
Representation Theory (MAT440)

Lecture Notes



In memory of the unsung heroes of the July revolution, whose courage
and sacrifice lit the path of justice and change.



Preface

This series of lecture notes has been prepared for aiding students who took the BRAC University
course Representation Theory (MAT440) in Summer 2024 semester. These notes were typeset
under the supervision of mathematician Dr. Syed Hasibul Hassan Chowdhury. The main goal of
this typeset is to have an organized digital version of the notes, which is easier to share and handle. If
you see any mistakes or typos, please send me an email at atonuroychowdhury@gmail.com

Atonu Roy Chowdhury

References:

• Representation Theory: A First Course, by William Fulton and Joe Harris

• Introduction to Representation Theory, by Pavel Etingof et al.

• Theory of Group Representations and Applications, by ASIM Orhan Barut and Ryszard
Raczka

• The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions,
by Bruce Sagan

• https://public.websites.umich.edu/~gadish/notes/rep/s5.pdf

• https://dec41.user.srcf.net/h/II_L/representation_theory/10

• https://yufeizhao.com/research/youngtab-hcmr.pdf

• https://math.uchicago.edu/~may/REU2013/REUPapers/McNamara.pdf

iii

mailto:atonuroychowdhury@gmail.com
https://public.websites.umich.edu/~gadish/notes/rep/s5.pdf
https://dec41.user.srcf.net/h/II_L/representation_theory/10
https://yufeizhao.com/research/youngtab-hcmr.pdf
https://math.uchicago.edu/~may/REU2013/REUPapers/McNamara.pdf


Contents

Preface iii

1 Representation of Finite Groups 5
1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Linear algebra revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 New representations from old ones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Complete reducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Character Theory 21
2.1 Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Permutation representation and regular representation . . . . . . . . . . . . . . . . . . 24
2.3 An example of S3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4 Projection formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Character Table 42
3.1 Conjugacy classes of symmetric group Sn . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Character table properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Character table of S4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4 Character table of S5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5 Properties of group from character table . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Induced Representation Theory 61
4.1 Induced representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Explicit construction of IndGHW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3 Induction and restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4 Induced class function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.5 Other constructions of IndGHW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Young Tableaux 81
5.1 Young diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Tabloid and permutation module Mλ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3 Specht modules Sλ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4



1 Representation of Finite Groups

§1.1 Definitions

Definition 1.1 (Representation). A representation of a finite group G on a finite dimensional
complex vector space V is a homomorphism ρ : G → GL(V ) of G to the group of invertible
linear transformations on V . We often say that such a homomorphism gives V the structure of a
G-module. The dimension of V is sometimes called the degree of the representation ρ. We also
sometimes call V itself a representation of G.

Definition 1.2. A map φ between two representations V and W of G is a linear map φ : V →W
such that the following diagram commutes for every g ∈ G:

V W

V W

φ

ρ(g) σ(g)

φ

In other words, φ ◦ ρ(g) = σ(g) ◦ φ. Here, ρ : G → GL(V ) and σ : G → GL(W ) are two
group homomorphisms in question. We distinguish such a linear map φ : V → W between two
representations of G from an ordinary linear map between vector spaces by calling it a G-linear
map.

One can then define G-module structure on Kerφ and imφ by restricting the group homomorphisms
ρ : G→ GL(V ) and σ : G→ GL(W ), namely,

ρ1 : G→ GL (Kerφ) and σ1 : G→ GL (imφ) .

Suppose v ∈ Kerφ. Then ρ (g) (v) ∈ Kerφ, because

φ (ρ (g) (v)) = σ (g) (φ (v)) = σ (g) (0) = 0. (1.1)

Also, let w ∈ imφ. Then w = φ(v) for some v ∈ V . Then σ (g) (w) ∈ imφ, because

σ (g)φ(v) = φ (ρ (g) (v)) ∈ imφ. (1.2)

One can also give the quotient vector space W/ imφ = Cokerφ a G-module structure by introducing
the group homomorphism σ2 : G→ GL(Cokerφ). Given w + imφ ∈ Cokerφ and g ∈ G, one defines

σ2 (g) (w + imφ) = σ(g) (w) + imφ ∈ Cokerφ. (1.3)

.
The space of all G-linear maps from V to W is denoted HomG(V,W ). It has a vector space structure.

Suppose φ,ψ ∈ HomG(V,W ) and z ∈ C. Then we have the following commutative squares:

V W

V W

φ

ρ(g) σ(g)

φ

V W

V W

ψ

ρ(g) σ(g)

ψ
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1 Representation of Finite Groups 6

Then one can show that zφ+ ψ is also a G-linear map. Indeed,

σ (g) ◦ (zφ+ ψ) (v) = zσ (g) (φ(v)) + σ (g) (ψ(v))
= zφ (ρ (g) (v)) + ψ (ρ (g) (v))
= (zφ+ ψ) (ρ(g)v) .

This proves the commutativity of the following square:

V W

V W

zφ+ψ

ρ(g) σ(g)

zφ+ψ

Therefore, zφ+ ψ ∈ HomG(V,W ), i.e. HomG(V,W ) is a complex vector space.

Definition 1.3 (Subrepresentation). Suppose one is given a representation V of G with the help
of the group homomorphism ρ : G → GL(V ) and W ⊂ V be a vector subspace. One calls W
invariant under the action of G if for all g ∈ G and all w ∈W , one has ρ(g)w ∈W .

A subrepresentation of a representation V of G is a vector subspace W of V that is invariant
under the action of G. A representation V of G is called irreducible if there is no proper nonzero
invariant subspace W of V , i.e., there is no invariant subsapce W ⊂ V such that W ̸= {0} and
W ̸= V .

§1.2 Linear algebra revisited

Definition 1.4 (Tensor product). The tensor product of two complex vector spaces V and W is
another complex vector space V ⊗W equipped with a bilinear map θ : V ×W → V ⊗W that
is universal: for any bilinear map β : V ×W → U to a complex vector space U , there exists a
unique linear map α : V ⊗W → U such that the following diagram commutes:

V ×W V ⊗W

U

θ

β
∃!α

In other words, β = α ◦ θ.

