X whose union is
X, the topology of X is said to be coherent with the collection C provided a set A ⊆ X is closed
in X if and only if A ∩C is closed in C for each C ∈ C. It is equivalent to require that U ⊆ X is
open in X if and only if U ∩ C is open in C for each C ∈ C.

Lemma 3.1
Let X be a set which is the union of topological space {Xα}. If there is a topological space XT

having X as its underlying set, and each Xα is a subspace of XT, then X has a topology (called
the coherent topology), of which Xα are subspaces, that is coherent with the collection {Xα}.
This latter topology is, in general, finer than the topology of XT.

Proof. Let us define a topological space XC (whose underlying set is X) by declaring that A ⊆ X is
closed if and only if A∩Xα is closed in Xα for each α. If A and B are closed in XC, then both A∩Xα

and B ∩Xα are closed in Xα for each α. Therefore,

(A ∪B) ∩Xα = (A ∩Xα) ∪ (B ∩Xα) (3.1)

is closed in Xα, proving that A∪B is closed. On the other hand, if {Ai}i∈J is an arbitrary collection
of closed sets, each Ai ∩Xα is closed in Xα. Then(⋂

i∈J
Ai

)
∩Xα =

⋂
i∈J

(Ai ∩Xα) (3.2)

is closed in Xα. Therefore,
⋂
i∈J Ai is closed. Hence, XC indeed defines a topology on X.

Now, if C is a closed set in XT, then since Xα is a subspace of XT, C ∩Xα must be closed in Xα

for each α. Therefore, C is closed in XC. Thus, the topology of XC is finer than that of XT.
Now we need to show that each Xα is a subspace of XC. For this purpose, we show that the closed

sets of Xα are of the form C ∩ Xα, where C is closed in XC. First note that if C is closed in XC,
C ∩ Xα is closed in Xα for each α. Conversely, if B is closed in Xα, since Xα is a subspace of XT,
B = C ∩Xα for some closed C in XT. Now, since XC is finer than XT, C must also be closed in XC.
Thus B = C ∩Xα for some closed C in XC, as desired. Therefore, each Xα is a subspace of XC. So
XC is coherent with the collection {Xα}. ■

Remark 3.1. We can always give a topology XT to the underlying set X =
⋃
αXα, with each

Xα being a topological space by its own right, so that Xα becomes a subspace of XT (i.e. the
topology of Xα that it had as an individual topological space from the beginning coincides with
the subspace topology it inherits from XT) with XT not being coherent with its subspaces Xα. In
such case, XC will be strictly finer than XT. When XT is found to be coherent with its subspaces
Xα, one has XT = XC.

Some useful terminologies

The m-dimensional ball Bm is the following subspace of Rm

Bm = {x ∈ Rm | ‖x‖ ≤ 1} . (3.3)
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The open m-ball, denoted by Int (Bm), is the interior of Bm in Rm.

IntBm = {x ∈ Rm | ‖x‖ < 1} . (3.4)

The boundary of Bm in Rm is the standard (m− 1)-sphere.

Sm−1 = BdBm = {x ∈ Rm | ‖x‖ < 1} . (3.5)

We note that the 0-ball B0 is equal to R0 = {0}. One has IntB0 = B0 = {0}. Also, B1 is the interval
[−1, 1] in R, and IntB1 = (−1, 1). So

S0 = BdB1 = {−1, 1} . (3.6)

Cell decomposition and CW-complexes

Definition 3.2. An n-cell is a topological space homeomorphic to the open n-ball IntBn. A cell
is a topological space which is an n-cell for some n ≥ 0. Since IntBn is homeomorphic to Rn, we
can talk about the dimension of an n-cell. An n-cell is rightly said to have dimension n.

Definition 3.3 (Cell decomposition). A cell decomposition of a topological space X is a family
E = {eα | α ∈ I} of subspaces of X such that each eα is a cell and

X =
⊔
α∈I

eα. (3.7)

The n-skeleton of X is the subspace

Xn =
⊔

α∈I, dim eα≤n

eα. (3.8)

Note that if E is a cell decomposition of X, then the cells of E can have many different dimensions.
For example, consider a cell-decomposition of S1 given by E = {ea, eb}, where ea is an arbitrary point
p ∈ S1 and eb = S1 \ {p}. Here, ea is a 0-cell and eb is a 1-cell. One can have uncountably many
cells in a cell decomposition of a given topological space. A finite cell decomposition is a cell
decomposition consisting of finitely many cells.

Definition 3.4 (CW complex). A pair (X, E) consisting of a Hausdorff space X and a cell decom-
position E of X is called a CW complex if the following 3 axioms are satisfied:

Axiom 1 (Characteristic maps). For each n-cell eα ∈ E , there is a continuous map fα : Bn → X
restricting to a homeomorphism

fα
∣∣
IntBn : IntBn → eα

and taking BdBn = Sn−1 into Xn−1.

Axiom 2 (Closure finiteness). For any cell eα ∈ E , the closure eα intersects only finitely many cells
in E .

Axiom 3 (Weak topology). A subset A ⊆ X is closed if and only if A∩ eα is closed in eα for each
eα ∈ E .

Remark 3.2. Here, the topology of the Hausdorff space X =
⋃
α eα is coherent with the subspaces

{eα}α, i.e. X is endowed with the finest topology with respect to which all these topological spaces
eα become its subspaces. Axiom 3 basically demands this coherence.
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Definition 3.5. The dimension of a CW complex (X, ε) is the largest dimension of a cell of E , if
such exists. Otherwise, it is said to be infinite.

Lemma 3.2
Let X be a Hausdorff space and E = {eα}α a cell decomposition of X. If (X, E) satisfies Axiom 1
of CW complex, then we have eα = fα (B

n) for any n-cell eα. In particular, eα is a compact
subspace of X and the “cell boundary” ėα := eα \ eα = fα

(
Sn−1

)
lies in Xn−1.

Proof. Since fα : Bn → X is continuous associated with a given n-cell eα, we have

eα = fα (IntBn) ⊇ fα
(
IntBn

)
= fα (B

n) . (3.9)

So fα (B
n) ⊆ eα. Since Bn is compact and fα is continuous, fα (Bn) is compact. Now, since X is

Hausdorff, fα (Bn) is closed. Since eα = fα (IntB
n),

fα (B
n) ⊇ eα =⇒ fα (Bn) ⊇ eα =⇒ fα (B

n) ⊇ eα. (3.10)

Therefore, eα = fα (B
n).

By Axiom 1, we have fα (IntBn) = eα and fα
(
Sn−1

)
⊆ Xn−1. So

fα
(
Sn−1

)
∩ eα = ∅. (3.11)

But fα
(
Sn−1

)
⊆ fα (Bn) = eα. So we have

fα
(
Sn−1

)
⊆ eα \ eα. (3.12)

Furthermore,
eα \ eα = fα (B

n) \ fα (IntBn) ⊆ fα (Bn \ IntBn) = fα
(
Sn−1

)
. (3.13)

Therefore, fα
(
Sn−1

)
= eα \ eα =: ėα. ■

Subcomplexes

Lemma 3.3
Let (X, E) be a CW complex, and E ′ = {eα′}α′ ⊆ E a collection of cells in it. Suppose X ′ =

⋃
α′ eα′ .

Then the following are equivalent:

(a) The pair (X ′, E ′) is a CW complex.

(b) The subset X ′ is closed in X.

(c) eα′ ⊆ X ′ for each eα′ ∈ E ′, where eα′ is the closure of eα′ in X.

Definition 3.6 (Subcomplex). Let (X, E) be a CW complex, and (X ′, E ′) be as above. Then
(X ′, E ′) is called a subcomplex of (X, E) if the 3 equivalent conditions stated in Lemma 3.3 are
satisfied.

Corollary 3.4
Let (X, E) be a CW complex. Then

(a) Let {Ai}i∈I be any family of subcomplexes of (X, E). Then
⋃
i∈I Ai and

⋂
i∈I Ai are sub-

complexes of (X, E).

(b) The n-skeleton Xn is a subcomplex of (X, E) for each n ≥ 0.

(c) Let {ei}i∈I be any arbitrary family of n-cells in E . Then Xn−1 ∪
(⋃

i∈I ei
)

is a subcomplex.
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Proof. We shall first prove (a). The others follow immediately from (a). Given the family of subcom-
plexes {Ai}i∈I of the CW complex (X, E), each Ai ⊆ X is a closed subspace of X. Then

⋂
i∈I Ai is

closed in A. Therefore, by Lemma 3.3,
⋂
i∈I Ai is a subcomplex of (X, E).

Now we shall prove that
⋃
i∈I Ai is a subcomplex. For this purpose, we shall use the characterization

(c) of Lemma 3.3. Let e ⊆
⋃
i∈I Ai be an n-cell. Then e ⊆ Aj for some j ∈ I. By characterization (c),

e ⊆ Aj . Therefore, e ⊆
⋃
i∈I Ai. So

⋃
i∈I Ai is a subcomplex.

Now, we shall prove (b). If eα is a n-cell,

eα = eα ∪ ėα = eα ∪ fα
(
Sn−1

)
⊆ eα ∪Xn−1. (3.14)

So eα ⊆ Xn. If eβ is a k-cell for k < n, eβ ⊆ Xn−1. Therefore, Xn is a subcomplex. For (c), a similar
computation as 3.14 reveals that

ei ⊆ Xn−1 ∪

(⋃
i∈I

ei

)
. (3.15)

Therefore, Xn−1 ∪
(⋃

i∈I ei
)

is also a subcomplex. ■

Example 3.1
Consider the torus as a quotient space of a rectangle as usual (by identifying opposite sides of a
rectangle).

P P

P P

π

T

We express T as a CW complex having a single 2-cell (the image under π of the interior of the
rectangle), two 1-cells (the images of the 2 open edges of the rectangle under π), and one 0-cell
(the image of the vertices of the rectangle under π). You should convince yourself that all the
axioms in the definition of a CW complex are satisfied here.

2-skeleton of T

1-skeleton of T

0-skeleton of T
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Example 3.2
The quotient space formed from Bn by collapsing BdBn to a point is homeomorphic to Sn. Hence,
the Hausdorff topological space Sn can be expressed as a CW complex having one n-cell and a
0-cell, and no other cells at all.

§3.2 Adjunction Space

Definition 3.7 (Topological sum). Let {Xα}α∈J be a family of topological spaces, not necessarily
disjoint. Let E be the set that is the union of the disjoint topological spaces Eα = Xα × {α}. In
other words,

E =
⊔
α∈J

Eα =
⊔
α∈J

Xα × {α} . (3.16)

If we topologize E by declaring U ⊆ E to be open if and only if U ∩Eα is open in Eα for each α,
then E is called the topological sum of the topological spaces Xα.

One has a natural map p : E →
⋃
αXα which projects Xα × {α} onto Xα for each α. We now have

the following important result.

Lemma 3.5
Let X be a topological space which is the union of certain of its subspaces, i.e. X =

⋃
αXα. Let

E be the topological sum of the subspaces Xα. Also, let p : E →
⋃
αXα be the natural projection.

Then the topology of X is coherent with the subspaces if and only if p is a quotient map. In this
situation, we often say that X is the coherent union of the spaces Xα.

Definition 3.8 (Adjunction space). Let X and Y be disjoint topological spaces, and let A be a
closed subspace of X. Let f : A → Y be a continuous map. We define a certain quotient space
as follows: Topologize X ∪ Y as the topological sum, i.e. U ⊆ X ∪ Y is open if and only if both
U ∩X and U ∩ Y are open in X and Y , respectively. Form a quotient space by identifying each
set

{y} ∪ f−1 (y) , (for y ∈ Y )

to a point. That is, partition X ∪ Y into these sets, along with the singletons {x} for x ∈ X \A.
We denote this quotient space by X ∪f Y , and call it the adjunction space determined by f .

X

Y

A

f
p

X ∪ Y X ∪f Y
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It is often useful to view a CW complex as a space built up from a collection of n-balls (possibly of
different n) by forming appropriate quotient spaces.

Recall from point set topology that a topological space X is said to be normal if given any two
disjoint closed sets E and F , there are open disjoint sets U and V such that E ⊆ U and F ⊆ V .

Lemma 3.6
Let X be a space that is the countable union of certain closed subspaces Xn. Suppose the topology
of X is coherent with those subspaces Xn. If each X is normal, so is X.

Theorem 3.7
If X and Y are normal, then so is the adjunction space X ∪f Y .

Theorem 3.8
Suppose (X, E) is a CW complex of dimension p. Then X is homeomorphic to an adjunction
space formed from Xp−1 and a topological sum

⊔
αB

p
α of p-balls Bp (here Bp

α = Bp × {α}) by
means of a continuous map g :

⊔
α BdB

p
α → Xp−1. It follows that X is normal.

Proof. Associated with each eα ∈ E of dimension p, there is a characteristic map fα : Bp → eα. Now,
Bp
α = Bp × {α}, and

⋃
αB

p × {α} =
⊔
αB

p
α. Now, form the topological sum

E = Xp−1 ∪

(⊔
α

Bp
α

)
, (3.17)

and define π : E → X by letting π equal inclusion on Xp−1 and the composite

Bp
α = Bp × {α} → Bp fα−→ X (3.18)

on Bp
α. We will now prove that π is a quotient map. This will prove that X is homeomorphic to the

underlying quotient space Xp−1 ∪g (
⊔
αB

p
α), with g being the continuous map

g :
⊔
α

BdBp
α → Xp−1

induced from the characteristic maps fα.
π is continuous on each of the disjoint components, so π is continuous. Furthermore, it is surjective.

Indeed, for x ∈ X, x is either in Xp−1 or in some p-cell eα. In any case there is a pre-image of x, since
fα restricts to a homeomorphism of IntBp with eα.

Suppose C ⊆ X and π−1 (C) is closed in E. In order to show that π is a quotient map, we need
to show that C is closed as well. Xp−1 is a CW subcomplex of (X, E) and hence Xp−1 is a xlosed
subspace of X. Therefore,

1. π−1 (C) ∩Xp−1 is closed in Xp−1 in the subspace topology it inherits from E. But

π−1 (C) ∩Xp−1 = π−1
(
C ∩Xp−1

)
= C ∩Xp−1, (3.19)

hence C ∩Xp−1 is closed in Xp−1. Since Xp−1 is a CW complex in its own right, using the weak
topology axiom, one obtains C ∩ eβ is closed in eβ for dim eβ ≤ p− 1.

2. Also, each Bp
α inherits subspace topology from E = Xp−1 ∪ (

⊔
αB

p
α). Since π−1 (C) is closed

in E, π−1 (C) ∩ Bp
α is closed in Bp

α in subspace topology. Now, since each Bp
α is compact, and

π : E → X is continuous,

π
(
π−1 (C) ∩Bp

α

)
= C ∩ fα (Bp

α) = C ∩ eα (3.20)

is compact (because closed subspace of compact set is compact, and so is continuous image of
compact set). So we arrive at the fact that C ∩ eα is compact. Since X is Hausdorff, C ∩ eα is
closed in X (compact subspace of Hausdorff is closed). eα is closed in X, C ∩ eα is closed in eα.
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Therefore, we verified that C ∩ eα is closed in eα with dim eα ≤ p. Since X is of dimension p, all the
cells of E are of dimension at most p. Therefore, C is closed in X, proving that π is a quotient map.

We shall now prove that X is normal. We proceed inductively. X0 is a discrete topological space, and
hence normal.

⊔
αB

1
α is also normal. Therefore, the corresponding adjunction space X0 ∪g

(⊔
αB

1
α

)
(which is homeomorphic to X1) is normal. In a similar manner, we can show that each Xi is normal.
Therefore, Xp = X is normal. ■

The converse of Theorem 3.8 can be stated as follows:

Theorem 3.9
Let (Y, E) be a CW complex of dimension p− 1. Let

⊔
αB

p
α be a topological sum of p-balls, and

let g :
⊔
α BdB

p
α → Y be a continuous map. Then the adjunction space

X = Y ∪g

(⊔
α

Bp
α

)

is the underlying topological space of a CW complex, and Y is its p-skeleton.

Sketch of proof. Use Theorem 3.7 to show that X is Hausdorff. Construct the quotient map

f : Y ∪

(⊔
α

Bp
α

)
→ X

by defining it as inclusion on Y , and by means of the given continuous map g on
⊔
α BdB

p
α. f on IntBp

α

is going to give the p cells eα ∈ E ′. This way form the p-cells in E ′. In particular, eα = f (IntBp
α).

Some work needs to be done to show that eα is a p-cell. The other cells in E ′ are the cells eβ ∈ E
of dimension at most p − 1. Now show that (X, E ′) thus constructed fulfills all 3 axioms of a CW
complex. ■

Theorem 3.8 and Theorem 3.9 can be extended to construct infinite dimensional CW complexes. For
that we need a lemma first.