If we want the ground field C to be mentioned, we write the tensor product by V ⊗C W . If {ei} and
{fj} are bases of V and W , respectively, {ei ⊗ fj} form a basis for V ⊗W . Similarly, one can form the
tensor product V1⊗ · · ·⊗Vn of n vector spaces, with the universal (in the above sense) multilinear map

θ : V1 × · · · × Vn → V1 ⊗ · · · ⊗ Vn
(v1, . . . ,vn) 7→ v1 ⊗ · · · ⊗ vn.

(1.4)

In particular, one can construct
V ⊗n = V ⊗ · · · ⊗ V︸ ︷︷ ︸

n-copies

,

for a fixed complex vector space V . If {ei | i = 1, 2, . . . ,m} is a basis for V , then the set

{ei1 ⊗ ei2 ⊗ · · · ⊗ ein | i1, . . . , in ∈ {1, 2, . . . ,m}} (1.5)

6



1 Representation of Finite Groups 7

is a basis for V ⊗n. It follows that dimV ⊗n = mn.

Let Sn be the symmetric group on the set {1, 2, . . . , n}. It is a finite group of order n! that consists
of all the permutations (i.e. bijections) on the set {1, 2, . . . , n}. An alternating multilinear map
β : V × · · · × V → U satisfies

β
(
vσ(1), . . . ,vσ(n)

)
= sgn σβ (v1, . . . ,vn) , (1.6)

for every σ ∈ Sn.

Definition 1.5 (Exterior power). The exterior power of a complex vector spaces V is another
complex vector space ΛnV equipped with an alternating multilinear map

κ : V × · · · × V → ΛnV
(v1, . . . ,vn) 7→ v1 ∧ · · · ∧ vn,

that is universal: for any alternating multilinear map β : V × · · · × V → U to a complex vector
space U , there exists a unique linear map α : ΛnV → U such that the following diagram commutes:

V × · · · × V ΛnV

U

κ

β
∃!α

In other words, β = α ◦ κ.

If {ei | i = 1, 2, . . . ,m} is a basis for V , then the set

{ei1 ∧ ei2 ∧ · · · ∧ ein | 1 ≤ i1 < i2 < · · · < in ≤ m} (1.7)

is a basis for ΛnV . It follows that dim ΛnV =
(m
n

)
.

A symmetric multilinear map β : V × · · · × V → U satisfies

β
(
vσ(1), . . . ,vσ(n)

)
= β (v1, . . . ,vn) , (1.8)

for every σ ∈ Sn.

Definition 1.6 (Symmetric power). The symmetric power of a complex vector spaces V is another
complex vector space Symn V equipped with an symmetric multilinear map

δ : V × · · · × V → Symn V

(v1, . . . ,vn) 7→ v1 ⊙ · · · ⊙ vn,

that is universal: for any symmetric multilinear map β : V × · · · × V → U to a complex vector
space U , there exists a unique linear map α : Symn V → U such that the following diagram
commutes:

V × · · · × V Symn V

U

δ

β
∃!α

In other words, β = α ◦ δ.

7



1 Representation of Finite Groups 8

If {ei | i = 1, 2, . . . ,m} is a basis for V , then the set

{ei1 ⊙ ei2 ⊙ · · · ⊙ ein | 1 ≤ i1 ≤ i2 ≤ · · · ≤ in ≤ m} (1.9)

is a basis for Symn V . It follows that dim Symn V =
(m+n−1

n

)
.

§1.3 New representations from old ones
If V and W are representations of G, then so are the direct sum V ⊕W and the tensor product V ⊗W .
More explicitly, suppose ρ : G→ GL(V ) and σ : G→ GL(W ) are the relevant group homomorphisms.
Then, one defines ρ⊕ σ : G→ GL(V ⊕W ) by

(ρ⊕ σ)(g)(v⊕w) = ρ(g)v⊕ σ(g)w, (1.10)

for g ∈ G. Similarly, one can define the group homomorphism ρ⊗ σ : G→ GL(V ⊗W ) by

(ρ⊗ σ)(g)(v⊗w) = ρ(g)v⊗ σ(g)w (1.11)

for g ∈ G.

For a representation V of G, the nth tensor power V ⊗n is again a representation of G:

(ρ⊗ ρ⊗ · · · ⊗ ρ)(g)(v1 ⊗ v2 ⊗ · · · ⊗ vn) = ρ(g)v1 ⊗ ρ(g)v2 ⊗ · · · ⊗ ρ(g)vn, (1.12)

for g ∈ G. The exterior power Λn(V ) and the symmetric power Symn(V ) are subrepresentations of
V ⊗n. Given the group homomorphism ρ : G→ GL(V ), we defined the nth tensor power representation
ρ⊗n : G→ GL (V ⊗n) by (1.12). Now, the exterior power representation Λnρ : G→ GL(ΛnV ), being a
subrepresentation of V ⊗n, can be defined as follows:

(Λnρ)(g)(v1 ∧ v2 ∧ · · · ∧ vn) = ρ(g)v1 ∧ ρ(g)v2 ∧ · · · ∧ ρ(g)vn. (1.13)

One can now write down the group homomorphism Symn ρ : G→ GL(Symn V ) associated with the
subrepresentation Symn V of the representation V ⊗n of G:

(Symn ρ)(g)(v1 ⊙ v2 ⊙ · · · ⊙ vn) = ρ(g)v1 ⊙ ρ(g)v2 ⊙ · · · ⊙ ρ(g)vn. (1.14)

Now, let us define ρ∗ : G→ GL(V ∗), given ρ : G→ GL(V ). Suppose {ei}mi=1 and {α̂i}mi=1 are bases of
V and V ∗, respectively. Here, V ∗ = Hom(V,C), the dual vector space of linear functionals on V . Any
linear functional ω̂ ∈ V ∗ can be written as

ω̂ =
m∑
i=1

ωiα̂
i (1.15)

Also, any vector v ∈ V can be written as

v =
m∑
i=1

viei. (1.16)

In a given basis {ei}mi=1 of V and its dual basis {α̂i}mi=1 of V ∗, ω ∈ V ∗ can be coordinated as a column

vector


ω1
ω2
...
ωm

, whereas a vector v ∈ V can be coordinated as


v1

v2

...
vm

. We will simply denote the column

8



1 Representation of Finite Groups 9

vector


ω1
ω2
...
ωm

 by ω̂, and the column vector


v1

v2

...
vm

 by v. We then write the dual pairing

⟨ω̂,v⟩ = ω̂(v) =


ω1
ω2
...
ωm


T 

v1

v2

...
vm

 = ω̂Tv. (1.17)

Now, we want the dual representation V ∗ of V to satisfy

⟨ρ∗g(ω̂), ρ(g)v⟩ = ⟨ω̂,v⟩ (1.18)

for g ∈ G, v ∈ V and ω̂ ∈ V ∗. Now, we claim that ρ∗ : V ∗ → V ∗ defined by

ρ∗ (g) (ω̂) =
[
ρ
(
g−1

)]T
ω̂ (1.19)

satisfies (1.18). Indeed,

⟨ρ∗g(ω̂), ρ(g)v⟩ = ρ∗g(ω̂) (ρ(g)v)

=
[
ρ
(
g−1

)]T
ω̂ [ρ(g)v]

= ω̂
(
ρ
(
g−1

)
ρ(g)v

)
= ω̂ (v) = ⟨ω̂,v⟩ .

Here we used the following definition of transpose: given a linear map f : V →W , its transpose map
fT : W ∗ → V ∗ is defined as fT (ω̂) (v) = ω̂ (f (v)). In light of this, we can also write (1.19) as

ρ∗ (g) (ω̂) (v) =
[
ρ
(
g−1

)]T
ω̂ (v) = ω̂

(
ρ
(
g−1

)
v
)
. (1.20)

Now, if V and W are representations of G, then so is Hom(V,W ). In order to see this, we shall use
the fact that

Hom (V,W ) ∼= V ∗ ⊗W. (1.21)

Note here that both V and W are finite dimensional complex vector spaces. Consider the group
homomorphisms ρ : G → GL(V ) and σ : G → GL(W ). Now, the group homomorphism associated
with dual representation on V ∗ of G is given by ρ∗ : G → GL(V ∗). Note that for ω̂ ∈ V ∗, one has
ω̂ (ei) = ωi, and for v ∈ V , α̂i (v) = vi, where {ei}mi=1 is a basis for V and

{
α̂i
}m
i=1 is the dual basis for

V ∗. Note that α̂i (ej) = δij .
Given φ ∈ Hom(V,W ), define g̃ : Hom(V,W )→ V ∗ ⊗W by

g̃ (φ) =
m∑
i=1

α̂i ⊗ φ (ei) . (1.22)

On the other hand, define f̃ : V ∗ ⊗W → Hom(V,W ) by

f̃ (κ̂⊗w) (v) = κ̂ (v) w, (1.23)

9



1 Representation of Finite Groups 10

where κ̂ ∈ V ∗, v ∈ V , w ∈W . Then observe that f̃ and g̃ are inverses of each other. In fact,

f̃ (g̃ (φ)) (v) = f̃

(
m∑
i=1

α̂i ⊗ φ (ei)
)

(v)

=
m∑
i=1

f̃
(
α̂i ⊗ φ (ei)

)
(v)

=
m∑
i=1

α̂i (v)φ (ei)

=
m∑
i=1

viφ (ei)

= φ

(
m∑
i=1

viei

)
= φ (v) .

Therefore,
f̃ ◦ g̃ = 1Hom(V,W ) . (1.24)

Now, for a given κ̂⊗w ∈ V ∗ ⊗W ,

g̃
(
f̃ (κ̂⊗w)

)
=

m∑
i=1

α̂i ⊗ f̃ (κ̂⊗w) (ei)

=
m∑
i=1

α̂i ⊗ κ̂ (ei) w

=
m∑
i=1

κ̂ (ei) α̂i ⊗w

=
m∑
i=1

κiα̂
i ⊗w

= κ̂⊗w.

Therefore,
g̃ ◦ f̃ = 1V ∗⊗W . (1.25)

(1.24) and (1.25) together imply that Hom (V,W ) ∼= V ∗ ⊗W . We now define the representation of
G on Hom(V,W ) via the representation of G on V ∗ ⊗W . In fact, G acts on V ∗ ⊗W via the map
ρ∗⊗σ : G→ GL (V ∗ ⊗W ), so that (ρ∗ ⊗ σ) g (κ̂⊗w) ∈ V ∗⊗W . Then via f̃ : V ∗⊗W → Hom(V,W ),
one has f̃ ((ρ∗ ⊗ σ) g (κ̂⊗w)) ∈ Hom(V,W ). This is, by definition, the representation of G on
Hom(V,W ). In other words, γ : G→ GL (Hom(V,W )) is defined by

γ (g)
(
f̃ (κ̂⊗w)

)
(v) = f̃ ((ρ∗ ⊗ σ) g (κ̂⊗w)) (v)

= f̃ (ρ∗ (g) κ̂⊗ σ(g)w) (v)
= (ρ∗ (g) κ̂) (v)σ(g)w

= κ̂
(
ρ
(
g−1

)
v
)
σ(g)w

= σ (g)
(
κ̂
(
ρ
(
g−1

)
v
)

w
)
. (1.26)

Now, let us write f̃ (κ̂⊗w) = φ ∈ Hom(V,W ). So we have

φ (v) = f̃ (κ̂⊗w) (v) = κ̂ (v) w. (1.27)

As a result,
φ
(
ρ
(
g−1

)
v
)

= κ̂
(
ρ
(
g−1

)
v
)

w. (1.28)

10



1 Representation of Finite Groups 11

(1.26) and (1.28) together imply that

(γ (g)φ) (v) = σ (g)
(
φ
(
ρ
(
g−1

)
v
))
. (1.29)

(1.29) can be expressed by means of the commutativity of the following diagram:

V W

V W

φ

ρ(g) σ(g)

γ(g)φ

Proposition 1.1
Given representations ρ : G → GL(V ) and σ : G → GL(W ) of a finite group G, f̃ : V ∗ ⊗W →
Hom(V,W ) is an isomorphism of representations.