Lemma 3.10
Let X be a set which is the union of topological space {Xα}. If for each pair α, β of indices, the
set Xα ∩ Xβ is closed in both Xα and Xβ, and inherits the same subspace topology from each
of them, then X has a topology coherent with the subspaces {Xα}. Each Xα is closed in this
topology.

We shall omit the proof of this lemma.

Theorem 3.11 (a) Let (X, E) be a CW complex. Then Xp is a closed subspace of Xp+1 for
each p, and X is the coherent union of the spaces X0 ⊆ X1 ⊆ X2 ⊆ · · ·. It follows that X
is normal.

(b) Conversely, suppose (Xp, Ep) is a CW complex for each p, and Xp equals p-skeleton of Xp+1

for each p. If X is the coherent union of the spaces Xp, then (X, E) is a CW complex having
Xp as its p-skeleton, where E =

⋃
p Ep.

Proof. (a) By Lemma 3.3, both Xp and Xp+1 are closed in X. Here, Xp ⊆ Xp+1 ⊆ X. We prove
that Xp is closed in Xp+1. It is equivalent to proving Xp+1 \Xp is open in Xp+1.

Xp+1 \Xp = Xp+1 ∩ (X \Xp) , (3.21)

and X \Xp is open in X. Therefore, Xp+1 \Xp is open in Xp+1 in subspace topology inherited
from X. Hence, Xp is closed in Xp+1.
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Now suppose C ∩Xp is closed in Xp for each p. We need to prove that C is closed in X. Since
(Xp, Ep) is a CW complex by its own right, by the weak topology axiom, C ∩Xp ∩ eα is closed in
eα for each eα ∈ Ep. Since eα ⊆ Xp, we have

C ∩Xp ∩ eα = C ∩ eα. (3.22)
Therefore, C ∩ eα is closed in eα for each eα ∈ Ep. Since p is arbitrary, C ∩ eα is closed in eα for
each eα ∈ E . Hence, C is closed in X.
Conversely, suppose C is closed in X. We know that Xp ⊆ X is closed in X. Hence, C ∩Xp is
closed in X. Now,

Xp \ (C ∩Xp) = Xp ∩ [X \ (C ∩Xp)] . (3.23)
X \ (C ∩Xp) is open in X. Therefore, Xp \ (C ∩Xp) is open in Xp in the subspace topology it
inherits from X. Therefore, C ∩ Xp is closed in X. We, therefore, conclude that C is closed in
X if and only if C ∩ Xp is closed in Xp for each p. Therefore, X is the coherent union of the
subspaces

X0 ⊆ X1 ⊆ X2 ⊆ · · · .
Normality of X follows by noting that X =

⋃
pX

p, where {Xp}p is a countable collection of closed
subspaces, and using Lemma 3.6.

(b) If p < q, then Xp ∩Xq = Xp is a closed subspace of both Xp and Xq, since Xp is the p-skeleton of
Xq. Therefore, by Lemma 3.10, there is a topology on X coherent with the subspaces {Xp}p, and
each Xp is closed in X. By Theorem 3.8, each Xp is normal. Using Lemma 3.6, X is normal as
well (and in particular, Hausdorff). The closure-finiteness axiom follows trivially. Now we check
the weak topology axiom.
Suppose C ∩ eα is closed in eα for each cell eα. Then C ∩Xp is closed in Xp, since Xp is a CW
complex. Then C is closed in X, because the topology of X is coherent with the spaces Xp.
Conversely, suppose C is closed in X. Then C ∩ Xp is closed in Xp for each p, because of the
coherence. Since Xp is a CW complex, C ∩Xp ∩ eα is closed in eα for each cell eα with dimension
at most p. But C ∩ Xp ∩ eα = C ∩ eα. Therefore, C ∩ eα is closed in eα for each cell eα. This
proves that X satisfies the weak topology axiom. Therefore, X is a CW complex.

■

§3.3 The Homology of CW Complexes
Let (X, E) be a CW complex. Also, let Dp (X) = Hp

(
Xp, Xp−1

)
. Let ∂p : Dp (X) → Dp−1 (X) be

defined to be the composite

Hp

(
Xp, Xp−1

)
Hp−1

(
Xp−1

)
Hp−1

(
Xp−1, Xp−2

)(∂∗)p

(j∗)p−1◦(∂∗)p

(j∗)p−1

In other words,
∂p = (j∗)p−1 ◦ (∂∗)p , (3.24)

where j :
(
Xp−1,∅

)
↪→
(
Xp−1, Xp−2

)
is the inclusion. One can verify that ∂p−1◦∂p = 0 by considering

the long exact homology sequence of the pair
(
Xp−1, Xp−2

)
.

· · · Hp−1

(
Xp−1

)
Hp−1

(
Xp−1, Xp−2

)
Hp−2

(
Xp−2

)
· · ·

(j∗)p−1 (∂∗)p−1

Exactness of this sequence implies (∂∗)p−1 ◦ (j∗)p−1 = 0. Now,

∂p−1 ◦ ∂p = (j∗)p−2 ◦
[
(∂∗)p−1 ◦ (j∗)p−1

]
◦ (∂∗)p

= (j∗)p−2 ◦ 0 ◦ (∂∗)p = 0. (3.25)
The chain complex {Dp (X) , ∂p} is called the cellular chain complex of (X, E).
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Lemma 3.12
Given a p-cell eα ∈ E of (X, E), any characteristic map fα associated with eα,

fα :
(
Bp, Sp−1

)
→ (eα, ėα)

induces an isomorphism in relative homology.

Proof. The result is trivial for p = 0. Let p > 0. The point 0 is the center of Bp. Let êα = fα (0).
One can form a continuous map between pairs of topological spaces given by the characteristic map
fα : Bp → eα associated with a given p-cell eα ∈ E .(

Bp, Sp−1
) fα−→ (eα, ėα) .

Here fα is a quotient map, and nontrivial aspects of the quotient construction is happening at the
boundary. Any open set containing BdBp is a saturated open set in Bp with respect to the quotient
map fα : Bp → eα. In particular, Bp \ {0} is a saturated open set in Bp with respect to fα. Hence,
fα
∣∣
Bp\{0} is a quotient map. We denote this restriction by f ′α.

f ′α : Bp \ {0} → eα \ êα

is a quotient map. Let F : Bp \ {0} × I → Bp \ {0} be a deformation retract of Bp \ {0} onto Sp−1.
Hence,

F (x, 1) ∈ Sp−1 , F (x, 0) = x ∀x ∈ Bp \ {0} and F (a, t) = a ∀ a ∈ Sp−1, t ∈ I. (3.26)

(Bp \ {0})× I Bp \ {0}

(eα \ êα)× I eα \ êα

F

f ′α×idI f ′α

G

Here, G is the induced deformation retract from the quotient map f ′α.

(Bp \ {0})× I

(eα \ êα)× I eα \ êα

f ′α×idI
f ′α◦F

G

Now, f ′α× idI is a quotient map, and f ′α ◦F is continuous. Furthermore, for each (y, t) ∈ (eα \ êα)× I,
f ′α ◦ F is constant on (f ′α × idI)

−1 ({(y, t)}). Indeed, if y ∈ eα, then there is exactly one x ∈ IntBp

such that f ′α (x) = y, so f ′α ◦ F is constant on (f ′α × idI)
−1 ({(y, t)}). Otherwise, if y ∈ ėα, let

a ∈ f ′ −1
α ({y}). Then a ∈ Sp−1. The point (a, t) gets mapped to y under f ′α ◦F . So f ′α ◦F is constant

on (f ′α × idI)
−1 ({(y, t)}). Therefore, there exists a unique continuous map G : (eα \ êα)× I → eα \ êα

such that the diagram above commutes.
Now, we want to show that G is a deformation retraction of eα \ êα onto ėα. For any y ∈ eα \ êα,

y is the preimage of some x ∈ Bp \ {0} under f ′α. Then f ′α ◦ F maps (x, 1) to f ′α (z) ∈ ėα for some
z ∈ Sp−1. Therefore, G (y, 1) ∈ ėα. Furthermore, f ′α ◦F maps (x, 0) to f ′α (x) = y. Hence, G (y, 0) = y.
Also, for a ∈ ėα, there exists some b ∈ Sp−1 such that f ′α (b) = a. Then f ′α ◦F maps (b, t) to f ′α (b) = a,
proving that G (a, t) = a. Therefore, G is a deformation retract of eα \ êα onto ėα.

Now, consider the inclusion maps

i :
(
Bp, Sp−1

)
↪→ (Bp, Bp \ {0}) and j : (eα, ėα) ↪→ (eα, eα \ êα) .

By Theorem 2.10,

(i∗)q : Hq

(
Bp, Sp−1

)
→ Hq (B

p, Bp \ {0}) and (j∗)q : Hq (eα, ėα)→ Hq (eα, eα \ êα)

are isomorphisms in relative homology. Now, consider the following diagram:
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Bp, Sp−1

)
(Bp, Bp \ {0}) (IntBp, IntBp \ {0})

(eα, ėα) (eα, eα \ êα) (eα, eα \ êα)

i

fα f̃α

k

g=f̃α

∣∣∣
(IntBp,IntBp\{0})

j

l

k :
(
Bp \ Sp−1,

(
Bp \ Sp−1

)
\ {0}

)
↪→ (Bp, Bp \ {0}) is the inclusion obtained from the pair (Bp, Bp \ {0})

by excising away Sp−1. Then by Theorem 2.18, (k∗)q is an isomorphism in singular homology. Simi-
larly, (l∗)q : Hq (eα, eα \ êα)→ Hq (eα, eα \ êα) is also an isomorphism.

Furthermore, g is a homeomorphism (since fα restricted to IntBp is a homeomorphism). Hence,
(g∗)q : Hq (IntB

p, IntBp \ {0})→ Hq (eα, eα \ êα) is an isomorphism. Therefore,

Hq

(
Bp, Sp−1

) ∼= Hq (B
p, Bp \ {0}) ∼= Hq (IntB

p, IntBp \ {0})
∼= Hq (eα, eα \ êα) ∼= Hq (eα, eα \ êα) ∼= Hq (eα, ėα) . (3.27)

Therefore, Hq

(
Bp, Sp−1

) ∼= Hq (eα, ėα). ■

Lemma 3.13
Let the map f : Xp−1 ∪ (

⊔
αB

p
α) → Xp expresses Xp as the adjunction space obtained from

Xp−1 and a topological sum of p-balls
⊔
αB

p
α via a continuous map g :

⊔
α BdB

p
α → Xp−1, where

Bp
α = Bp × {α}. Then f induces an isomorphism in homology:

Hq

(⊔
α

Bp
α,
⊔
α

BdBp
α

)
∼= Hq

(
Xp, Xp−1

)
.

Proof. Let

f ′ = f
∣∣∣
Xp−1∪(

⊔
α(B

p
α\{0α}))

: Xp−1 ∪

(⊔
α

(Bp
α \ {0α})

)
→ Xp \

⋃
α

f (0α) ,

where 0α ∈ Bp
α is the center of Bp

α. Observe that f ′ being the restriction of the quotient map f to the
saturated open set Xp−1 ∪ (

⊔
α (B

p
α \ {0α})) is also a quotient map.

Suppose that F : Xp−1∪(
⊔
α (B

p
α \ {0α}))×I → Xp−1∪(

⊔
α (B

p
α \ {0α})) is a deformation retraction

of Xp−1 ∪ (
⊔
α (B

p
α \ {0α})) onto Xp−1 ∪

(⊔
α S

p−1
α

)
. Then there is a deformation retraction

G : Xp \
⋃
α

f (0α)× I → Xp \
⋃
α

f (0α)

of Xp \
⋃
α f (0α) onto Xp−1.

Xp−1 ∪ (
⊔
α (B

p
α \ {0α}))× I

Xp \
⋃
α f (0α)× I Xp \

⋃
α f (0α)

f ′×idI
f ′◦F

∃!G

Similarly as in the previous lemma, one can show that G is a deformation retraction. Now, one has
the following diagram:(⊔

αB
p
α,
⊔
α S

p−1
α

)
(
⊔
αB

p
α,
⊔
α (B

p
α \ {0α})) (

⊔
α IntB

p
α,
⊔
α (IntB

p
α \ {0α}))

(
Xp, Xp−1

)
(Xp, Xp \

⋃
α êα) (

⋃
α eα,

⋃
α (eα \ êα))

i

f f̃

k

g

j

l
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By Theorem 2.10, (i∗)q and (j∗)q are isomorphisms in relative homology. Now, excising away Sp−1
α

and ėα, one has the inclusions given by k and l, respectively. Therefore, by Theorem 2.18, (k∗)q and
(l∗)q are isomorphisms in singular homology. Since g is a homeomorphism, (g∗)q is an isomorphism.
Therefore, one concludes,

Hq

(⊔
α

Bp
α,
⊔
α

Sp−1
α

)
∼= Hq

(
Xp, Xp−1

)
. (3.28)

■

We shall now show that homology group of topological sum is isomorphic to the direct sum of homology
groups of each components. In other words,

Hp

(⊔
α

Xα,
⊔
α

Yα

)
∼=
⊕
α

Hp (Xα, Yα) . (3.29)

In fact, we shall prove that this holds at chain level.

Theorem 3.14
Let {Xα}α∈I be a collection of topological spaces, and Yα is a subspace of Xα, for each α ∈ I.
Let X =

⊔
α∈I Xα and Y =

⊔
α∈I Yα denote the topological sum. Then

Hp (X,Y ) ∼=
⊕
α∈I

Hp (Xα, Yα) . (3.30)

Proof. We shall first show that the chain group of topological sum of topological spaces is direct sum
of chain groups of the topological spaces.

Claim 1: Let X and Y be as above. Then

Sp (X) =
⊕
α∈I

Sp (Xα) and Sp (Y ) =
⊕
α∈I

Sp (Yα) . (3.31)

Proof. Let c ∈ Sp (X). Then c =
∑

i nifi, where fi : ∆p → X is continuous. Since ∆p is path
connected, so is fi (∆p). Therefore, fi (∆p) lies in a path component of X.

Now, each Xα is an open subset of X, because Xα∩Xβ is either Xα (if α = β), or ∅ (if α 6= β).
In any case, Xα ∩Xβ is open in Xβ, so Xα is open in X. Furthermore, as the Xα’s are disjoint,
X is not connected, let alone path connected.

If C is a connected component of X, each C∩Xα is open in the subspace topology of C, they are
all disjoint, and their union is C. Therefore, one of them is C and the other are empty. In other
words, C ⊆ Xβ for some β ∈ I. Hence, fi (∆p) ⊆ Xα for some α ∈ I. This means fi ∈ Sp (Xα).
So every element of Sp (X) can be written as a sum of finitely elements from the Sp (Xα)’s.

Since the Xα’s are disjoint, so are their chain groups Sp (Xα)’s. Therefore, every element of
Sp (X) can be written uniquely as a sum of finitely elements from the Sp (Xα)’s. In other words,

Sp (X) =
⊕
α∈I

Sp (Xα) .

Similarly,
Sp (Y ) =

⊕
α∈I

Sp (Yα) .

□

Therefore,
Sp (X,Y ) =

Sp (X)

Sp (Y )
=

⊕
α∈I Sp (Xα)⊕
α∈I Sp (Yα)

∼=
⊕
α∈I

Sp (Xα)

Sp (Yα)
=
⊕
α∈I

Sp (Xα, Yα) . (3.32)

Since the isomorphism holds at the chain level, the isomorphism at the homology level follows. ■
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Theorem 3.15
The group Hi

(
Xp, Xp−1

)
vanishes for i 6= p, and is free abelian for i = p. If γ generates

Hp

(
Bp, Sp−1

)
, then the elements ((fα)∗)p γ form a basis for Hp

(
Xp, Xp−1

)
, where fα ranges over

the set of characteristic maps for the p-cells of X.

Proof. By Lemma 3.13 and Theorem 3.14,

Hi

(
Xp, Xp−1

) ∼= Hi

(⊔
α

Bp
α,
⊔
α

Sp−1
α

)
∼=
⊕
α

Hi

(
Bp
α, S

p−1
α

)
. (3.33)

SinceHi

(
Bp
α, S

p−1
α

)
= 0 for i 6= p, we haveHi

(
Xp, Xp−1

)
= 0 for i 6= p. Also, we haveHp

(
Bp
α, S

p−1
α

)
∼=

Z, so Hp

(
Xp, Xp−1

)
is isomorphic to α-fold direct sum of Z. Therefore, Hp

(
Xp, Xp−1

)
is free abelian,

and the elements ((fα)∗)p γ form a basis for Hp

(
Xp, Xp−1

)
. ■

Homology sequence of a triple
Given a triple B ⊆ A ⊆ X of topological spaces, one has the following inclusions

(A,B) (X,B) (X,A),i l

and a short exact sequence induced by these inclusions:

0 Sp(A,B) Sp(X,B) Sp(X,A) 0
(i#)p (l#)p

By Zig-Zag lemma, one obtains the following long exact homology sequence

· · · Hp(A,B) Hp(X,B) Hp(X,A) Hp−1(A,B) · · · .
(i∗)p (l∗)p (∂̃∗)p

This homology sequence is called the long exact homology sequence of a triple B ⊆ A ⊆ X.