Proof. We have already shown that f̃ : V ∗⊗W → Hom(V,W ) is an isomorphism of vector spaces. We
now need to show that f̃ is a map between the representations ρ∗ ⊗ σ and γ. For that purpose, we
need to show the commutativity of the following square:

V ∗ ⊗W Hom(V,W )

V ∗ ⊗W Hom(V,W )

f̃

(ρ∗⊗σ)(g) γ(g)

f̃

(1.30)

Given any κ̂ ∈ V ∗ and w ∈W , we need to show that

γ(g) ◦ f̃ (κ̂⊗w) = f̃ ◦ (ρ∗ ⊗ σ) (g) (κ̂⊗w) . (1.31)

Both sides of (1.31) are in Hom(V,W ). In order to show their equality, we need to show the equality
of them evaluated at an arbitrary v ∈ V . So, we are going to show that[

γ(g) ◦ f̃ (κ̂⊗w)
]

(v) =
[
f̃ ◦ (ρ∗ ⊗ σ) (g) (κ̂⊗w)

]
(v) . (1.32)

The RHS of (1.32) is

RHS =
[
f̃ ◦ (ρ∗ ⊗ σ) (g) (κ̂⊗w)

]
(v)

=
[
f̃ (ρ∗(g)κ̂⊗ σ(g)w)

]
(v)

= (ρ∗(g)κ̂) (v) · σ(g) (w) [ · is the scalar multiplication in W ]

= κ̂
(
ρ (g)−1 v

)
· σ(g) (w)

Before computing the LHS of (1.32), let us quickly recall the definition of γ. γ : G→ GL (Hom(V,W ))
is defined so that the following diagram commutes:

V W

V W

φ

ρ(g) σ(g)

γ(g)φ

11



1 Representation of Finite Groups 12

In other words,
γ (g) (φ) = σ (g) ◦ φ ◦ ρ (g)−1 . (1.33)

Now, the LHS of (1.32) is

LHS =
[
γ(g) ◦ f̃ (κ̂⊗w)

]
(v)

=
[
σ (g) ◦

(
f̃ (κ̂⊗w)

)
◦ ρ (g)−1

]
(v)

= σ (g)
(
f̃ (κ̂⊗w)

(
ρ(g)−1v

))
= σ (g)

(
κ̂
(
ρ(g)−1v

)
·w
)

[ · is the scalar multiplication in W ]

= κ̂
(
ρ(g)−1v

)
· σ (g) (w) .

Therefore, LHS = RHS, so (1.32) holds. As a result, (1.30) commutes, and hence, f̃ is a G-linear map,
as required. ■

§1.4 Complete reducibility

Definition 1.7 (Hermitian inner product). If V is a complex vector space, then a Hermitian inner
product is a positive definite sesquilinear map H : V × V → C that satisfies the following:

(i) H(au + bv,w) = aH(u,w) + bH(v,w) and H(w, au + bv) = aH(w,u) + bH(w,v) for all
a, b ∈ C, u,v,w ∈ V .

(ii) H(u,v) = H(v,u), for all u,v ∈ V .

(iii) H(u,u) > 0, for every u ∈ V \ {0} (positive definite).

If W ⊂ V is a vector subspace of a complex vector space with a Hermitian inner product, we define
the following subspace:

W⊥ = {v ∈ V | H(v,w) = 0, for all w ∈W}. (1.34)

If V is a finite dimensional complex vector space, then we can write V = W ⊕W⊥, i.e. W⊥ is the the
orthogonal complement of W . We also say that W⊥ is the complementary subspace of V .

Definition 1.8. A Hermitian inner product H on a finite dimensional representation V of a finite
group G (ρ : G→ GL(V )) is said to be preserved under group action if

H(ρ(g)u, ρ(g)w) = H(u,w) (1.35)

for all g ∈ G and u,w ∈ V . H is then called a G-invariant Hermitian inner product.

If H is a G-invariant Hermitian inner product on a finite dimensional representation V of a finite group
G, then we have

H (ρ (g) v,w) = H
(
ρ (g) v, ρ (g) ρ

(
g−1

)
w
)

= H
(
v, ρ

(
g−1

)
w
)
. (1.36)

Lemma 1.2
If H : V × V → C is a G-invariant Hermitian inner product on a finite dimensional representation
V of a finite group G and W ⊂ V is a subrepresentation, then W⊥ is a G-invariant complement
to W .

12



1 Representation of Finite Groups 13

Proof. Since we are dealing with finite dimensional complex vector spaces, W⊥ is a complement to W .
It, therefore, suffices to show that W⊥ is G-invariant.

Suppose g ∈ G, u ∈ W⊥, and w ∈ W . Let us denote the group homomorphism associated with
the finite dimensional complex representation by ρ : G→ GL(V ). Since the Hermitian inner product
H : V × V → C is G-invariant, one has

H(ρ(g)u,w) = H(u, ρ(g−1)w). (1.37)

Since W is a subrepresentation of V , one must have ρ(g−1)w ∈W for any g ∈ G and w ∈W . Hence,
H(u, ρ(g−1)w) = 0 in (1.37) leads to

H(ρ(g)u,w) = 0 (1.38)
This is true for all w ∈W . Therefore, from the definition of W⊥, one then must have ρ(g)u ∈W⊥ for
any g ∈ G, which then implies that the subspace W⊥ is G-invariant. ■

Proposition 1.3
If V is a complex representation of a finite group G, then there is a G-invariant Hermitian inner
product on V .

Proof. Pick a Hermitian inner product H0 : V × V → C on the finite dimensional complex vector
space V with respect to which a given basis of V is orthonormal, i.e., choose a basis {ei}mi=1 of V
and define H0(ei, ej) = δij and extend H0 to all of V × V sesquilinearly. Given v =

∑m
i=1 v

iei and
w =

∑m
j=1w

jej , we then have

H0(v,w) = H0

 m∑
i=1

viei,
m∑
j=1

wjej

 =
m∑
i=1

viwi. (1.39)

Then define a new Hermitian inner product H1 : V ×V → C by averaging over all of G via representation
ρ : G→ GL(V ):

H1(v,w) = 1
|G|

∑
g∈G

H0(ρ(g)v, ρ(g)w). (1.40)

Using the Hermitian inner product properties of H0, one can verify that H1 is also a Hermitian inner
product on V . Additionally,

H1(ρ(h)v, ρ(h)w) = 1
|G|

∑
g∈G

H0(ρ(g)ρ(h)v, ρ(g)ρ(h)w)

= 1
|G|

∑
g∈G

H0(ρ(gh)v, ρ(gh)w)

= 1
|G|

∑
g′∈G

H0(ρ(g′)v, ρ(g′)w) (where g′ = gh)

= H1 (v,w) . (1.41)

Then (1.41) implies that the Hermitian inner product H1 : V × V → C defined by (1.40) on V is
G-invariant. ■

Corollary 1.4
If W is a subrepresentation of a finite dimensional complex representation V of a finite group G,
then there exists a complementary invariant subspace W⊥ of V so that V = W ⊕W⊥.

Proof. Given that V is a complex representation of a finite group G, there is a G-invariant Hermitian
inner product on V by Proposition 1.3. Now, if W is a subrepresentation of V , then by Lemma 1.2,
the complementary subspace W⊥ is G-invariant, i.e., V = W ⊕W⊥. ■

13



1 Representation of Finite Groups 14

Corollary 1.5 (Maschke’s theorem)
Any complex representation of a finite group can be expressed as a direct sum of irreducible
representations.

Remark 1.1. The property of a representation being expressed as a direct sum of irreducibles is called
complete reducibility (semisimplicity). Maschke’s theorem tells us that any complex representation of
a finite group is semisimple. The additive group R, being an infinite group, doesn’t have this property;
for example, the representation

a 7→
[
1 a
0 1

]
is not semisimple.

The extent to which the decomposition of an arbitrary complex representation into a direct sum of
irreducibles is unique is one of the consequences of the following.

Lemma 1.6 (Schur’s lemma)
Recall that HomG(V,W ) is the vector space of G-linear maps between two finite dimensional
complex representations V and W of the finite group G. Suppose V and W are irreducible complex
representations of G. Then

(a) Every element of HomG(V,W ) is either 0 or an isomorphism.

(b) dimC HomG(V,W ) = 0 or 1.

Proof. (a) Let φ : V →W be a non-zero G-linear map. We have verified in (1.1) that Kerφ ⊆ V is a
G-invariant subspace of V . Since V is irreducible, by hypothesis, one has

Kerφ = {0} , (1.42)

because Kerφ ̸= V , as φ is chosen to be nonzero.
We also know from (1.2) that imφ ⊆W is a G-invariant subspace of W , i.e., Imφ is a subrepresen-
tation of W . Since W is also irreducible, by hypothesis, one must have

imφ = W, (1.43)

because imφ ̸= {0} as φ is chosen to be nonzero.
Now, Kerφ = {0} and imφ = W together imply that φ : V →W is a bijective linear map from V
to W , i.e., φ is an isomorphism between vector spaces.

(b) Suppose φ1, φ2 ∈ HomG(V,W ) with both being nonzero. Then by (a), φ1 and φ2 are both
isomorphisms. Since φ−1

1 : W → V and φ2 : V → W , one can compose them to obtain
φ = φ−1

1 ◦ φ2 ∈ HomG(V, V ).
Now, φ : V → V is a linear operator on the finite dimensional complex vector space V . Also, since
C is algebraically closed, det(φ− λ1V ) = 0 has a solution (here φ− λ1V is considered a square
matrix) which implies that Ker(φ− λ1V ) ̸= {0}, i.e., φ− λ1V is not an isomorphism belonging
to the vector space HomG(V, V ). Then, by (a), one concludes that φ− λ1V must be the 0-map in
HomG(V, V ), i.e.,

φ = φ−1
1 ◦ φ2 = λ1V .

In other words, φ2 = λφ1. Since this is true for any pair of G-linear maps φ1, φ2 ∈ HomG(V,W ),
we have dimC HomG(V,W ) = 1.

■

14



1 Representation of Finite Groups 15

Lemma 1.7
Suppose V1, V2,W are finite dimensional complex representation of the finite group G. Then one
has the following vector space isomorphisms:

HomG (V1 ⊕ V2,W ) ∼= HomG (V1,W )⊕HomG (V2,W ) ,
HomG (W,V1 ⊕ V2) ∼= HomG (W,V1)⊕HomG (W,V2) .

Proof. Following are the required linear maps that can easily be verified to be isomorphisms:

s : HomG (V1,W )⊕HomG (V2,W )→ HomG (V1 ⊕ V2,W ) ,
s (φ1, φ2) (v1,v2) = φ1 (v1) + φ2 (v2) . (1.44)

u : HomG (V1 ⊕ V2,W )→ HomG (V1,W )⊕HomG (V2,W )
u (φ) = (φ ◦ i1, φ ◦ i2) , (1.45)

where i1 : V1 → V1 ⊕ V2 and i2 : V2 → V1 ⊕ V2 are the canoncial inclusions defined by

i1 (v1) = (v1,0V2) and i2 (v2) = (0V1 ,v2) .

Now, one can check that u ◦ s = 1HomG(V1,W )⊕HomG(V2,W ) and s ◦ u = 1HomG(V1⊕V2,W ). Indeed,

(u ◦ s) (φ1, φ2) = u (s (φ1, φ2))
= (s (φ1, φ2) ◦ i1, s (φ1, φ2) ◦ i2) .

Now,

(s (φ1, φ2) ◦ i1) (v1) = s (φ1, φ2) (i1 (v1))
= s (φ1, φ2) (v1,0V2)
= φ1 (v1) + φ2 (0V2)
= φ1 (v1) .

Therefore, s (φ1, φ2) ◦ i1 = φ1. Similarly, s (φ1, φ2) ◦ i2 = φ2. Hence,

(u ◦ s) (φ1, φ2) = (s (φ1, φ2) ◦ i1, s (φ1, φ2) ◦ i2) = (φ1, φ2) .

So we have
u ◦ s = 1HomG(V1,W )⊕HomG(V2,W ) . (1.46)

On the other hand, given φ ∈ HomG (V1 ⊕ V2,W ),

[(s ◦ u) (φ)] (v1,v2) = [s (φ ◦ i1, φ ◦ i2)] (v1,v2)
= (φ ◦ i1) (v1) + (φ ◦ i2) (v2)
= φ (v1,0V2) + φ (0V1 ,v2)
= φ (v1,v2) .