The Braid Lemma
The long exact homology sequence of a triple B ⊆ A ⊆ X can also be proved using braid lemma,
which we shall now state and prove.

Consider the following commutative diagram of abelian groups and homomorphisms, which is called
a braid:

A B C D

E F G H

I J K

ϵ

α

θ

β

λ

γ

δ

ν
ρ

η κ

τ

µ

π

ψ

σ

ω

ϕ

This diagram contains the following four sequences, arranged in the form of overlapping sine curves:

E → A→ B → G→ K,

E → I → J → G→ C → D,

A→ F → J → K → H → D,

I → F → B → C → H.

If all four sequences are exact, this diagram is called an exact braid.
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Lemma 3.16
If the braid is exact, there is an isomorphism

Λ :
Kerω

imψ
−→ Kerβ

imα

defined as follows: If ω(j) = 0, choose f so ρ(f) = j; then define Λ(j) = {η(f)}.

A B C D

E F G H

I J K

ϵ

α

θ

β

λ

γ

δ

ν
ρ

η κ

τ

µ

π

ψ

σ

ω

ϕ

Proof. By the exactness of the green sequence, σ ◦ ψ = 0. Therefore,
ω ◦ ψ = τ ◦ σ ◦ ψ = τ ◦ 0 = 0. (3.34)

So imψ ⊆ Kerω. Furthermore, by the exactness of the red sequence, θ ◦ α = 0. Hence,
β ◦ α = κ ◦ θ ◦ α = κ ◦ 0 = 0. (3.35)

So imα ⊆ Kerβ. That’s why we can form the quotient groups Kerω
imψ and Kerβ

imα .
Let j ∈ Kerω. Kerω = im ρ by the exactness of the blue sequence. Therefore, j = ρ (f) for some

f ∈ F . Now, by the exactness of the purple sequence, im η = Ker β. So η (f) ∈ Kerβ. So we define
Λ : Kerω

imψ −→
Kerβ
imα as follows:

j + imψ 7→ η (f) + imα. (3.36)

Λ is well-defined: Let j, j′ ∈ Kerω such that j − j′ ∈ imψ, i.e. j + imψ = j′ + imψ. We need to
show that Λ (j + imψ) = Λ (j′ + imψ).

Since j − j′ ∈ imψ, j − j′ = ψ (i) for some i ∈ I. j, j′ ∈ Kerω = im ρ, so j = ρ (f) and j′ = ρ (f ′)
for some f, f ′ ∈ F . Therefore,

ρ
(
f − f ′

)
= ρ (f)− ρ

(
f ′
)
= j − j′ = ψ (i) = ρ (π (i)) . (3.37)

Hence, f − f ′ = π (i) + f ′′ for some f ′′ ∈ Ker ρ = im ε. So f ′′ = ε (a) for some a ∈ A. Now,
η (f)− η

(
f ′
)
= η

(
f − f ′

)
= η (π (i) + ε (a)) = η (π (i)) + η (ε (a)) = 0 + α (a) . (3.38)

So η (f) + imα = η (f ′) + imα, proving that Λ (j + imψ) = Λ (j′ + imψ). So Λ is well-defined.
Λ is injective: Let j+ imψ ∈ KerΛ. Then Λ (j + imψ) = η (f)+ imα = 0, for f ∈ F with ρ (f) = j.
In other words, η (f) ∈ imα. So η (f) = α (a) for some a ∈ A.

η (f) = α (a) = η (ε (a)) . (3.39)
So f = ε (a) + f ′ for some f ′ ∈ Ker η = imπ. So f ′ = π (i) for some i ∈ I. Now,

j = ρ (f) = ρ (ε (a)) + ρ
(
f ′
)
= ρ (π (i)) = ψ (i) . (3.40)

Therefore, j + imψ = 0 + imψ. So KerΛ = 0, and hence Λ is injective.
Λ is surjective: Let b + imα ∈ Kerβ

imα . Then b ∈ Kerβ = im η. So b = η (f) for some f ∈ F . Now,
ρ (f) ∈ im ρ = Kerω. By the definition of Λ,

Λ (ρ (f) + imψ) = η (f) + imα = b+ imα. (3.41)
Therefore, Λ is surjective. So we have proved that Λ : Kerω

imψ −→
Kerβ
imα is an isomorphism. ■
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Lemma 3.17 (The Braid Lemma)
In order that a braid be exact, it suffices if the first three of the preceding sequences are exact,
and if the composite I → F → B is zero.

A B C D

E F G H

I J K

ϵ

α

θ

β

λ

γ

δ

ν
ρ

η κ

τ

µ

π

ψ

σ

ω

ϕ

Proof. We need to show that the purple sequence is exact, given that the red, blue and green sequences
are exact, and the composite I → F → B is zero.
Exactness at F : Since η ◦ π = 0, we already have imπ ⊆ Ker η. Now, let f ∈ Ker η. So η (f) = 0.
Now,

0 = θ (0) = θ (η (f)) = σ (ρ (f)) . (3.42)

Therefore, ρ (f) ∈ Kerσ = imψ. So ρ (f) = ψ (i) for some i ∈ I. ψ = ρ ◦ π, so

0 = ρ (f)− ψ (i) = ρ (f)− ρ (π (i)) = ρ (f − π (i)) . (3.43)

This proves that f − π (i) ∈ Ker ρ = im ε. Therefore, f − π (i) = ε (a) for some a ∈ A. Now,

α (a) = η (ε (a)) = η (f − π (i)) = η (f)− η (π (i)) = 0. (3.44)

Therefore, a ∈ Kerα = im δ. So a = δ (e) for some e ∈ E.

π (ν (e)) = ε (δ (e)) = ε (a) = f − π (i) . (3.45)

So f = π (i) + π (ν (e)) ∈ imπ. Therefore, imπ ⊇ Ker η, proving that imπ = Ker η.
Exactness at B: By the commutativity of the diagram,

β ◦ η = κ ◦ σ ◦ ρ = 0 ◦ ρ = 0. (3.46)

So im η ⊆ Kerβ. Now, take b ∈ Kerβ.

0 = β (b) = κ (θ (b)) , (3.47)

so θ (b) ∈ Kerκ = imσ. So θ (b) = σ (j) for some j ∈ J . Now,

ω (j) = τ (σ (j)) = τ (θ (b)) = 0. (3.48)

Therefore, j ∈ Kerω = im ρ. So j = ρ (f) for some f ∈ F . Now,

θ (η (f)− b) = θ (η (f))− θ (b) = σ (ρ (f))− σ (j) = σ (j)− σ (j) = 0. (3.49)

Therefore, η (f)− b ∈ Ker θ = imα. So η (f)− b = α (a) for some a ∈ A. Then

η (f)− b = α (a) = η (ε (a)) . (3.50)

So b = η (f)− η (ε (a)) ∈ im η, proving that im η ⊇ Kerβ. Therefore, im η = Ker β
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Exactness at C: By the commutativity of the diagram,

λ ◦ β = φ ◦ τ ◦ θ = φ ◦ 0 = 0. (3.51)

Therefore, imβ ⊆ Kerλ. Now, take c ∈ Kerλ. Then λ (c) = 0. So

γ (c) = µ (λ (c)) = 0, (3.52)

so c ∈ Ker γ = imκ. Hence, c = κ (g) for some g ∈ G. Now,

φ (τ (g)) = λ (κ (g)) = λ (c) = 0. (3.53)

Therefore, τ (g) ∈ Kerφ = imω. This implies that τ (g) = ω (j) for some j ∈ J . Now,

τ (g − σ (j)) = τ (g)− τ (σ (j)) = τ (g)− ω (j) = 0. (3.54)

Therefore, g − σ (j) ∈ Ker τ = im θ. So g − σ (j) = θ (b) for some b ∈ B. Now,

β (b) = κ (θ (b)) = κ (g − σ (j)) = κ (g)− κ (σ (j)) = c− 0. (3.55)

Therefore, c ∈ imβ, proving that imβ ⊇ Kerλ. Hence, imβ = Kerλ.
So, the purple sequence is exact. ■

Theorem 3.18 (Long Exact Homology Sequence of a Triple)
Given a triple X ⊃ A ⊃ B, we have the following long exact sequence

· · · Hp(A,B) Hp(X,B) Hp(X,A) Hp−1(A,B) · · · ,π η β

where π and η are induced by inclusion. The map β is the composite

Hp(X,A) Hp−1(A) Hp−1(A,B)
(∂∗)p (i∗)p

where i is inclusion.

Proof. For each pairs (X,A), (A,B), (X,B), we have the following inclusions:

(X,A)

(B,∅) (A,∅) (X,∅)

(A,B) (X,B)

i

k=j◦i

j

l

m

n

g

h

Inclusions commute with each other, so this diagram is commutative.
We have one long exact homology sequence for each of the pairs (X,A), (A,B) and (X,B). We arrange
the exact sequences in the following diagram:

Hp (X) Hp (X,A) Hp−1 (A,B) Hp−2 (B)

Hp (A) Hp (X,B) Hp−1 (A) Hp−1 (X,B)

Hp (A,B) Hp−1 (B) Hp−1 (X)

ϵ

α

θ

β

λ

γ

δ

ν
ρ

η κ

τ

µ

π

ψ

σ

ω

ϕ
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The red, green and blue sequences are long exact sequences of the pairs (X,A), (A,B) and (X,B),
respectively. Let π, η, λ be induced by inclusions, and let β be the composition κ◦θ. It’s easy to check
that this is indeed a commutative diagram:

1. ε ◦ δ = π ◦ ν: ε = (n∗)p, δ = (j∗)p, π = (g∗)p, ν = (l∗)p. Therefore,

ε ◦ δ = (n∗)p ◦ (j∗)p = ((n ◦ j)∗)p = ((g ◦ l)∗)p = (g∗)p ◦ (l∗)p = π ◦ ν. (3.56)

2. θ ◦ η = σ ◦ ρ: ρ and θ are induced by the respective boundary operators, i.e. ρ =
(
∂
(X,B)
∗

)
p

and θ =
(
∂
(X,A)
∗

)
p
. Furthermore, η = (h∗)p and σ = (i∗)p−1. By the Axiom 3 of Eilenberg-

Steenrod axioms, the following diagram commutes:

Hp (X,B) Hp (X,A)

Hp−1 (B) Hp−1 (A)

(
∂
(X,B)
∗

)
p

(h∗)p

(
∂
(X,A)
∗

)
p

((
h
∣∣∣
B

)
∗

)
p−1

Since i equals the restriction of h to A, it follows that(
∂
(X,A)
∗

)
p
◦ (h∗)p = (i∗)p−1 ◦

(
∂
(X,B)
∗

)
p
. (3.57)

3. λ ◦ κ = φ ◦ τ : This is exactly the same as 1, with dimensions p− 1 instead of p.

4. α = η ◦ ε: α = (m∗)p, ε = (n∗)p, η = (h∗)p. Therefore,

η ◦ ε = (h∗)p ◦ (n∗)p = ((h ◦ n)∗)p = (m∗)p = α. (3.58)

5. ψ = ρ ◦ π: ψ =
(
∂
(A,B)
∗

)
p
, π = (g∗)p, ρ =

(
∂
(X,B)
∗

)
p
. Similar as before, by the Axiom 3 of

Eilenberg-Steenrod axioms, the following diagram commutes:

Hp (A,B) Hp (X,A)

Hp−1 (B) Hp−1 (B)

(
∂
(A,B)
∗

)
p

(g∗)p

(
∂
(X,B)
∗

)
p

((
g
∣∣∣
B

)
∗

)
p−1

g
∣∣
B

is equal to idB, so it induces identity at the homology level. Therefore,(
∂
(X,B)
∗

)
p
◦ (g∗)p = ((idB)∗)p−1 ◦

(
∂
(A,B)
∗

)
p
= idHp−1(B) ◦

(
∂
(A,B)
∗

)
p
=
(
∂
(A,B)
∗

)
p
. (3.59)

6. β = κ ◦ θ: This is the definition of β.

7. ω = τ ◦ σ: ω = (k∗)p−1, σ = (i∗)p−1, τ = (j∗)p−1. Therefore,

τ ◦ σ = (j∗)p−1 ◦ (i∗)p−1 = ((j ◦ i)∗)p−1 = (k∗)p−1 = ω. (3.60)

8. γ = µ ◦ λ: This is exactly the same as 5, with dimensions reduced by 1.

Therefore, the braid diagram above commutes. Now we claim that the composite η ◦ π is 0.
We have the following diagram of inclusions:
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(X,B)

(A,B) (X,A)

(A,A)

hg

ι ι′

This diagram commutes, since all the maps are inclusions. This induces a commutative diagram at
the homology level:

Hp(X,B)

Hp(A,B) Hp(X,A)

Hp(A,A)

(h∗)p=η(g∗)p=π

(ι∗)p (ι′∗)p

Now we claim that Hp (A,A) = 0. Consider the long exact homology sequence for the pair (A,A):

· · · Hp(A) Hp(A) Hp(A,A) Hp−1(A) Hp−1(A) · · ·
(i′∗)p (π′

∗)p (∂′∗)p (i′∗)p−1

im (∂′∗)p = Ker (i′∗)p−1, and (i′∗)p−1 is an isomorphism. Therefore, im (∂′∗)p = 0. So Ker (∂′∗)p =
Hp (A,A). By exactness, this is equal to im (π′∗)p. Hence, (π′∗)p is a surjective map. Now, Ker (π′∗)p =
im (i′∗)p = Hp (A). So (π′∗)p is the zero map. A surjective map can be the zero map if and only if the
codomain is trivial. Hence, Hp (A,A) = 0.

So Hp (A,A) = 0. Therefore, (ι∗)p is the 0 map, i.e. it maps everything to 0. Therefore,

η ◦ π =
(
ι′∗
)
p
◦ (ι∗)p = 0. (3.61)

Therefore, in the above braid diagram, the red, green and blue sequences are exact; and the composite
η ◦ π is zero. Hence, by The Braid Lemma, the purple sequence is exact. So, for each p, we get the
following exact sequence:

Hp(A,B) Hp(X,B) Hp(X,A) Hp−1(A,B).π η β

Combining these exact sequences for all p, we get the following long exact sequence:

· · · Hp(A,B) Hp(X,B) Hp(X,A) Hp−1(A,B) · · · ,π η β

which is the long exact homology sequence for the triple (X,A,B). ■

Now, consider the case (X,A,B) =
(
Xp, Xp−1, Xp−2

)
. Then the boundary homorphism

(
∂̃∗

)
p

in the
above case coincides with the boundary homomorphism ∂p of the cellular chain complex {Dp (X) , ∂p}.
This follows from the commutativity of the following diagram:

Hp(X
p, Xp−1) Hp−1(X

p−1,∅) Hp−1(X
p−1, Xp−2)

(∂∗)p

(∂̃∗)p

(j∗)p−1
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The top line of the diagram comes from the long exact homology sequence of the pair
(
Xp, Xp−1

)
.

Commutativity of the diagram above leads to(
∂̃∗

)
p
= (j∗)p−1 ◦ (∂∗)p , (3.62)

which is the same as the boundary homomorphism ∂p of the cellular chain complex {Dp (X) , ∂p}.
Using this fact, we will now prove that the cellular chain complex {Dp (X) , ∂p} of the CW complex
(X, E) can be used to compute the homology of X.

For later purposes, we are going to prove this result in a bit more general form for filtered spaces. We
shall assume that we have a space X that can be written as the union of a sequence of its subspaces:

X0 ⊂ X1 ⊂ X2 ⊂ · · · .

Then form the chain complex whose p-dimensional chain group is Hp (Xp, Xp−1) and whose boundary
operatoris the boundary homomorphism in the exact sequence of the triple (Xp, Xp−1, Xp−2). We
shall show that under suitable hypotheses (which are satisfied in the case of a CW complex), this
chain complex gives the homology of X.

Definition 3.9. If X is topological space, a filtration of X is a sequence X0 ⊂ X1 ⊂ X2 ⊂ · · · of
subspace of X whose union is X. A topological space together with a filtration of X is called
a filtered space. If X and Y are filtered spaces, a continuous map f : X → Y is said to be
filtration preserving if f (Xp) ⊆ Yp, for all p.

Theorem 3.19
Let X be filtered by the subspaces X0 ⊂ X1 ⊂ X2 ⊂ · · ·. Let Xi = ∅ for i < 0. Assume that
Hi (Xp, Xp−1) = 0 for i 6= p. Suppose also that given any compact set C ⊆ X, there is an n
such that C ⊆ Xn. Let D (X) be the chain complex defined by setting Dp (X) = Hp (Xp, Xp−1)
and letting the boundary operator be the boundary homomorphism in the exact sequence of the
triple (Xp, Xp−1, Xp−2). Then there is an isomorphism

λ : Hp (D (X))→ Hp (X) .

It is natural with respect to the homomorphisms induced by filtration preserving continuous maps.

Proof. Step 1. We show that the homomorphism (i∗)p : Hp (Xp+1) → Hp (X) induced by inclusion
is an isomorphism. For this purpose, one first notes that

Hp (Xp+1)→ Hp (Xp+2)→ Hp (Xp+3)→ · · · (3.63)

induced by inclusions are isomorphisms. From the long exact sequence of the pair (Xp+i+1, Xp+i), we
get the following exact sequence:

Hp+1(Xp+i+1, Xp+i) Hp(Xp+i) Hp(Xp+i+1) Hp(Xp+i+1, Xp+i)

Now that both end groupsHp+1(Xp+i+1, Xp+i) andHp(Xp+i+1, Xp+i) vanish for i ≥ 1, [sinceHq (Xp, Xp−1) =
0 for q 6= p] so Hp(Xp+i)→ Hp(Xp+i+1) is an isomorphism for all i ≥ 1.

Now, get back to the homomorphism (i∗)p : Hp (Xp+1) → Hp (X). We first show that (i∗)p is
surjective using the compact support axiom. Let β ∈ Hp (X). Now choose a compact set C ⊆ X
such that β is in the image of the homomorphism Hp (C)→ Hp (X) induced by the inclusion C ↪→ X.
Now, by hypothesis, C ⊆ Xp+k for some k ≥ 1 (The hypothesis only guarantees that C ⊆ Xj for some
j. But since Xj ⊆ Xn for n ≥ j, we can assume WLOG that j > p + 1.). Hence, β lies in the image
of the homomorphism Hp (Xp+k) → Hp (X) induced by the inclusion Xp+k ↪→ X. In other words, β
is the image of an element in Hp (Xp+k) in the following diagram:

Hp (Xp+1)→ Hp (Xp+k)→ Hp (X) .
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Since Hp (Xp+1) → Hp (Xp+k) is an isomorphism, β is the image of an element of Hp (Xp+1), estab-
lishing the surjectivity of (i∗)p : Hp (Xp+1)→ Hp (X).

Now let us show that Ker (i∗)p = 0. Suppose (i∗)p β = 0 for some β ∈ Hp (Xp+1). One can choose
compact C ′ ⊆ Xp+1 with β ∈ Hp (C

′) so that((
i
∣∣
C′

)
∗

)
p
β = 0 ∈ Hp (X) .

By Theorem 2.5, there exists a compact set C with C ′ ⊆ C ⊆ X and l : C ′ ↪→ C such that (l∗)p β = 0 ∈
Hp (C). But again, C ⊆ Xp+k for some k ≥ 1. This means that β lies in the kernel of Hp (Xp+1) →
Hp (Xp+k) induced by the inclusion map Xp+1 ↪→ Xp+k. But since Hp (Xp+1) → Hp (Xp+k) is an
isomorphism, β = 0. Hence, Ker (i∗)p = 0, completing the proof that (i∗)p is an isomorphism.

Step 2. We now show that the homomorphism

(j∗)p : Hp (Xp+1)→ Hp (Xp+1, Xp−2)

induced by inclusion is an isomorphism. This result will follow once one shows that the homomorphisms

Hp (Xp+1,∅)→ Hp (Xp+1, X0)→ Hp (Xp+1, X1)→ · · · → Hp (Xp+1, Xp−2)

induced by inclusions are all isomorphisms. To prove this, consider the long exact sequence of the
triple (Xp+1, Xi, Xi−1).

Hp(Xi, Xi−1) Hp(Xp+1, Xi−1) Hp(Xp+1, Xi) Hp−1(Xi, Xi−1)

If i ≤ p − 2, both end groups above vanish by hypothesis. Hence, the middle homomorphism
Hp(Xp+1, Xi−1) → Hp(Xp+1, Xi) is an isomorphism. By plugging in i = 0, 1, . . . , p − 2, one obtains
the following sequence of isomorphisms of homology groups:

Hp (Xp+1,∅)→ Hp (Xp+1, X0)→ Hp (Xp+1, X1)→ · · · → Hp (Xp+1, Xp−2) .

Step 3. We now prove the theorem. One has a quadruple: Xp−2 ⊆ Xp−1 ⊆ Xp ⊆ Xp+1, and 4 exact
sequences of triples arranged in “overlapping sine curves” as follows:

0 = Hp (Xp−1, Xp−2) Hp (Xp+1, Xp−2) Hp (Xp+1, Xp) = 0

Hp (Xp, Xp−2) Hp (Xp+1, Xp−1)

Hp+1 (Xp+1, Xp) Hp (Xp, Xp−1) Hp−1 (Xp−1, Xp−2) .

α β

(k∗)p

(l∗)p

(∂′′∗ )p+1

(∂∗)p+1 (∂′∗)p

The homomorphisms of the exact sequences are colored with the same color in the above commutative
diagram. It’s easy to check that the diagram commutes, because the homomorphisms are either
induced by inclusions, or induced by boundary operators, or a composition of them. This is an exact
braid, so by Lemma 3.16, there exists an isomorphism

Λ :
Ker (∂′∗) p

im (∂∗)p+1

→ Kerβ

imα
. (3.64)
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Ker(∂′∗)p
im(∂∗)p+1

is precisely Hp (D (X)). Since β is the zero map, its kernel is the whole Hp (Xp+1, Xp−2).
Furthermore, the domain of α is trivial, so imα = 0. Therefore,

Hp (D (X)) ∼=
Kerβ

imα
∼= Hp (Xp+1, Xp−2) ∼= Hp (Xp+1) ∼= Hp (X) . (3.65)

■

§3.4 The Homology of Triangulable CW Complexes
We now prove a version of Theorem 3.19 when the filtered space X is triangulable.

Theorem 3.20
Let X be filtered by the subspaces X0 ⊆ X1 ⊆ X2 ⊆ · · ·. Suppose that X is the underlying space
of a simplicial complex K, and each subspace Xp is the underlying space of a subcomplex of K
of dimension at most p. Let Hi denote simplicial homology. Suppose Hi (Xp, Xp−1) = 0 for i 6= p.
Then Hp (Xp, Xp−1) is a subgroup of Cp (K) consisting of all p-chains of K carried by Xp whose
boundaries are carried by Xp−1. Furthermore, the isomorphism λ of Theorem 3.19 is induced by
inclusion.

Proof. Any compact set in X lies in a finite subcomplex of K, so that it lies in Xi for some i. Therefore,
the hypothesis of Theorem 3.19 are satisfied. Observe that

Cp+1(Xp)
Cp+1(Xp−1)

Cp(Xp)
Cp(Xp−1)

Cp−1(Xp)
Cp−1(Xp−1)

∂̃p+1 ∂̃p

Ker ∂̃p

im ∂̃p+1

= Hp (Xp, Xp−1) .

Since there are no (p+ 1)-chains either carried by Xp or Xp−1, both groups Cp+1 (Xp) and Cp+1 (Xp−1)

are trivial so that im ∂̃p+1 = 0 and Hp (Xp, Xp−1) = Ker ∂̃p.
Also, there are no p-chains carried by Xp−1 so that the group Cp (Xp−1) is trivial. Therefore, ∂̃p is

Cp (Xp)
Cp−1(Xp)
Cp−1(Xp−1)

.
∂̃p

So Ker ∂̃p consists of simplicial p-chains in Cp (Xp) whose boundaries are in Cp−1 (Xp−1). In other
words, boundaries are (p− 1)-chains carried by Xp−1.

We must now check that the isomorphism λ of Theorem 3.19 is induced by inclusion. From the
braid diagram in the step 3 of the proof, one extracts the following commutative diagram:

Hp (Xp, Xp−2) Hp (Xp+1, Xp−2) Hp (Xp+1) Hp (X)

Ker (∂′∗)p

(k∗)p ∼=

(l∗)p

(j∗)p

∼=
(i∗)p

∼=

Here (k∗)p is an injective homomorphism, and (l∗)p is a surjective homomorphism. The diagram above
shows that

φ := (i∗)p ◦ (j∗)p ◦ (l∗)p ◦ (k∗)
−1
p : Ker

(
∂′∗
)
p
→ Hp (X)

is a surjective group homomorphism induced by inclusion. Therefore, by the first isomorphism theo-
rem,

Ker (∂′∗)p
Kerφ

λ−→ [∼=]Hp (X) .

Now, Kerφ = Ker
[
(l∗)p ◦ (k∗)

−1
p

]
. (k∗)

−1
p is an isomorphism, so

Ker
[
(l∗)p ◦ (k∗)

−1
p

]
= (k∗)p

(
Ker (l∗)p

)
= (k∗)p

(
im
(
∂′′∗
)
p+1

)
= im (∂∗)p+1 . (3.66)
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Therefore, λ is indeed the isomorphism of Theorem 3.19 from Ker(∂′∗)p
im(∂∗)p+1

to Hp (X). For a ∈ Ker (∂′∗)p,

λ
(
a+ im (∂∗)p+1

)
= φ (a) . (3.67)

Since φ is induced by inclusion, so is λ. ■

Homology of torus and klein bottle using their CW complex structure
For each p-cell eα of the CW complex (X, E), the group Hp (eα, ėα) is infinite cyclic. So it has two
choices for a generator, namely γ and γ−1. These two generators will be called the two orientations
of eα. An oriented p-cell of X is a p-cell eα together with an orientation of eα.

The cellular chain group Dp (X) = Hp

(
Xp, Xp−1

)
is a free abelian group. One obtains a basis for

it by orienting each p cell eα of X (say γ if not γ−1) and passing it to the corresponding element of
Hp

(
Xp, Xp−1

)
, i.e. by taking (i∗)p γ if not (i∗)p γ

−1 with the homomorphism

(i∗)p : Hp (eα, ėα)→ Hp

(
Xp, Xp−1

)
induced by the inclusion i : (eα, ėα) ↪→

(
Xp, Xp−1

)
. The homology of the chain complex D (X) —to be

more precise, cellular complex D (X) associated with the CW complex (X, E)— is isomorphic to the
singular homology of X as proved in Theorem 3.19. In the special case when (X, E) is a triangulable
CW complex triangulated by a simplicial complexK, andHp denotes simplicial homology, one observes
the following fact: the fact that Xp and Xp−1 are subcomplexes of K implies that each p-cell eα is
the union of open simplices of K of dimension at most p, so that eα is the polytope of a subcomplex
of K. The group Hp (eα, ėα) equals the group of p-chains carried by eα whose boundaries are carried
by ėα. The group Hp (eα, ėα) is infinite cyclic. Either generator of the group is called a fundamental
cycle for (eα, ėα).

The cellular chain group Dp (X) equals the group of all simplicial p-chains of X carried by Xp

whose boundaries are carried by Xp−1. Any such p-chain can be written uniquely as a finite linear
combination of fundamental cycles for those pairs (eα, ėα) for which dim eα = p.

§3.4.i Torus
Let X denote the torus expressed as a quotient space of the rectangle L in the usual way. Then X is
the underlying space of a triangulable CW complex.

L

σ1

σ2

a

d

e

a

a

d

e

a

b c

b c

B

A

g
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1
If we consider the torus and denote the CW complex with the pais (X, E), then E consists of a 2-cell

e2, two 1-cells e1 and e′1 (which are the images of A and B under g, respectively) and one 0-cell e0.
Now D2 (X) = H2

(
X2, X1

)
.

As we have done in AT2, all the 2-simplices are oriented counterclockwise, and the 1-simplices are
oriented arbitrarily. Let the 2-chain d of L be the sum of the counterclockwise 2-simplices σi, i.e.
d =

∑
i σi. As is done in AT2,

∂L2 d = 0. (3.68)

Hence, d is a cycle of (L,BdL), i.e. d ∈ Z2 (L,BdL). Now, suppose α ∈ Z2 (L,BdL). In other
words, ∂L2 α is carried by BdL. Then by Lemma 1.0.1(ii) of AT2, α = pd for some p ∈ Z. Hence,
Z2 (L,BdL) is generated by d =

∑
i σi. B2 (L,BdL) is trivial since there are no 3-chains to consider.

Hence, H2 (L,BdL) is generated by d. Therefore, d is a fundamental cycle for (L,BdL).
Since g is the underlying characteristic map associated with the 2-cell e2, γ = (g∗)2 d is a fundamental

cycle for (e2, ė2) by Lemma 3.12. So we have

D2 (X) = H2

(
X2, X1

) ∼= Z. (3.69)

v1 v4

v3v2

c2 c4

c1

c3

Let c1 be the sum of the 1-simplices along the top of L as indiced in the figure above. Let c2, c3, c4
denote chains along the other edges of L. Any 1-cycle c ∈ Z1 (BdL, {v1, v2, v3, v4}) can be expressed
as c = m1c1+m2c2 for mi ∈ Z. Such 1-cycle c will bound if these exists a 2-chain d on BdL such that
c − ∂L2 d is carried by {v1, v2, v3, v4}. There is no non-trivial 2-chain on BdL. Hence, no nontrivial
1-chain bounds for (BdL, {v1, v2, v3, v4}). Therefore, H1 (BdL, {v1, v2, v3, v4}) is generated by c1 and
c2, i.e. c1 and c2 are fundamental cycles for (BdL, {v1, v2, v3, v4}).

There are two 1-cells involved: g
∣∣
A

is the characteristic map associated with e1 and g
∣∣
B

is the
characteristic map associated with e′1, so that w1 =

((
g
∣∣
BdL

)
∗

)
1
c1 is a fundamental cycle for (e1, ė1),

and z1 =
((
g
∣∣
BdL

)
∗

)
1
c2 is a fundamental cycle for (e′1, ė

′
1). One finds that

D1 (X) = H1

(
X1, X0

) ∼= Z⊕ Z. (3.70)
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It’s easy to see that D0 (X) = H0

(
X0
) ∼= Z, since X0 consists of just one 0-cell.

In terms of these basis elements, let us compute the boundary operator in the cellular chain complex
D (X). We first compute ∂L in the complex L as follows:

∂L1 c1 = v4 − v1 , ∂L1 c2 = v2 − v1. (3.71)

∂L2 d = c2 + c3 − c4 − c1. (3.72)

Let di be the i-th boundary operator on the cellular chain complex D (X). d2 is the following composite:

H2(X
2, X1) H1(X

1) H1(X
1, X0)

(∂∗)2

d2=(j∗)1◦(∂∗)2

(j∗)1

Here, (∂∗)2 is the homology boundary homomorphism in the long exact homology sequence of the pair(
X2, X1

)
, and (j∗)1 is induced by the inclusion j :

(
X1,∅

)
↪→
(
X1, X0

)
. Now,

(∂∗)2 γ = (∂∗)2 (g∗)2 d = (∂∗)2
{
(g#)2 d

}
=
{
∂X2 (g#)2 d

}
=
{
(g#)1

(
∂L2 d

)}
=
{
(g#)2 (0)

}
= 0. (3.73)

Therefore, (j∗)1 ◦ (∂∗)2 γ = 0. Since γ generates D2 (X), the cellular chain map d2 = (j∗)1 ◦ (∂∗)2 is
trivial.