Therefore,
s ◦ u = 1HomG(V1⊕V2,W ) . (1.47)

So s : HomG (V1,W )⊕HomG (V2,W )→ HomG (V1 ⊕ V2,W ) is an isomorphism.

Now consider the following linear maps

t : HomG (W,V1)⊕HomG (W,V2)→ HomG (W,V1 ⊕ V2)
t (φ1, φ2) (w) = (φ1 (w) , φ2 (w)) . (1.48)

15



1 Representation of Finite Groups 16

v : HomG (W,V1 ⊕ V2)→ HomG (W,V1)⊕HomG (W,V2)
v (φ) = (q1 ◦ φ, q2 ◦ φ) , (1.49)

where q1 : V1 ⊕ V2 → V1 and q2 : V1 ⊕ V2 → V2 are the canonical projections, defined by

q1 (v1,v2) = v1 and q2 (v1,v2) = v2.

Now, one can check that v ◦ t = 1HomG(W,V1)⊕HomG(W,V2) and t ◦ v = 1HomG(W,V1⊕V2). Indeed,

(v ◦ t) (φ1, φ2) = v (t (φ1, φ2))
= (q1 ◦ t (φ1, φ2) , q2 ◦ t (φ1, φ2)) .

Now,

(q1 ◦ t (φ1, φ2)) (w) = q1 [t (φ1, φ2) w]
= q1 (φ1 (w) , φ2 (w))
= φ1 (w) .

Therefore, q1 ◦ t (φ1, φ2) = φ1. Similarly, q2 ◦ t (φ1, φ2) = φ2. Hence,

(v ◦ t) (φ1, φ2) = (q1 ◦ t (φ1, φ2) , q2 ◦ t (φ1, φ2)) = (φ1, φ2) .

So we have
v ◦ t = 1HomG(W,V1)⊕HomG(W,V2) . (1.50)

On the other hand, given φ ∈ HomG (W,V1 ⊕ V2), let φ (w) = (v1,v2). Then

[(t ◦ v) (φ)] (w) = t (q1 ◦ φ, q2 ◦ φ) (w)
= ((q1 ◦ φ) (w) , (q2 ◦ φ) (w))
= (v1,v2) = φ (w) .

Therefore,
t ◦ v = 1HomG(W,V1⊕V2) . (1.51)

So t : HomG (W,V1)⊕HomG (W,V2)→ HomG (W,V1 ⊕ V2) is an isomorphism. ■

Now, let G be a finite group and V be a finite dimensional complex representation of G. Since V is
a direct sum of irreducible representations by Maschke’s theorem, up to isomorphism we can group
together the isomorphic representations and say that

V ∼= V r1
1 ⊕ · · · ⊕ V

rm
m (1.52)

Here V ri
i is the shorthand for ri fold direct sum of Vi with itself.

V ri
i = Vi ⊕ Vi ⊕ · · · ⊕ Vi︸ ︷︷ ︸

ri-fold direct sum

. (1.53)

Here, for distinct i and j, Vi and Vj are non-isomorphic, and the integers ri ≥ 1.

Remark 1.2. While grouping together in (1.52), we are grouping isomorphic representations together,
NOT isomorphic vector spaces. V1 and V2 may be isomorphic as vector spaces, but we don’t group
them together unless they are isomorphic representations. In other words, if ρ : G→ GL (V ) is the
said representation of G into V , we group two irreducible subrepresentations W1 and W2 together
while writing (1.52) if there exists a vector space isomorphism ψ : W1 →W2 such that the following
diagram commutes for every g ∈ G:

16



1 Representation of Finite Groups 17

W1 W2

W1 W2

ψ

ρ(g)
∣∣
W1

ρ(g)
∣∣
W2

ψ

When we say Vi and Vj are not isomorphic for i ̸= j in (1.52), we mean that they are not isomorphic
as representations, i.e. there is no isomorphism in HomG (Vi, Vj). In principle, they can be isomorphic
as vector spaces, but that’s not our concern here.

Proposition 1.8
In (1.52), ri = dimC HomG (Vi, V ) = dimC HomG (V, Vi).

Proof. By Lemma 1.7,

HomG (Vi, V ) ∼= HomG

Vi, m⊕
j=1

V
rj

j

 ∼= m⊕
j=1

HomG

(
Vi, V

rj

j

)
. (1.54)

But HomG

(
Vi, V

rj

j

)
is

HomG

(
Vi, V

rj

j

)
= HomG

Vi, Vj ⊕ · · · ⊕ Vj︸ ︷︷ ︸
rj-fold direct sum

 ∼= HomG (Vi, Vj)⊕ · · · ⊕HomG (Vi, Vj)︸ ︷︷ ︸
rj-fold direct sum

. (1.55)

Since Vi’s are pairwise non-isomorphic for j ̸= i, we have HomG (Vi, Vj) = {0}, so that

dimC HomG (Vi, Vj) = 0 and dimC HomG (Vi, Vj) = 1. (1.56)

So we have

dimC HomG (Vi, V ) = dimC

 m⊕
j=1

HomG

(
Vi, V

rj

j

)
=

m∑
j=1

dimC HomG

(
Vi, V

rj

j

)
= dimC HomG (Vi, V ri

i )

= dimC

HomG (Vi, Vi)⊕ · · · ⊕HomG (Vi, Vi)︸ ︷︷ ︸
ri-fold direct sum


= 1 + 1 + · · ·+ 1︸ ︷︷ ︸

ri-fold sum

= ri. (1.57)

Similarly, dimC HomG (V, Vi) = ri. ■

Proposition 1.9
The decomposition (1.52) is unique up to replacement of each Vi by an isomorphic representation.