Now we shall see how the cellular boundary map d1 : H1

(
X1, X0

)
→ H0

(
X0
)

works. d1 is equal
to the homology boundary homomorphism (∂′∗)1 of the pair

(
X1, X0

)
.

d1 (w1) =
(
∂′∗
)
1

((
g
∣∣
BdL

)
∗

)
1
c1 =

(
∂′∗
)
1

{((
g
∣∣
BdL

)
#

)
1
c1

}
=
{
∂X2

(((
g
∣∣
BdL

)
#

)
1
c1

)}
=
{((

g
∣∣
BdL

)
#

)
0
∂L1 c1

}
=
{((

g
∣∣
BdL

)
#

)
0
(v4 − v1)

}
= 0, (3.74)

since
((
g
∣∣
BdL

)
#

)
0
v1 =

((
g
∣∣
BdL

)
#

)
0
v4. Also,

d1 (z1) =
(
∂′∗
)
1

((
g
∣∣
BdL

)
∗

)
1
c2 =

(
∂′∗
)
1

{((
g
∣∣
BdL

)
#

)
1
c2

}
=
{
∂X2

(((
g
∣∣
BdL

)
#

)
1
c2

)}
=
{((

g
∣∣
BdL

)
#

)
0
∂L1 c2

}
=
{((

g
∣∣
BdL

)
#

)
0
(v2 − v1)

}
= 0, (3.75)

since
((
g
∣∣
BdL

)
#

)
0
v1 =

((
g
∣∣
BdL

)
#

)
0
v2. Since w1 and z1 generates D1 (X) = H1

(
X1, X0

)
, and d1

acting on both of them gives 0, so d1 is also the 0 map.
Now, we have the cellular chain complex, with cellular chain groups D2 (X) , D1 (X) , D0 (X), and

cellular boundary maps d2 : D2 (X) → D1 (X) and d1 : D1 (X) → D0 (X). We have just seen that
both d2 and d1 are 0 maps. Therefore, Z2 (D (X)) = D2 (X). Since D3 (X) is trivial, so is B2 (D (X)).
Therefore,

H2 (D (X)) = D2 (X) ∼= Z. (3.76)

Since d1 is the 0 map, Z1 (D (X)) = D1 (X). Image of d2 is trivial, so B1 (D (X)) = 0. Therefore,

H1 (D (X)) = D1 (X) ∼= Z⊕ Z. (3.77)

Z0 (D (X)) = D0 (X). Image of d1 is trivial, so B0 (D (X)) = 0. Therefore,

H0 (D (X)) = D0 (X) ∼= Z. (3.78)
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Dn (X) is trivial for n ≥ 3. Therefore, Hn (D (X)) are also trivial for n ≥ 3. Since Hn (X) ∼=
Hn (D (X)), we have

Hn (X) ∼=


Z if n = 0 or n = 2,

Z⊕ Z if n = 1,

0 otherwise.
(3.79)

§3.4.ii Klein Bottle
Notation: Throughout this solution, 〈a1, a2, . . . , an〉Z denotes the free abelian group generated by
a1, a2, . . . , an.

Let X denote the Klein bottle expressed as a quotient space of the rectangle L in the usual way. Then
X is the underlying space of a triangulable CW complex.

L

σ1

σ2

B

A

σ3

σ4

g

If we consider the klein bottle and denote the CW complex with the pais (X, E), then E consists of
a 2-cell e2 (which is the image of the interior of the rectangle L under the gluing map g), two 1-cells
e1 and e′1 (which are the images of A and B under g, respectively) and one 0-cell e0 (the image of the
vertices of L under g).
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Since X is triangulable, it is the underlying space of a simplicial complex K. That simplicial complex
K is the following:

K

σ1

σ2

a

d

e

a

a

e

d

a

b c

b c

σ3

σ4

[Note: We have not made any identification on the complex L. The map g does the identification
and yields the complex K.]

Now, D2 (X) = H2

(
X2, X1

)
. By Theorem 39.5, H2

(
X2, X1

)
is a subgroup of C2 (K). In fact,

H2

(
X2, X1

)
is the group of simplicial 2-chains of X whose boundaries are carried by X1.

v1 v4

v3v2

c2 c4

c1

c3

As we have done in AT2, all the 2-simplices are oriented counterclockwise, and the 1-simplices are
oriented arbitrarily. Let the 2-chain d of L be the sum of the counterclockwise 2-simplices σi, i.e.
d =

∑
i σi. As is done in AT2,

∂L2 d = (c4 − c1 + c2 + c3) . (3.80)

Hence, d is a cycle of (L,BdL), i.e. d ∈ Z2 (L,BdL). Now, suppose α ∈ Z2 (L,BdL). In other words,
∂L2 α is carried by BdL. Then by Lemma 1.0.1(ii) of AT2, α = pd for some p ∈ Z. Hence, Z2 (L,BdL)
is generated by d =

∑
i σi. B2 (L,BdL) is trivial since there are no 3-chains to consider. Hence,

H2 (L,BdL) is generated by d. Therefore, d is a fundamental cycle for (L,BdL). By Lemma 39.1,
γ = (g∗)2 d is a fundamental cycle for (e2, ė2). However, (g∗)2 : H2 (L,BdL)→ H2

(
X2, X1

)
. So

(g∗)2 d ∈ H2

(
X2, X1

)
⊆ C2 (K) . (3.81)

Therefore, γ = (g∗)2 d = (g#)2 d generates H2

(
X2, X1

)
. So

D2 (X) = H2

(
X2, X1

)
= 〈γ〉Z =

〈
(g#)2 d

〉
Z
∼= Z. (3.82)

Let c1 be the sum of the 1-simplices along the top of L as indiced in the figure above. Let c2, c3, c4
denote chains along the other edges of L. Any 1-cycle c ∈ Z1 (BdL, {v1, v2, v3, v4}) can be expressed
as c = m1c1+m2c2 for mi ∈ Z. Such 1-cycle c will bound if these exists a 2-chain d on BdL such that
c − ∂L2 d is carried by {v1, v2, v3, v4}. There is no non-trivial 2-chain on BdL. Hence, no nontrivial
1-chain bounds for (BdL, {v1, v2, v3, v4}). Therefore, H1 (BdL, {v1, v2, v3, v4}) is generated by c1 and
c2, i.e. c1 and c2 are fundamental cycles for (BdL, {v1, v2, v3, v4}).
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There are two 1-cells involved: g
∣∣
A

is the characteristic map associated with e1 and g
∣∣
B

is the
characteristic map associated with e′1, so that w1 =

((
g
∣∣
BdL

)
∗

)
1
c1 is a fundamental cycle for (e1, ė1),

and z1 =
((
g
∣∣
BdL

)
∗

)
1
c2 is a fundamental cycle for (e′1, ė

′
1). By Theorem 39.5, H1

(
X1, X0

)
is a

subgroup of C1 (K). In fact, H1

(
X1, X0

)
is the group of simplicial 1-chains of X whose boundaries

are carried by X0.
((
g
∣∣
BdL

)
∗

)
1
: H1 (BdL, {v1, v2, v3, v4})→ H1

(
X1, X0

)
, so

w1 =
((
g
∣∣
BdL

)
∗

)
1
c1 ∈ H1

(
X1, X0

)
⊆ C1 (K) . (3.83)

Therefore, w1 =
((
g
∣∣
BdL

)
#

)
1
c1. Similarly, z1 =

((
g
∣∣
BdL

)
#

)
1
c2. One then finds that

D1 (X) = H1

(
X1, X0

)
= 〈w1, z1〉Z =

〈((
g
∣∣
BdL

)
#

)
1
c1,
((
g
∣∣
BdL

)
#

)
1
c2

〉
Z
∼= Z⊕ Z. (3.84)

It’s easy to see that D0 (X) = H0

(
X0
) ∼= Z, since X0 consists of just one 0-cell. Therefore,

D0 (X) = H0

(
X0
)
=
〈
(g#)0 v1

〉
Z
∼= Z. (3.85)

For n > 2, there are no n-cells, so Dn (X) = Hn

(
Xn, Xn−1

)
is trivial. So, we have the homomorphisms

of the cellular chain complex D (X). Let di be the i-th boundary operator on the cellular chain complex
D (X).

0 D2 (X) D1 (X) D0 (X) 0.
d3 d2 d1 d0

In terms of basis elements of Di (X), let us compute the boundary operator in the cellular chain
complex D (X). d2 is the following composite:

H2(X
2, X1) H1(X

1) H1(X
1, X0)

(∂∗)2

d2=(j∗)1◦(∂∗)2

(j∗)1

Here, (∂∗)2 is the homology boundary homomorphism in the long exact homology sequence of the pair(
X2, X1

)
, and (j∗)1 is induced by the inclusion j :

(
X1,∅

)
↪→
(
X1, X0

)
. Now, the existence of (∂∗)2

is guaranteed by Zig-Zag lemma, where one finds that (∂∗)2 is induced by the boundary operator in
K. Therefore,

(∂∗)2 γ = (∂∗)2
{
(g#)2 d

}
=
{
∂K2 (g#)2 d

}
. (3.86)

Since chain maps commute with boundary,

∂K2 (g#)2 d = (g#)1
(
∂L2 d

)
= (g#)1 (−c1 + c2 + c3 + c4) . (3.87)

Under (g#)1, both c1 and c2 gets mapped to w1. Furthermore, both c2 and c4 also gets mapped to z1.
Therefore,

∂K2 (g#)2 d = 2z1. (3.88)
Therefore,

(∂∗)2 γ = 2 {z1} . (3.89)
After a composition with (j∗)1, it becomes 2z1, since the image of (j∗)1 is a subgroup of C1 (K).
Therefore, d2γ = 2z1.

Now we shall see how the cellular boundary map d1 : H1

(
X1, X0

)
→ H0

(
X0
)

works. d1 is equal to
the homology boundary homomorphism (∂′∗)1 of the pair

(
X1, X0

)
, which is induced by the boundary

operator in K.

d1 (w1) =
(
∂′∗
)
1

((
g
∣∣
BdL

)
∗

)
1
c1 =

(
∂′∗
)
1

{((
g
∣∣
BdL

)
#

)
1
c1

}
=
{
∂K2

(((
g
∣∣
BdL

)
#

)
1
c1

)}
=
{((

g
∣∣
BdL

)
#

)
0
∂L1 c1

}
=
{((

g
∣∣
BdL

)
#

)
0
(v4 − v1)

}
= 0, (3.90)
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since
((
g
∣∣
BdL

)
#

)
0
v1 =

((
g
∣∣
BdL

)
#

)
0
v4. Similarly, d1 (z1) = 0.

We are now ready to compute the homology groups of the cellular chain complexD (X) = {Di (X) , di}.
d2γ = 2z1, so d2 (mγ) = 2mz1. Therefore, d2 (mγ) = 0 if and only if m = 0. So Ker d2 is trivial.
Therefore,

H2 (D (X)) = 0. (3.91)

d1 (w1) = d1 (z1) = 0. Therefore, Ker d1 = 〈w1, z1〉Z. Furthermore, im d2 = 〈2z1〉Z. Hence,

H1 (D (X)) =
Ker d1
im d2

=
〈w1, z1〉Z
〈2z1〉Z

∼= Z⊕ Z/2Z. (3.92)

d0 is the 0 map, and so is d1. Therefore,

H0 (D (X)) = D0 (X) ∼= Z. (3.93)

Since Hq (X) ∼= Hq (D (X)), we have

Hn (X) ∼=


Z if n = 0,

Z⊕ Z/2Z if n = 1,

0 otherwise.
(3.94)
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§4.1 An Introductory Discussion on Hom Functor
Given two abelian groups A and G, there is a third abelian group Hom(A,G) consisting of all homo-
morphisms from A to G. We add two homomorphisms in the set Hom(A,G) by adding their values
in G, i.e. given a ∈ A and φ, ψ ∈ Hom(A,G), we define

(φ+ ψ) (a) := φ (a) + ψ (a) . (4.1)

One can easily verify that φ+ ψ ∈ Hom(A,G). Indeed,

(φ+ ψ) (a+ b) = φ (a+ b) + ψ (a+ b) = φ (a) + φ (b) + ψ (a) + ψ (b)

= [φ (a) + ψ (a)] + [φ (b) + ψ (b)]

= (φ+ ψ) (a) + (φ+ ψ) (b) . (4.2)

The identity element in Hom(A,G) is the homomorphism that maps all of A to 0G, the identity of
G.

Example 4.1
Hom(Z, G) is isomorphic to G. The isomorphism assigns φ : Z→ G to the element φ (1) ∈ G. If
one knows φ (1), one knows the homomorphism φ : Z→ G completely as 1 generates Z. Now we
want to show that

i : Hom (Z, G)→ G , φ 7→ φ (1)

is a group isomorphism. Indeed,

i (φ+ ψ) = (φ+ ψ) (1) = φ (1) + ψ (1) = i (φ) + i (ψ) .

So i is a group homomorphism. Given g ∈ G, we can define a homomorphism fg : Z → G by
defining fg (1) = g. So i (fg) = g, proving that i is surjective. Now, take f ∈ Ker i. So we have
f (1) = 0G. For n > 0,

f (n) = f(1 + 1 + · · ·+ 1︸ ︷︷ ︸
n-times

) = f (1) + · · ·+ f (1) = 0G + · · ·+ 0G = 0G.

Also, f (−n) = −f (n) = −0G = 0G. Therefore, f maps all of Z to 0G, i.e. f is the identity of
Hom(Z, G). So Ker i is trivial, proving that i is injective. Therefore, i is an isomorphism.

Definition 4.1. A homomorphism f : A→ B gives rise to a dual homomorphism

Hom(A,G) Hom(B,G)
f̃

going in the reverse direction. Given φ ∈ Hom(B,G), f̃ is defined by

f̃ (φ) = φ ◦ f ∈ Hom(A,G) . (4.3)

A B G
f

ϕ◦f

ϕ
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Let us check quickly that f̃ defined above is a group homomorphism: given a ∈ A and φ, ψ ∈
Hom(B,G), [

f̃ (φ+ ψ)
]
(a) = [(φ+ ψ) ◦ f ] (a) = (φ+ ψ) (f (a))

= (φ ◦ f) (a) + (ψ ◦ f) (a) =
[
f̃ (φ)

]
(a) +

[
f̃ (ψ)

]
(a)

=
[
f̃ (φ) + f̃ (ψ)

]
(a) .

Therefore, f̃ (φ+ ψ) = f̃ (φ) + f̃ (ψ).

Remark 4.1. Note that for a fixed abelian group G, the assignment A → Hom(A,G) (at the
level of objects) and f → f̃ (at the level of morphisms) defines a contravariant functor from the
category of abelian groups and group homomorphisms to itself.

A B C

idA

f g

Category Ab

Hom(A,G) Hom(B,G) Hom(C,G)

ĩdA

f̃ g̃

Category Ab

Hom functor

Indeed, if idA : A → A is the identity group homomorphism, then ĩdA : Hom (A,G) →
Hom(A,G) is

ĩdA (φ) = φ ◦ idA = φ.

Hence, ĩdA = idHom(A,G). Furthermore, if f : A → B and g : B → C are homomorphisms, we
need to show that g̃ ◦ f = f̃ ◦ g̃. Indeed, for ψ ∈ Hom(C,G),

g̃ ◦ f (ψ) = ψ ◦ (g ◦ f) = (ψ ◦ g) ◦ f = f̃ (ψ ◦ g) = f̃ (g̃ (ψ)) .

Therefore, the Hom functor is indeed a contravariant functor.

We have the following consequences of the above fact:

Theorem 4.1
Let f be a homomorphism, let f̃ be the dual homomorphism.

(a) If f is an isomorphism, so is f̃ .

(b) If f is the zero homomorphism, so is f̃ .

(c) If f is surjective, then f̃ is injective. That is, exactness of B f−→ C → 0 implies the exactness

of Hom(B,G)
f̃←− Hom(C,G)← 0.

Proof. (a) Let f : A→ B be an isomorphism. First we shall show that f̃ : Hom (B,G)→ Hom(A,G)

is injective. Suppose f̃ (φ) = f̃ (ψ), for φ, ψ ∈ Hom(B,G). Then φ◦f = ψ◦f . Since f is surjective,
for each b ∈ B, there exists a ∈ A such that f (a) = b. Therefore,

(φ ◦ f) (a) = (ψ ◦ f) (a) =⇒ φ (b) = ψ (b) . (4.4)
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Therefore, φ (b) = ψ (b) for each b ∈ B, so that φ = ψ and f̃ is injective.
Now we shall prove that f̃ is surjective. For any ψ ∈ Hom(A,G), let φ = ψ ◦ f−1 ∈ Hom(B,G).
Then we have

f̃ (φ) = φ ◦ f =
(
ψ ◦ f−1

)
◦ f = ψ. (4.5)

So f̃ is surjective. Therefore, f̃ is an isomorphism.

(b) Given f : A→ B the zero homomorphism, f (a) = 0B for all a ∈ A. Then given φ ∈ Hom(B,G),[
f̃ (φ)

]
(a) = (φ ◦ f) (a) = φ (0B) = 0G. (4.6)

Therefore, f̃ (φ) maps all of A to 0G, so f̃ (φ) is the identity of Hom(A,G) for each φ ∈ Hom(B,G).
Hence, f̃ is the zero homomorphism.

(c) This is exactly the same as the first part of (a).
■

Theorem 4.2
If the sequence

A B C 0
f g (4.7)

is exact, then the dual sequence

Hom(A,G) Hom(B,G) Hom(C,G) 0
f̃ g̃ (4.8)

is exact. Furthermore, if f is injective and the first sequence splits, then f̃ is surjective and the
second sequence splits.

Proof. Exactness of (4.7) implies that g is surjective. Then applying Theorem 4.1(c), g̃ is injective.
Hence, the sequence (4.8) is exact at Hom(C,G). Now we check exactness at Hom(B,G).

Exactness of (4.7) implies that g ◦ f = 0. Therefore, by Theorem 4.1(b), g̃ ◦ f = f̃ ◦ g̃ = 0. So
im g̃ ⊆ Ker f̃ . Now let us show the reverse inclusion Ker f̃ ⊆ im g̃.

Suppose ψ ∈ Ker f̃ , so that f̃ (ψ) = 0Hom(A,G). We want to show that ψ = g̃ (φ) for some φ ∈
Hom(C,G). Since f̃ (ψ) is the 0-homomorphism, ψ vanishes on the subgroup f (A) ⊆ B. Since B is
abelian, f (A) is normal. Hence, ψ : B → G is a group homomorphism and f (A) ⊆ Kerψ. Then the
homomorphism theorem tells us that there is an induced homomorphism

ψ′ :
B

f (A)
→ G.

Now, exactness of (4.7) implies that f (A) = Ker g. Besides, g : B → C is surjective by exactness at
C. Hence, by first isomorphism theorem, g induces an isomorphism

g′ :
B

f (A)
→ C.

So we have the following commutative diagram:

G B C

B
f(A)

ψ g

π
∼=

g′ψ′
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The map φ = ψ′ ◦ (g′)−1 is a homomorphism from C to G. Therefore,

g̃ (φ) = φ ◦ g = ψ′ ◦
(
g′
)−1 ◦ g = ψ′ ◦ π = ψ. (4.9)

Therefore, Ker f̃ ⊆ im g̃, and (4.8) is exact.

Now, let us suppose that f is injective and the exact sequence (4.7) splits. Then the following short
exact sequence splits:

0 A B C 0.
f g

Then from equivalent properties (Theorem 4.1.1 of AT2) of a split short exact sequence, there is a
homomorphism π : B → A such that π ◦ f = idA.

0 A B C 0.
f g

π

From the functorial properties of the Hom functor, we have

f̃ ◦ π̃ = idHom(A,G) . (4.10)

Now, we want to show that f̃ is surjective. For ψ ∈ Hom(A,G),

f̃ (π̃ (ψ)) = idHom(A,G) ψ = ψ. (4.11)

Therefore, f̃ is surjective. Therefore, (4.10) along with Theorem 4.1.1 of AT2 implies that

0 Hom(A,G) Hom(B,G) Hom(C,G) 0

π̃

f̃ g̃

is a split short exact sequence. ■

Remark 4.2. In general, exactness of a short exact sequence does not imply exactness of the dual
sequence. To be more precise, exactness of (4.7) does not require f to be injective, in general.
Only when f is injective, exactness of

A B C 0
f g

implies the existence of the following short exact sequence:

0 A B C 0.
f g

For instance, if f : Z → Z is defined by multiplication by 2, i.e. f (n) = 2n, then one has the
following short exact sequence:

0 Z Z Z/2 0,
f g

with π : Z→ Z/2 being the canonical projection map. Kerπ = im f is the set of all even integers.
But the dual sequence

0 Hom(Z,Z) Hom(Z,Z) Hom(Z/2,Z) 0
f̃ π̃

is not exact. In particular, f̃ is not surjective. Given φ ∈ Hom(Z,Z), ψ = f̃ (φ) takes only even
values, since

ψ (n) = φ (f (n)) = φ (2n) = 2φ (n) .

Therefore, f̃ is not surjective, and hence the dual sequence above is not exact.
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Proposition 4.3
Let A, B, G be abelian groups. Then

Hom(A⊕B,G) ∼= Hom(A,G)⊕Hom(B,G) .

Proof. We define F : Hom (A⊕B,G) → Hom(A,G) ⊕ Hom(B,G) as follows: for a homomorphism
ψ : A⊕B → G, we define F (ψ) = (ψ1, ψ2), where ψ1 : A→ G and ψ2 : B → G are defined as follows:

ψ1 (a) = ψ (a, 0) and ψ2 (b) = ψ (0, b) . (4.12)

For φ, ψ ∈ Hom(A⊕B,G), F (φ+ ψ) = ((φ+ ψ)1 , (φ+ ψ)2). Now,

(φ+ ψ)1 (a) = (φ+ ψ) (a, 0) = φ (a, 0) + ψ (a, 0) = φ1 (a) + ψ1 (a) = (φ1 + ψ1) (a) .

Therefore, (φ+ ψ)1 = φ1 + ψ1. Similarly, (φ+ ψ)2 = φ2 + ψ2. Hence,

F (φ+ ψ) = (φ1 + ψ1, φ2 + ψ2) = (φ1, φ2) + (ψ1, ψ2) = F (φ) + F (ψ) . (4.13)

So F is a group homomorphism. Now, let ψ ∈ KerF . So both ψ1 and ψ2 are zero maps. As a result,

ψ (a, b) = ψ (a, 0) + ψ (0, b) = ψ1 (a) + ψ2 (b) = 0.

So ψ is the zero map, and hence KerF is trivial. Now, given any homomorphisms α : A → G and
β : B → G, we can define γ : A⊕B → G as follows:

γ (a, b) = α (a) + β (b) .

Now,
γ1 (a) = γ (a, 0) = α (a) and γ2 (b) = γ (0, b) = β (b) ,

so that F (γ) = (α, β), proving that F is surjective. Therefore, F is a bijective homomorphism, i.e.
an isomorphism. ■

§4.2 Cohomology Theory
Let C = {Cp, ∂p} be a chain complex.

· · · Cp+1 Cp Cp−1 · · ·
∂p+1 ∂p

Also, let G be an abelian group. We define the p-dimensional cochain group of C, with coefficients
in G by

Cp (C;G) = Hom (Cp, G) . (4.14)

We define the coboundary operator δp to be the dual of the boundary homomrophism ∂p+1, i.e.
δp = ∂̃p.

· · · Cp+1 Cp Cp−1 · · ·
∂p+1 ∂p

· · · Hom(Cp+1, G) Hom(Cp, G) Hom(Cp−1, G) · · ·
δp+1 δp

Hom functor
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The boundary homomorphisms of the chain complex C satisfies ∂p ◦ ∂p+1 = 0. Therefore, using
Theorem 4.1(b),

0 = ˜∂p ◦ ∂p+1 = ∂̃p+1 ◦ ∂̃p = δp+1 ◦ δp. (4.15)
Therefore, δp+1◦δp = 0 for each p. The kernel of the group homorphism δp+1 : C

p (C;G)→ Cp+1 (C;G)
being a subgroup of Cp (C;G) is called the group of p-cocycles, and is denoted by Zp (C;G). The
image of the homomorphism δp : Cp−1 (C;G) → Cp (C;G) is also a subgroup of Cp (C;G), which is
called the group of p-coboundaries and is denoted by Bp (C;G). From δp+1 ◦ δp = 0, it is clear
that Bp (C;G) ⊆ Zp (C;G). The resulting quotient group is called the p-dimensional cohomology
group of C, with coefficients in G:

Hp (C;G) = Zp (C;G)
Bp (C;G)

. (4.16)

If {C, ε} is an augmented chain complex, then ε : C0 → Z is a surjective group homomorphism
satisfying ε ◦ ∂1 = 0.

· · · C1 C0 Z∂1 ϵ

· · · Hom(C1, G) Hom(C0, G) Hom(Z, G)δ1 ϵ̃

Hom functor

By Theorem 4.1(c), ε̃ is injective. One then defined the reduced cohomology groups of C by setting

H̃q (C;G) =

{
Hq (C;G) if q > 0,
Ker δ1
im ϵ̃ if q = 0.

(4.17)

Now, if H̃0 (C) vanishes, then ε being surjective implies the following sequence is exact:

C1 C0 Z 0
∂1 ϵ

Hence, by Theorem 4.2, the dual sequence

C1 (C;G) C0 (C;G) Hom(Z, G) 0
δ1 ϵ̃

is also exact. Therefore, Ker δ1 = im ε̃, so that H̃0 (C;G). Therefore, vanishing of reduced homology
group in dimension 0 implies vanishing of reduced cohomology in dimension 0. In general, we have
the following relationship between 0-dimensional ordinary and reduced cohomology groups:

Proposition 4.4
H0 (C;G) ∼= H̃0 (C;G)⊕G.

Proof. For the unreduced cochain complex,

C1 (C;G) C0 (C;G) 0
δ1

H0 (C;G) = Ker δ1; and for the reduced cochain complex,

C1 (C;G) C0 (C;G) Hom(Z, G) 0
δ1 ϵ̃

H̃0 (C;G) = Ker δ1
im ϵ̃ . We first want to show that im ε̃ is a direct summand in C0 (C;G). Since ε is

surjective, there exists some c ∈ C0 such that ε (c) = 1. We define ψ : Z→ C0 by ψ (n) = nc. Then

ε (ψ (n)) = ε (nc) = n ε (c) = n. (4.18)

So ε ◦ ψ = idZ. After applying the Hom functor, we then get ψ̃ ◦ ε̃ = idHom(Z,G).
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C0 Z C0 (C;G) Hom(Z, G)
ϵ

ψ

Hom

ψ̃

ϵ̃

Now we claim that
C0 (C;G) = im ε̃⊕Ker ψ̃. (4.19)

For any f ∈ C0 (C;G), we can write f as

f = ε̃
(
ψ̃ (f)

)
+
[
f − ε̃

(
ψ̃ (f)

)]
. (4.20)

Here, ε̃
(
ψ̃ (f)

)
∈ im ε̃, and

ψ̃
[
f − ε̃

(
ψ̃ (f)

)]
= ψ̃ (f)− ψ̃

(
ε̃
(
ψ̃ (f)

))
= ψ̃ (f)− ψ̃ (f) = 0. (4.21)

Therefore, f − ε̃
(
ψ̃ (f)

)
∈ Ker ψ̃. Now we need to show that im ε̃ ∩ Ker ψ̃ is trivial. If we take any

f ∈ im ε̃ ∩Ker ψ̃, then f = ε̃ (g) for some g ∈ Hom(Z, G), and ψ̃ (f) = 0. So

0 = ψ̃ (f) = ψ̃ (ε̃ (g)) = g. (4.22)

Therefore, f = ε̃ (g) = 0. So im ε̃ ∩ Ker ψ̃ is trivial, and hence C0 (C;G) = im ε̃ ⊕ Ker ψ̃. Since Ker δ1
is a subgroup of C0 (C;G) containing im ε̃, im ε̃ is a direct summand in Ker δ1 as well. Therefore,

Ker δ1 = im ε̃⊕H, (4.23)

where H = Ker ψ̃ ∩Ker δ1 is a subgroup of Ker δ1.
It’s easy to see that if X = Y ⊕Z, then Z is isomorphic to X/Y . For that purpose, we shall construct

a homomorphism µ : X → Z as follows: since X = Y ⊕ Z, any x ∈ X can be uniquely written as
x = y + z, where y ∈ Y and z ∈ Z. µ maps this y + z to z. Then µ is a surjective homomorphism,
with kernel Y . Therefore, by the first isomorphism theorem, Z ∼= X/Y . Therefore,

Ker δ1 = im ε̃⊕H ∼= im ε̃⊕ Ker δ1
im ε̃

. (4.24)

Since ε̃ is injective, its image is isomorphic to its domain Hom(Z, G) ∼= G. Therefore,

Ker δ1 ∼= G⊕ Ker δ1
im ε̃

. (4.25)

H0 (C;G) = Ker δ1 and H̃0 (C;G) = Ker δ1
im ϵ̃ . Hence,

H0 (C;G) ∼= G⊕ H̃0 (C;G) . (4.26)

■

§4.3 Cochain Maps and Cochain Homotopy

Definition 4.2 (Cochain map). Suppose C = {Cp, ∂p} and C′ =
{
C ′
p, ∂

′
p

}
are chain complexes, and

φ : C → C′ is a chain map, so that φp−1 ◦ ∂p = ∂′p ◦ φp. Then applying the Hom functor, we get

δp ◦ φ̃p−1 = φ̃p ◦ δ′p. (4.27)

The dual homomorphisms Cp (C;G) ϕ̃p←− Cp (C′;G) form a family
{
φ̃p

}
of homomorphisms called

a cochain map.
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Since a cochain map commutes with the coboundary operator, it carries cocycles to cocycles and
coboundaries to coboundaries. So it induced a homomorphism of cohomology groups

Hp (C;G)
(ϕ∗)p←−−− Hp

(
C′;G

)
.

The assignment
C → Hp (C;G) and φ→ (φ∗)p

satisfies all the functorial properties.
If {C, ε} and {C′, ε′} are augmented chain complexes and if φ : C → C′ is an augmentation preserving

chain map, then the following diagram commutes:

C1 C0 Z

C ′
1 C ′

0 Z

∂0

ϕ1

ϵ

ϕ0

∂′0 ϵ′

In other words, ε′ ◦ φ0 = ε. At the level of dual homomorphisms,

ε̃ = ε̃′ ◦ φ0 = φ̃0 ◦ ε̃′. (4.28)

In this case, φ̃ induces homomorphisms of reduced as well as ordinary cohomology.

Suppose not that φ, ψ : C → C′ are chain maps and D is a chain homotopy between them, so that

∂′p+1Dp +Dp−1∂p = φp − ψp. (4.29)

C ′
p+1

Cp C ′
p

Cp−1

∂′p+1
Dp

∂p

ϕp

ψp

Dp−1

Here Dp : Cp → C ′
p+1 is a group homomorphism, and Cp (C;G) D̃p←−− Cp+1 (C′;G) is the dual homomor-

phism satisfying
D̃pδ

′
p+1 + δpD̃p−1 = φ̃p − ψ̃p. (4.30)

Cp+1(C′;G)

Cp(C;G) Cp(C′;G)

Cp−1(C;G)

D̃p
δ′p+1

D̃p−1

ψ̃p

ϕ̃p

δp

The family of group homomorphisms D̃p : Cp+1 (C′;G) → Cp (C;G) is called a cochain homotopy
between φ̃ and ψ̃.

Given a p-cocycle zp ∈ Zp (C′;G), one has

D̃pδ
′
p+1z

p + δpD̃p−1z
p = φ̃p (z

p)− ψ̃p (zp)

=⇒ φ̃p (z
p)− ψ̃p (zp) = δpD̃p−1z

p. (4.31)
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Since δpD̃p−1z
p ∈ Bp (C;G), (4.31) tells us that φ̃p (zp) and ψ̃p (z

p) lie in the same cohomology class
in Cp (C;G). Therefore,

(φ∗)p {z
p} = (ψ∗)p {z

p} . (4.32)

It shows that (φ∗)p , (ψ
∗)p : H

p (C′;G)→ Hp (C;G) are equal. This observation leads to the following
theorem.

Theorem 4.5
Let C and C′ be chain complexes; let φ : C → C′ be a chain equivalence. Then (φ∗)p : Hp (C) →
Hp (C′) and (φ∗)p : Hp (C′;G) → Hp (C;G) are isomorphisms of homology and cohomology, re-
spectively. If C and C′ are augmented chain complexes, and φ is an augmentation preserving
chain equivalence, then (φ∗)p and (φ∗)p are isomorphisms of reduced homology and cohomology
groups, respectively.

Proof. Since φ : C → C′ is a chain equivalence, there is a chain map ψ : C′ → C such that φ◦ψ is chain
homotopic to idC′ and ψ ◦ φ is chain homotopic to idC . Then φ̃ ◦ ψ = ψ̃ ◦ φ̃ is cochain homotopic to
the identity map on the cochain complex of C′. Similarly, ψ̃ ◦ φ = φ̃ ◦ ψ̃ is cochain homotopic to the
identity map on the cochain complex of C. Cochain homotopic maps induce same isomorphisms at
the cohomology level. Therefore,

(φ∗)p ◦ (ψ
∗)p = ((ψ ◦ φ)∗)p = idHp(C;G),

(ψ∗)p ◦ (φ
∗)p = ((φ ◦ ψ)∗)p = idHp(C′;G) .

Therefore, (φ∗)p : Hp (C′;G)→ (C;G) is an isomorphism. Isomorphism in homology follows from our
earlier discussions. One can use similar arguments for reduced cohomology. ■

Finally, suppose 0 C D E 0
ϕ ψ is a short exact sequence of chain complexes

that splits in each dimension, i.e.