Proof. Suppose
V ∼= V r1

1 ⊕ · · · ⊕ V
rm
m
∼= W s1

1 ⊕ · · · ⊕W
sn
n (1.58)
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1 Representation of Finite Groups 18

are two decompositions into non-isomorphic irreducible representations of G. By Proposition 1.8, for
i0 ∈ {1, 2, . . . ,m},

ri0 = dimC HomG (Vi0 , V )

= dimC HomG

Vi0 , n⊕
j=1

W
sj

j


= dimC

 n⊕
j=1

HomG

(
Vi0 ,W

sj

j

)
=

n∑
j=1

sj dim HomG (Vi0 ,Wj) . (1.59)

Since ri0 > 0, there must exist some j0 ∈ {1, 2, . . . , n} such that HomG (Vi0 ,Wj0) ̸= {0}, i.e. it is
nontrivial. Then by Schur’s lemma, Wj0

∼= Vi0 . The j0 must also be unique because Wj ’s are pairwise
non-isomorphic. In other words, the only nonvanishing contribution in the sum (1.59) is due to the
unique value j = j0, for which

dimC HomG (Vi0 ,Wj0) = 1 and dimC HomG (Vi0 ,Wj) = 0 for j ̸= j0. (1.60)

Hence, by (1.59) and (1.60), ri0 = sj0 . Thus we have an injection σ : {1, 2, . . . ,m} → {1, 2, . . . , n} such
that Vi0 ∼= Wj0 = Wσ(i0) and ri0 = sj0 = sσ(i0) for each i0.

In a similar manner, interchanging Vi and Wj throughout above, we have an injection τ : {1, 2, . . . , n} →
{1, 2, . . . ,m} such that Wj0

∼= Vτ(j0) and sj0 = rτ(i0) for each j0. The first injection σ implies that
m ≤ n. The latter injection τ gives n ≤ m. Therefore, m = n, and σ and τ are permutations, i.e.
σ ∈ Sn. Hence, (1.52) is unique up to replacement of each Vi0 by an isomorphic representation Wj0 . ■

Corollary 1.10
The irreducible complex representations of a finite abelian group G are all 1-dimensional.

Proof. Let V be a complex irreducible representation of a finite group G and ρ : G→ GL(V ) be the
underlying group homomorphism. Then, for each g ∈ G, the map ρ(g) : V → V is G-linear:

V V

V V

ρ(g)

ρ(h) ρ(h)

ρ(g)

The diagram above is commutative for all h ∈ G for a given g ∈ G. Indeed,

ρ(g)ρ(h) = ρ(gh) = ρ(hg) = ρ(h)ρ(g).

We, therefore, have ρ(g) ∈ HomG(V, V ). By Schur’s lemma, dimC HomG(V, V ) = 1, so ρ(g) = λg 1V
for some λg ∈ C.

Now, choose a non-zero vector v ∈ V and consider the 1-dimensional subspace

⟨v⟩ = Cv ⊂ V,

by taking all complex multiples of the nonzero vector v. Observe that ⟨v⟩ is G-invariant. Indeed,

ρ(g)v = λg 1V v = λgv ∈ ⟨v⟩ ,

i.e. ⟨v⟩ is a G-invariant subspace of V , i.e. a subrepresentation. But V is irreducible by hypothesis.
Hence, ⟨v⟩ = V . In other words, V is 1-dimensional. ■
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1 Representation of Finite Groups 19

Definition 1.9 (Faithful representation). A complex representation V of a finite group G is called
faithful if the homomorphism ρ : G→ GL(V ) is injective.

Corollary 1.11
If G has a faithful complex irreducible representation, then Z(G) is cyclic.

Proof. Let ρ : G→ GL(V ) be the injective group homomorphism associated with a faithful irreducible
complex representation V of a finite group G. Now, let z ∈ Z(G) so that zg = gz for all g ∈ G. Now
consider the map ρ (z) : V → V . Since z commutes with all g ∈ G, the following diagram commutes:

V V

V V

ρ(z)

ρ(g) ρ(g)

ρ(z)

Hence, ρ (z) ∈ HomG(V, V ). By Schur’s lemma, dimC HomG(V, V ) = 1, so ρ(z) = λz 1V for some
λz ∈ C× := C \ {0}.

Now, the map Z (G)→ C× = GL (C) given by z 7→ λz is a representation of the subgroup Z (G) of
G. Moreover, this representation is faithful, because

λz = λz′ =⇒ λz 1V = λz′ 1V

=⇒ ρ(z) = ρ(z′)
=⇒ z = z′,

since ρ is injective. Therefore, the map Z (G)→ C× = GL (C) given by z 7→ λz is injective. So Z (G)
is isomorphic to a finite subgroup of C×. Finite subgroups of the multiplicative group of a field is a
cyclic group. Hence, Z(G) is cyclic. ■

One also knows from elementary group theory that every finite abelian group is isomorphic to a direct
product of cyclic groups. In other words, if G is a finite abelian group, then we can write G as

G = Cn1 × · · · × Cnr , (1.61)

where each Cni is a cyclic group of order ni.

Proposition 1.12
A finite abelian group G has precisely |G|-many irreducible complex representations.

Proof. We write G as a direct product of cyclic groups as follows:

G = ⟨x1⟩ × · · · × ⟨xr⟩ , (1.62)

where |⟨xj⟩| = nj , and xj generates the cyclic group ⟨xj⟩. Suppose ρ : G → C× is an irreducible
representation of the finite abelian group G (which is 1-dimensional by Corollary 1.10). Let

ρ (e1, . . . , ej−1, xj , ej+1, . . . , er) = λj ∈ C×, (1.63)

where ek’s are the identity elements of the cyclic group Cnk
= ⟨xk⟩. Since x

nj

j = ej , and since
ρ : G→ C× is a group homomorphism, one must have

1 = ρ (e1, . . . , er) = ρ
(
e1, . . . , ej−1, x

nj

j , ej+1, . . . , er
)

= λ
nj

j . (1.64)
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Then λ
nj

j = 1 gives us that λj is a nj-th root of unity. Also, observe that

ρ
(
xj11 , . . . , x

jr
r

)
= λj11 · · ·λ

jr
r , (1.65)

for 1 ≤ jk ≤ nk for each k. Thus, the r-tuple (λ1, . . . , λr) completely determines the homomorphism
ρ : G → C×. There are nj many nj-th root of unity, so there are nj many choices for λj . Hence,
there are total n1 · · ·nr many choices for the r-tuple (λ1, . . . , λr). Therefore, there are n1 · · ·nr many
irreducible representations ρ : G→ C×. But

|G| = |⟨x1⟩ × · · · × ⟨xr⟩| =
r∏
j=1
|⟨xj⟩| =

r∏
j=1

nj . (1.66)