0 Cp Dp Ep 0
ϕp ψp

is a split short exact sequence for each p. This occurs, for example, when Ep is free abelian (see
Corollary 4.1.2 of AT2). Then by Theorem 4.2, the following dual sequence is exact

0 Cp(C;G) Cp(D;G) Cp(E ;G) 0.
ϕ̃p ψ̃p

Then there is a long exact cohomology sequence, by Zig-Zag lemma, as follows:

· · · Hp+1(E ;G)

Hp(C;G) Hp(D;G) Hp(E ;G)

Hp−1(C;G) Hp−1(D;G) · · ·

(δ∗)p+1

(ϕ∗)p

(ψ∗)p

(δ∗)p

(ϕ∗)p−1

where (δ∗)p : Hp (E ;G) ← Hp−1 (C;G) is the coboundary cohomology homomorphism induced by
the coboundary operator δp in the usual manner. This sequence is natural in the sense that if f ≡
(f1, f2, f3) is a homomorphism of short exact sequence of chain complexes,
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0 Cp Dp Ep 0

0 C ′
p D′

p E′
p 0,

ϕp

(f1)p

ψp

(f2)p (f3)p

ϕ′p ψ′
p

(this diagram commutes for each p) then the following diagram commutes at the cohomology level:

· · · Hp(C;G) Hp(D;G) Hp(E ;G) Hp−1(C;G) · · ·

· · · Hp(C′;G) Hp(D′;G) Hp(E ′;G) Hp−1(C′;G) · · ·

(ϕ∗)p (ψ∗)p (δ∗)p

(f∗1 )p

(ϕ′ ∗)p

(f∗2 )p

(ψ′ ∗)p

(f∗3 )p

(δ′ ∗)p

(f∗1 )p−1

§4.4 Eilenberg-Steenrod Axioms
Now we state the cohomology versions of the Eilenberg-Steenrod axioms. Given an admissible class
A of pairs of spaces (X,A) and an abelian group G, a cohomology theory on A consists of the
following:

1. A function defined for each integer p and each pair (X,A) in A, whose values form an abelian
group Hp (X,A;G).

2. A function that assigns to each continuous map h : (X,A) → (Y,B) and each integer p, a
homomorphism

Hp (X,A;G)
(h∗)p←−−− Hp (Y,B;G) .

3. A function that assigns to each pair (X,A) ∈ A and each integer p, a homomorphism

Hp (X,A;G)
(δ∗)p←−−− Hp−1 (A;G) .

(Hp (A;G) is Hp (A,∅;G).)
The following axioms are to be satisfied:

Axiom 1. If (X,A) i−→ (X,A) is the identity map, then Hp (X,A;G)
(i∗)p←−−− Hp (X,A;G) is the identity

map.

Axiom 2. Given (X,A)
h−→ (Y,B)

k−→ (Z,C) continuous,

((k ◦ h)∗)p = (h∗)p ◦ (k
∗)p .

Hp (X,A;G) Hp (Y,B;G) Hp (Z,C;G)
(h∗)p (k∗)p

((k◦h)∗)p=(h∗)p◦(k∗)p

Axiom 3. δ∗ is a natural transformation of functors F and G (from the category of admissible pairs of
topological spaces and continuous maps to the category of abelian groups and group homomorphisms)
defined as follows:

(X,A)
F7−→ Hq (X,A;G) and (X,A)

G7−→ Hq−1 (A;G) .

The morphisms transform as follows: given continuous f : (X,A)→ (Y,B),

f
F7−→ (f∗)q and f

G7−→
((
f
∣∣
A

)∗)
q−1

.

If the components of the natural transformation δ∗ at (X,A) and (Y,B) are denoted by
(
δ∗(X,A)

)
q

and(
δ∗(Y,B)

)
q
, respectively, in dimension q, the following diagram commutes from the naturality of δ∗:
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Hq (X,A;G) Hq−1(A;G)

Hq (Y,B;G) Hq−1(B;G)

(
δ∗
(X,A)

)
q

(f∗)q

(
δ∗
(Y,B)

)
q

((
f
∣∣∣
A

)∗)
q−1

Axiom 4. Given the inclusion of pairs (A,∅)
i
↪−→ (X,∅) and (X,∅)

j
↪−→ (X,A), one has the following

long exact sequence:

· · · Hp(A;G) Hp(X;G) Hp(X,A;G) Hp−1(A;G) · · ·
(i∗)p (j∗)p (δ∗)p

Axiom 5. If h, k : (X,A)→ (Y,B) are homotopic, then

(h∗)p = (k∗)p , ∀ p.

Axiom 6. If U ⊆ X is open and U ⊆ IntA, and if (X \ U,A \ U) is admissible, then the inclusion
(X \ U,A \ U)

j
↪−→ (X,A) induces a cohomology isomorphism

Hp (X \ U,A \ U ;G)
(j∗)p←−−− Hp (X,A;G) .

Axiom 7. If P is a one-point space, then

Hq (P ;G) ∼=

{
0 if q 6= 0,

G if q = 0.

The axiom of compact support has no counterpart in cohomology theory.

§4.5 Singular Cohomology Theory
Now we consider singular cohomology theory and show it satisfies the axioms. The singular co-
homology groups of a topological pair (X,A) with coefficients in the abelian group G are defined
by

Hq (X,A;G) = Hq (S (X,A) ;G) , (4.33)

where S (X,A) is the singular chain complex of (X,A). As usual, we delete A from the notation if
A = ∅, and we delete G if it equals the group of integers. The reduced singular cohomology
groups are defined by

H̃q (X;G) = H̃q (S (X) ;G) , (4.34)

relative to the standard augmentation ε for the augmented singular chain complex {S (X) , ε}.

Given a continuous map h : (X,A) → (Y,B), there is a chain map (h#)p : Sp (X,A) → Sp (Y,B)

(we defined it in 2.3). We customarily denote the dual cochain map by
(
h#
)
p
: Hom (Sp (X,A) ;G)←

Hom(Sp (Y,B) ;G). It takes cocycles to cocycles and coboundaries to coboundaries, and hence it
induces a homomorphism

Hp (X,A;G)
(h∗)p←−−− Hp (Y,B;G) .

The same holds in reduced cohomology if A and B are empty, since (h#)p is augmentation preserving.
Axiom 1 and Axiom 2 (functorial properties) hold even at the cochain level.

Note that in the following short exact sequence,

0 Sp(A) Sp(X) Sp(X,A) 0,
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Sp(X,A) is free abelian, so the sequence splits. Therefore, by Theorem 4.2, the dual sequence

0 Hom (Sp (A) , G) Hom (Sp (X) , G) Hom (Sp (X,A) , G) 0,

is a short exact sequence. Therefore, by Zig-Zag lemma, one has the following long exact sequence:

· · · Hp+1(X,A;G)

Hp(A;G) Hp(X;G) Hp(X,A;G)

Hp−1(A;G) Hp−1(X;G) · · ·

(δ∗)p+1

(δ∗)p

Now, Zig-Zag lemma assigns to a given short exact sequence of complexes, a long exact sequence of their
cohomology groups. This assignment is “natural” as corroborated by Theorem 5.1.1 of AT2. Given
a continuous map h : (X,A) → (Y,B), one has induced homomorphism of long exact cohomology
sequences:

· · · Hp(A;G) Hp(X;G) Hp(X,A;G) Hp−1(A;G) · · ·

· · · Hp(B;G) Hp(Y ;G) Hp(Y,B;G) Hp−1(B;G) · · ·

(
δ∗
(X,A)

)
p

((
h
∣∣∣
A

)∗)
q

(h∗)p (h∗)p

(
δ∗
(Y,B)

)
p

((
h
∣∣∣
A

)∗)
q−1

This diagram commutes.

Let h, k : (X,A)→ (Y,B) be homotopic. We have seen during the course of the proof of Theorem 2.7
that h# and k# are chain homotopic by constructing a chain homotopy between them. Therefore, h#
and k# are cochain homotopic, and hence by (4.32),

(h∗)p = (k∗)p , ∀ p,

verifying Axiom 5.

To compute the cohomology of a one-point space P , recall that the singular chain complex has the
following form: (Theorem 2.3)

· · · S2k(P ) S2k−1(P ) · · · S1(P ) S0(P ) 0

· · · Z Z · · · Z Z 00̄ ∼= 0̄ 0̄

Here, 0̄ is the zero map that maps everything to 0 ∈ Z. Using the fact that Hom(Z, G) ∼= G, we get
the cochain complex:

· · · G G · · · G G 00̄ ∼=
j

0̄ 0̄ i

Here we used the fact from Theorem 4.1 that the dual of an isomorphism is also an isomorphism, and
the dual of the zero map is also the zero map. One can now easily read off the cohomology groups of
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the one-point space P from the sequence.

H0 (P ;G) ∼=
Ker 0̄

im i
= Ker 0̄ = G,

H2k−1 (P ;G) ∼=
Ker j

im 0̄
= 0,

H2k (P ;G) ∼=
Ker 0̄

im j
=
G

G
= 0.

Hence, Axiom 7 holds in singular cohomology.

Finally, we come to the excision property of singular cohomology. Let U ⊆ X be subset such that
U ⊆ IntA. The excision map, which is an inclusion map, is given by

j : (X \ U,A \ U) ↪→ (X,A) .

X

A

U

If we had showed that j# : S (X \ U,A \ U) → S (X,A) is a chain equivalence, then we would imme-
diately obtain a corresponsing cochain equivalence j#. It would then follow by Theorem 4.5 that

(j∗)p : H
p (S (X \ U,A \ U) ;G)← Hp (S (X,A) ;G)

is an isomorphism. But instead of establishing a chain equivalence, we only proved a weaker ersult
establishing only the isomorphism (j∗)p of the homology groups

(j∗)p : Hp (X \ U,A \ U)
∼=−→ Hp (X,A) .

We have to use thiss isomorphism of homology groups to prove the isomorphism of the pertaining
cohomology groups. For this we need a result that we will be stating now, and we shall prove it in the
next section.

Let C and D be free chain complexes (the abelian groups involved are all free); let φ : C →
Dbe a chain map that induces homology isomorphisms in all dimensions. Then φ induces
a cohomology isomorphism in all dimensions, for all coefficient groups G.

We apply the above result to the inclusion map j : (X \ U,A \ U) ↪→ (X,A), with U ⊆ A ⊆ X and
U ⊆ IntA. j# : S (X \ U,A \ U)→ S (X,A) is the underlying chain map that induces an isomorphism
in homology in all dimensions. Furthermore, the chain groups are all free. Therefore, j induces an
isomorphism in cohomology

(j∗)p : H
p (S (X \ U,A \ U) ;G)← Hp (S (X,A) ;G) .

Note that singular cohomology, like singular homology, satisfies an excision property slightly stronger
than that stated in the axiom. One needs to have U ⊆ IntA, but one does not need U to be open, in
order for excision to hold.

§4.6 The Cohomology of Free Chain Complexes
As promised earlier, we are going to prove a couple of theorems now. The first one says that for free
chain complexes C and D, any homomorphism Hp (C) → Hp (D) of homology groups is induces by a
chain map φ : C → D. The second one states that if a chain map φ : C → D induces an isomorphism
in homology, it induces an isomorphism in cohomology as well.
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Definition 4.3. A short exact sequence of abelian groups 0→ A→ B → C → 0, where A and B
are free, is called a free resolution of C. Any abelian group has a free resolution: take B to be
the free abelian group generated by the elements of C, which we denote by C̃, and the surjective
map B → C is taken to be the canonical projection π : C̃ → C defined by

ng 7→


g ∗ g ∗ · · · ∗ g︸ ︷︷ ︸

n-times

if n > 0,

g−1 ∗ g−1 ∗ · · · ∗ g−1︸ ︷︷ ︸
−n-times

if n < 0,

where ∗ is the group operation in C. For free resolution of C, we choose A = Kerπ. Then

0 Ker i C̃ C 0i π

is a short exact sequence. It is called the canonical free resolution of C.

Free resolutions have the following useful property.

Proposition 4.6
In the following diagram

0 A B C 0

0 A′ B′ C ′ 0

ϕ ψ

γ

ϕ′ ψ′

suppose the horizontal sequences are exact, and A andB are free. Then there exist homomorphism
α : A→ A′ and β : B → B′ such that the following diagram commutes:

0 A B C 0

0 A′ B′ C ′ 0

ϕ

α

ψ

β γ

ϕ′ ψ′

Proof. Let us define β : B → B′ first. Choose a basis for B. If bi ∈ B is a basis element, we define
β (bi) to be any element from the set (ψ′)−1 (γ (ψ (bi))). This set is nonempty since ψ′ is surjective.
By this construction, ψ′ (β (bi)) = γ (ψ (bi)) for basis elements b. Now, if we take any b ∈ B, b can be
written as a finite Z-linear combination of the basis elements {bi}i, i.e. b =

∑
j njbj . Then

ψ′ (β (b)) = ψ′

β
∑

j

njbj

 =
∑
j

njψ
′ (β (bj))

=
∑
j

njγ (ψ (bj)) = γ

ψ
∑

j

njbj


= γ (ψ (b)) . (4.35)

Therefore, the right hand square of the following diagram commutes.

0 A B C 0

0 A′ B′ C ′ 0

ϕ

α

ψ

β γ

ϕ′ ψ′
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Now, we choose b ∈ imφ = Kerψ. So ψ (b) = 0. Then by (4.35),

ψ′ (β (b)) = γ (ψ (b)) = 0. (4.36)

So β (b) ∈ Kerψ′ = imφ′. Hence, β takes imφ to imφ′. Now, for a given a ∈ A, we define

α (a) =
(
φ′
)−1

(β (φ (a))) . (4.37)

This is well-defined since φ′ is injective; and φ (a) ∈ imφ, so β (φ (a)) ∈ imφ′. After defining α this
way, we have

φ′ (α (a)) = β (φ (a)) . (4.38)

Therefore, the left hand square in the diagram above commutes. ■

Theorem 4.7
Let C and C′ be free chain complexes. If γp : Hp (C)→ Hp (C′) is a homomorphism defined for all p,
then there is a chain map φ : C → C′ that induces γ. Indeed, if β : Zp → Z ′

p is any homomorphism
between cycle groups inducing γ, then β extends to a chain map φ.

Proof. Let Zp and Bp denote the group of p-cycles and p-boundaries, respectively, in the chain complex
C. Similarly, let Z ′

p and B′
p denote the group of p-cycles and p-boundaries, respectively, in the chain

complex C′. We have the following diagram with horizontal sequences being exact:

0 Bp Zp Hp(C) = Zp

Bp
0

0 B′
p Z ′

p Hp(C′) =
Z′
p

B′
p

0

ip πp

γp

i′p π′
p

Zp and Bp are subgroups of a free abelian group Cp, so they are free abelian as well. Therefore, by
Proposition 4.6, there exist group homomorphisms αp : Bp → B′

p and βp : Zp → Z ′
p such that the

following diagram commutes:

0 Bp Zp Hp(C) = Zp

Bp
0

0 B′
p Z ′

p Hp(C′) =
Z′
p

B′
p

0

ip

αp

πp

βp γp

ip πp

(4.39)

We seek to extend βp to group homomorphisms φp : Cp → C ′
p between the respective chain groups.

For this purpose, consider the following diagram with rows being short exact:

0 Zp Cp Bp−1 0

0 Z ′
p C ′

p B′
p−1 0

jp

βp

∂̃p

ϕp αp−1

j′p ∂̃′p

Here jp : Zp → Cp is the inclusion, and ∂̃p : Cp → Bp−1 is the surjective group homomorphism
restricting the codomain of ∂p to its range Bp.

Cp Bp−1 Zp−1 Cp−1
∂̃p ip−1 jp−1
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∂p = jp−1 ◦ ip−1 ◦ ∂̃p. (4.40)

Now, αp and βp have been constructed before. Since Bp−1 and B′
p−1 are free, the two horizontal

sequences split. Choose subgroups Up and U ′
p of Cp and C ′

p, respectively, such that

Cp = Zp ⊕ Up and C ′
p = Z ′

p ⊕ U ′
p. (4.41)

Now we claim that ∂̃p
∣∣
Up

: Up → Bp−1 is an isomorphism. It’s a restriction of a homomorphism to a
subgroup of the domain, so it’s a homomorphism. To see it’s surjective, take any bp−1 ∈ Bp−1. Since
∂̃p is surjective, there exists cp ∈ Cp such that ∂̃p (cp) = bp−1. Since Cp = Zp⊕Up, cp can be uniquely
written as zp + up for some zp ∈ Zp and up ∈ Up. Now,

∂̃p
∣∣
Up

(up) = ∂̃p (cp − zp) = ∂̃p (cp)− ∂̃p (zp) = bp−1 − 0 = bp−1. (4.42)

Therefore, ∂̃p
∣∣
Up

is surjective. Now, for up ∈ Ker ∂̃p
∣∣
Up
⊆ Up,

0 = ∂̃p
∣∣
Up

(up) = ∂̃p (up) , (4.43)

so up ∈ Ker ∂̃p = Zp. Since Cp = Zp ⊕ Up, Zp ∩ Up is trivial. So up = 0, proving that Ker ∂̃p
∣∣
Up

= 0.
Hence, ∂̃p

∣∣
Up

: Up → Bp−1 is an isomorphism. Similarly, ∂̃′p
∣∣
U ′
p
: U ′

p → B′′
p−1 is also an isomorphism.

Now we define φp : Cp → C ′
p as follows:

φp
∣∣
Zp

= βp and φp
∣∣
Up

=
(
∂̃′p
∣∣
U ′
p

)−1
◦ αp−1 ◦ ∂̃p

∣∣
Up
. (4.44)

In other words, for cp = zp + up ∈ Cp,

φp (cp) = βp (zp) +
(
∂̃′p
∣∣
U ′
p

)−1 [
αp−1

(
∂̃p (up)

)]
. (4.45)

Now, consider the following diagram:

0 Zp Cp Bp−1 0

0 Z ′
p C ′

p B′
p−1 0

jp

βp

∂̃p

ϕp αp−1

j′p ∂̃′p

(4.46)

The first square commutes, because for zp ∈ Zp,

φp (jp (zp)) = φp (zp) = β (zp) = j′p (β (zp)) ,

so φp ◦ jp = j′p ◦ βp. The second square also commutes, because if we take zp + up ∈ Cp,

zp + up
∂̃p7−→ ∂pup

αp−17−−−→ αp−1 (∂pup) ,

zp + up
ϕp7−→ βp (zp) +

(
∂̃′p
∣∣
U ′
p

)−1 [
αp−1

(
∂̃p (up)

)] ∂̃′p7−→ αp−1

(
∂̃p (up)

)
,

so αp−1 ◦ ∂̃p = ∂̃′p ◦ φp.
So, we have define φp : Cp → C ′

p such that the diagram above commutes. Now, consider the
following diagram.

Cp Bp−1 Zp−1 Cp−1

C ′
p B′

p−1 Z ′
p−1 C ′

p−1

∂̃p

ϕp

ip−1

αp−1

jp−1

βp−1 ϕp−1

∂̃′p i′p−1 j′p−1
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The middle square commutes, as it is precisely the first square of (4.39) for p − 1. The left hand
square is the second square of (4.46), and the right hand square is the first square of (4.46) for p− 1.
Therefore, the diagram above commutes. Therefore, we have

φp−1 ◦ jp−1 ◦ ip−1 ◦ ∂̃p = j′p−1 ◦ i′p−1 ◦ ∂̃′p ◦ φp.

In other words,
φp−1 ◦ ∂p = ∂′p ◦ φp. (4.47)

Hence, the family of maps {φp} denoted by φ : C → C′ is a chain map. Now, it only remains to show
that γ is induced by φ, i.e. γp = (φ∗)p. Given a homology class {zp} = zp+Bp ∈ Hp (C), with zp ∈ Zp,

(φ∗)p (zp +Bp) = φp (zp) +B′
p = βp (zp) +B′

p

= π′p (βp (zp)) = γp (πp (zp))

= γp (zp +Bp) , (4.48)

by the commutativity of the second square of (4.39). Therefore, (φ∗)p = γp, i.e. φ is our desired chain
map that induces γ. ■

Remark 4.3. Here we used the fact that any subgroup of a free abelian group is also free abelian.
The proof can be found here. Since abelian groups are Z-modules, we can rephrase the statement
as follows:

Any submodule of a free Z-module is also a free Z-module.

In fact, a general result is true. The result still holds if Z is replaced by a principal ideal domain
R.

Let R be a principal ideal domain. If M is a free R-module and N is a submodule of
R, then N is also a free R-module.

Corollary 4.8
Suppose {C, ε} and {C′, ε′} are free augmented chain complexes. If γp : H̃p (C) → H̃p (C′) is a
group homomorphism defined for all p, then γp is induced by an augmentation preserving chain
map φ : C → C′.

We now prove our basic theorems. We begin by considering a special case.

Lemma 4.9
Let 0 → C ϕ−→ D → E → 0 be a short exact sequence of free chain complexes. If φ induces
homology isomorphisms in all dimensions, i.e. (φ∗)p : Hp (C) → Hp (D) are isomorphisms for all
p, then it induces cohomology isomorphisms as well, denote by (φ∗)p : H

p (C;G)← Hp (D;G).

Proof. Let ψ be the chain map D → E in the given short exact sequence of free chain complexes.
Consider the long exact sequence associated with the given short exact sequence of chain complexes:

· · · Hp(C) Hp(D) Hp(E) Hp−1(C) Hp−1(D) · · ·
(ϕ∗)p (ψ∗)p (∂∗)p (ϕ∗)p−1 (4.49)

Exactness at Hp−1 (C) tells us that

im (∂∗)p = Ker (φ∗)p−1 = 0,
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since (φ∗)p−1 is an isomorphism. Now, exactness at Hp (D) demands that

Ker (ψ∗)p = im (φ∗)p = Hp (D) ,

since (φ∗)p is an isomorphism. Therefore, the image of (ψ∗)p is only 0 ∈ Hp (E). Now, exactness at
Hp (E) tells us that

Ker (∂∗)p = im (ψ∗)p = 0.

But we found earlier that im (∂∗)p = 0. This is possible only when Hp (E) = 0 for all p.
The dual sequence of (4.49) is

· · · Hp+1(E ;G) Hp(C;G) Hp(D;G) Hp(E ;G) · · ·
(δ∗)p+1 (ϕ∗)p (ψ∗)p (4.50)

We shall now prove that Hp (E ;G) = 0 for all p. Let Bp ⊆ Zp ⊆ Ep denote the group of p-boundaries,
the group of p-cycles and the group of p-chains of the complex E , respectively. Consider the following
short exact sequence:

0 Zp Ep Bp−1 0
jp ∂̃p

This sequence splits, as Bp−1 is free. Furthermore, since Hp (E) = 0, Zp = Bp for all p. Therefore, we
can write

Ep = Zp ⊕ Up = Bp ⊕ Up, (4.51)

for some subgroup Up of Ep. So we have the following split short exact sequence:

0 Bp Bp ⊕ Up Bp−1 0
jp ∂̃p (4.52)

While proving Theorem 4.7, we proved that ∂̃p
∣∣
Up

: Up → Bp−1 is an isomorphism. Also ∂̃p maps Bp
to 0. By Proposition 4.3,

Hom(Ep, G) ∼= Hom(Bp, G)⊕Hom(Up, G) .

Now, take the dual of (4.52) and denote the dual of ∂̃p by δ̃p.

0 Hom(Bp, G) Hom(Bp, G)⊕Hom(Up, G) Hom(Bp−1, G) 0
j̃p δ̃p (4.53)

δ̃p takes Hom(Bp−1, G) isomorphically to Hom(Up, G), since δ̃p is the dual of ∂̃p which takes Up
isomorphically to Bp−1 and Bp to 0. (4.52) is split exact, so its dual (4.53) is also exact. A generic
element of im δ̃p is of the form (0, f) with f ∈ Hom(Up, G). By exactness, all such elements are mapped
to the 0-homomorphism in Hom(Bp, G). In other words, j̃p carries Hom(Up, G) to 0 ∈ Hom(Bp, G).
Now consider the following diagram:

Hom(Bp, G) Hom(Bp, G)⊕Hom(Up, G) Hom(Bp−1, G)

Hom(Bp+1, G)⊕Hom(Up+1, G) Hom(Bp−1, G)⊕Hom(Up−1, G)

δ̃p+1

j̃p δ̃p

j̃p−1

Now, δp+1 = δ̃p+1 ◦ j̃p. Since δ̃p+1 maps Hom(Bp, G) isomorphically to Hom(Up+1, G), Ker δ̃p+1 = 0.
Therefore,

Ker δp+1 = j̃−1
p

(
Ker δ̃p+1

)
= j̃−1

p (0) = Hom (Up, G) . (4.54)

Now, δp = δ̃p ◦ j̃p−1. Since j̃p−1 is surjective, im j̃p−1 = Hom(Bp, G). Therefore,

im δp = δ̃p

(
im j̃p−1

)
= δ̃p (Hom (Bp, G)) = Hom (Up, G) . (4.55)
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Ker δp+1 = im δp. Therefore,
Hp (E ;G) = Ker δp+1

im δp
= 0. (4.56)

Since Hp (E ;G) = 0 for all p, from (4.50), we get the following exact sequence

0 Hp(C;G) Hp(D;G) 0
(ϕ∗)p

Exactness of this sequence implies that Hp(C;G)
(ϕ∗)p←−−− Hp(D;G) is an isomorphism. ■

Lemma 4.10
Let C and D be free chain complexes; let φ : C → D be a chain map. Then there is a free chain
complex D′ and injective chain maps i : C → D′ and j : D → D′ such that j induces homology
isomorphisms (j∗)p : Hp (D) → Hp (D′) in all dimensions; and the following diagram commutes
up to a chain homotopy:

C D

D′

ϕ

i
j

i.e. j ◦ φ and i are chain homotopic.

Proof. Let ∂Cp and ∂Dp be boundary operators of the chain complexes C and D, respectively. We define
the chain complex D′ =

{
D′
p, ∂

′
p

}
as follows:

D′
p = Cp ⊕Dp ⊕ Cp−1; (4.57)

∂′p (cp, 0, 0) =
(
∂Cp cp, 0, 0

)
, (4.58)

∂′p (0, dp, 0) =
(
0, ∂Dp dp, 0

)
, (4.59)

∂′p (0, 0, cp−1) =
(
−cp−1, φp−1 (cp−1) ,−∂Cp−1cp−1

)
. (4.60)

Let us now check that ∂′p−1 ◦ ∂′p = 0.(
∂′p−1 ◦ ∂′p

)
(cp, 0, 0) = ∂′p−1

(
∂Cp cp, 0, 0

)
=
(
∂Cp−1

(
∂Cp cp

)
, 0, 0

)
= (0, 0, 0) .(

∂′p−1 ◦ ∂′p
)
(0, dp, 0) = ∂′p−1

(
0, ∂Dp dp, 0

)
=
(
0, ∂Dp−1

(
∂Dp dp

)
, 0
)
= (0, 0, 0) .(

∂′p−1 ◦ ∂′p
)
(0, 0, cp−1) = ∂′p−1

(
−cp−1, φp (cp−1) ,−∂Cp−1cp−1

)
= ∂′p−1 (−cp−1, 0, 0) + ∂′p−1 (0, φp−1 (cp−1) , 0) + ∂′p−1

(
0, 0,−∂Cp−1cp−1

)
=
(
−∂Cp−1cp−1, 0, 0

)
+
(
0, ∂Dp−1φp−1 (cp−1) , 0

)
+ ∂′p−1

(
0, 0,−∂Cp−1cp−1

)
= (0, 0, 0) .

Now,
∂′p−1

(
0, 0,−∂Cp−1cp−1

)
=
(
∂Cp−1cp−1, φp−2

(
−∂Cp−1cp−1

)
, ∂Cp−2

(
∂Cp−1cp−1

))
.

Since φp−2

(
−∂Cp−1cp−1

)
= −∂Dp−1φp−1 (cp−1), all the terms of

(
∂′p−1 ◦ ∂′p

)
(0, 0, cp−1) gets cancelled.

Hence, (
∂′p−1 ◦ ∂′p

)
(0, 0, cp−1) = (0, 0, 0) .

Therefore, ∂′p−1 ◦ ∂′p = 0. So D′ =
{
D′
p, ∂

′
p

}
is a chain complex.

We define the injective chain maps i : C → D′ and j : D → D′ to be just inclusions:

ip : Cp ↪→ D′
p = Cp ⊕Dp ⊕ Cp−1, cp 7→ (cp, 0, 0) ,

jp : Dp ↪→ D′
p = Cp ⊕Dp ⊕ Cp−1, dp 7→ (0, dp, 0) .
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Now we shall prove that j ◦φ and i are chain homotopic. For that purpose, we shall construct a chain
homotopy Fp : Cp → D′

p+1 = Cp+1 ⊕Dp+1 ⊕ Cp defined by

Fp (cp) = (0, 0, cp) . (4.61)

D′
p+1

Cp D′
p

Cp−1

∂′p+1

Fp

∂Cp

jp◦ϕp

ip

Fp−1

For cp ∈ Cp, (
∂′p+1 ◦ Fp

)
(cp) +

(
Fp−1 ◦ ∂Cp

)
(cp) = ∂′p+1 (0, 0, cp) + Fp−1

(
∂Cp cp

)
=
(
−cp, φp (cp) ,−∂Cp cp

)
+
(
0, 0, ∂Cp cp

)
= (−cp, 0, 0) + (0, φp (cp) , 0)

= −ip (cp) + jp (φp (cp))

Therefore,
∂′p+1 ◦ Fp + Fp−1 ◦ ∂Cp = jp ◦ φp − ip. (4.62)

So F is indeed a chain homotopy between chain maps j ◦ φ and i.
Now, it only remains to show that j induces homology isomorphisms in all dimensions. The following

is a short exact sequence of chain complexes:

0 D D′ D′/D 0.
j

By Zig-Zag lemma, this short exact sequence gives rise to a long exact homology sequence:

· · · Hp+1(D′/D) Hp(D) Hp(D′) Hp(D′/D) · · ·
(j∗)p (4.63)

We shall now prove that Hp (D′/D) vanishes for all p. The p-th chain group of D′/D is isomorphic to
Cp ⊕ Cp−1. Each element of the p-th chain group of D′/D is of the form (cp, 0, cp−1) +Dp, which we
can identify with (cp, cp−1) for cp ∈ Cp and cp−1 ∈ Cp−1.

Let ∂′′p be the boundary operator on D′/D. Then

∂′′p (cp, 0) = ∂′′p [(cp, 0, 0) +Dp] = ∂′p (cp, 0, 0) +Dp−1

=
(
∂Cp cp, 0, 0

)
+Dp−1

=
(
∂Cp cp, 0

)
.

∂′′p (0, cp−1) = ∂′′p [(0, 0, cp−1) +Dp] = ∂′p (0, 0, cp−1) +Dp−1

=
(
−cp−1, φp−1 (cp−1) ,−∂Cp−1cp−1

)
+Dp−1

=
(
−cp−1, 0,−∂Cp−1cp−1

)
+Dp−1 =

(
−cp−1,−∂Cp−1cp−1

)
.

Therefore,
∂′′p (cp, cp−1) =

(
∂Cp cp − cp−1,−∂Cp−1cp−1

)
. (4.64)

Let (cp, cp−1) ∈ Zp (D′/D) be a p-cycle. Then ∂′′p (cp, cp−1) = (0, 0) gives us ∂Cp cp = cp−1. Now,

−∂′′p+1 (0, cp) = −
(
−cp,−∂Cp cp

)
=
(
cp, ∂

C
p cp
)
= (cp, cp−1) . (4.65)

Therefore, (cp, cp−1) ∈ Bp (D′/D). Hence, every p-cycle of D′/D bounds. As a result, Hp (D′/D) = 0.
Therefore, we get the following exact sequence from (4.63):
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0 = Hp+1(D′/D) Hp(D) Hp(D′) Hp(D′/D) = 0.
(j∗)p

Exactness of this sequence then implies that (j∗)p is an isomorphism. ■

Theorem 4.11
Let C and D be free chain complexes; let φ : C → D be a chain map that induces homology
isomorphisms in all dimensions. Then φ induces a cohomology isomorphism in all dimensions.

Proof. By Lemma 4.10, there exists a free chain complex D and injective chain maps i : C → D′,
j : D → D′ such that j ◦ φ and i are chain homotopic. We then have the following exact sequence of
free chain complexes:

0 C D′ D′/C 0i (4.66)

0 D D′ D′/D 0
j (4.67)

Lemma 4.10 also says that (j∗)p : Hp (D) → Hp (D′) is a homology isomorphism for all p. By
hypothesis, (φ∗)p : Hp (C)→ Hp (D) is a homology isomorphism for all p. Since j ◦ φ and i are chain
homotopic,

(i∗)p = ((j ◦ φ)∗)p = (j∗)p ◦ (φ∗)p .

So (i∗)p : Hp (C)→ Hp (D′) is a homology isomorphism for all p. Now, if we apply Lemma 4.9 to the
short exact sequence of free chain complexes given by (4.66) and (4.67), we get

(i∗)p : H
p (C;G)← Hp

(
D′;G

)
and (j∗)p : H

p (D;G)← Hp
(
D′;G

)
are cohomology isomorphisms for all p. Since i and j ◦ φ are chain homotopic,

(i∗)p = ((j ◦ φ)∗)p = (φ∗)p ◦ (j
∗)p . (4.68)

Since (i∗)p and (j∗)p are both isomorphisms, it follows from (4.68) that (φ∗)p : Hp (C;G)← Hp (D;G)
is also a cohomology isomorphism for all p. ■

87


	Preface
	Contents
	Singular Homology Theory
	Singular Homology Groups
	Bracket Operation

	Axioms of Singular Homology
	Relative Homology Groups
	Compact Support Axiom
	Chain Homotopy
	Homotopy Equivalence
	Subdivision
	Excision

	CW Complexes
	The Topology of CW Complexes
	Adjunction Space
	The Homology of CW Complexes
	The Homology of Triangulable CW Complexes

	Cohomology Theory
	An Introductory Discussion on Hom Functor
	Cohomology Theory
	Cochain Maps and Cochain Homotopy
	Eilenberg-Steenrod Axioms
	Singular Cohomology Theory
	The Cohomology of Free Chain Complexes