Hence, there are |G| many irreducible complex representation of the finite abelian group G. ■

Example 1.1 (Example of finite abelian group representations). (i) Consider the finite abelian group
G = C2 × C2 = ⟨x1⟩ × ⟨x2⟩, with x2

1 = e1 and x2
2 = e2.1

We are concerned with the 2nd roots of unity, namely 1 and −1. There are 4 possible choices
for (λ1, λ2), they are (1, 1) , (1,−1) , (−1, 1) , (−1,−1). Corresponding to these 4 choices, there
are 4 irreducible representations ρ1, ρ2, ρ3, ρ4. The way these 4 irreducible representations map is
illustrates in the following table:

(λ1, λ2) (e1, e2) (x1, e2) (e1, x2) (x1, x2)
ρ1 ≡ (1, 1) 1 1 1 1
ρ2 ≡ (1,−1) 1 1 −1 −1
ρ3 ≡ (−1, 1) 1 −1 1 −1
ρ4 ≡ (−1,−1) 1 −1 −1 1

From this table, we can see that there is no irreducible faithful representation of G.

(ii) Now consider the cyclic group G = C4 = ⟨x⟩. This group has 4 elements: e, x, x2, x3, and x4 = e.
There are 4 roots of unity, namely 1,−1, i,−i. Corresponding to these 4 roots of unity, there are
4 irreducible representations ρ1, ρ2, ρ3, ρ4. The way these 4 irreducible representations map is
illustrates in the following table:

λ e x x2 x3

ρ1 ≡ 1 1 1 1 1
ρ2 ≡ −1 1 −1 1 −1
ρ3 ≡ i 1 i −1 −i
ρ4 ≡ −i 1 −i −1 i

From the table, we can see that ρ3 and ρ4 are faithful.

1This is the Klein four-group. Geometrically, it represents the group of all symmetries of a non-square rectangle.
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2 Character Theory

§2.1 Characters

Definition 2.1. Let V be a finite dimensional complex representation of a finite group G and
ρ : G : GL(V ) be the corresponding group homomorphism. Then the character χρ of the
representation V is the function χρ : G→ C defined by

χρ(g) = Tr ρ(g). (2.1)

The right side of (2.1) is unambiguous. In fact, ρ(g) ∈ GL(V ) is a invertible linear transformation on
the finite dimensional vector space V . In different bases of V , ρ(g) can be represented by different
n× n complex matrices if the dimension of V is n. But Tr ρ(g) will be the same for all these matrices
following from the invariance of trace under conjugation: denote the n × n complex matrix [ρ(g)]B
representing the invertible linear transformation ρ(g) ∈ GL(V ) in the basis B of the finite dimensional
complex vector space V . Also, let [ρ(g)]B′ be the matrix representation of ρ(g) ∈ GL(V ) with respect
to the basis B′ of V . We know from basic linear algebra that there exists an invertible n× n complex
matrix T such that

[ρ(g)]B′ = T−1[ρ(g)]BT. (2.2)

The cyclicity of trace (i.e. Tr (ABC) = Tr (CAB) = Tr (BCA)) then guarantees

Tr[ρ(g)]B′ = Tr[ρ(g)]B. (2.3)

The basis independent complex number given by (2.3) is precisely the right side of (2.1), namely
Tr ρ(g).

Remark 2.1. In general, not every invertible linear map has an eigenbasis, i.e. not every linear
map is diagonalizable. But the situation is much simpler when we are dealing with representations
of finite groups. Since |G| is finite, g|G| = e, for every g ∈ G. Therefore,

ρ(g)|G| = ρ(e) = 1V , (2.4)

i.e. ρ(g) is of finite order. Linear maps that are of finite order are diagonalizable, because of the
following theorem from linear algebra:

A linear map is diagonalizable if and only if its minimal polynomial doesn’t have
repeated roots.

Since ρ(g) satisfies ρ(g)|G| − 1V = 0, it is the zero of the polynomial x|G| − 1. Therefore, the
minimal polynomial of ρ(g) divides x|G|− 1. But the roots of x|G|− 1 are the |G|-th roots of unity.
In particular, the roots of x|G| − 1 are all distinct. Therfore, the minimal polynomial of ρ(g) can’t
have repeated roots. As a result, we can pick a basis of V using eigenvectors of ρ(g). In this basis,
the trace of ρ(g) is the sum of its eigenvalues. So we can write

χρ(g) =
∑

λ eigenvalues of ρ(g)
λ. (2.5)

Furthermore, the roots of the minimal polynomial of ρ(g) are also roots of x|G| − 1, which are the
|G|-th roots of unity. So the eigenvalues of ρ(g) have modulus 1.
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Remark 2.2. Note that ther character χρ : G→ C of the representation ρ : G→ GL(V ) is constant
on the conjugacy classes of G. In other words,

χρ
(
h−1gh

)
= χρ(g) (2.6)

for every h ∈ G. Also,
χρ(e) = Tr ρ(e) = Tr1V = dimV, (2.7)

where e ∈ G is the identity element.

Proposition 2.1
Let V and W be representations of G with ρ : G → GL(V ) and σ : G → GL(W ) being the
respective group homomorphisms. Then

(a) χρ⊕σ = χρ + χσ;

(b) χρ⊗σ = χρ · χσ;

(c) χρ∗(g) = χρ(g) for every g ∈ G;

(d) χΛ2ρ(g) = 1
2

[
(χρ(g))2 − χρ

(
g2)] for every g ∈ G.

Proof. (a) Suppose n = dimV and m = dimW . Recall that ρ ⊕ σ : G → GL (V ⊕W ) is defined as
(ρ⊕ σ) g (v,w) = (ρ(g)v, σ(g)w), for v ∈ V and w ∈ W . Let B1 be a basis for V and B2 be a
basis for W so that B = B1 ∪ B2 is a basis for V ⊕W .
Now, ρ(g) ∈ GL(V ) can be represented by the n× n complex matrix [ρ(g)]B1

, and σ(g) ∈ GL(W )
can be represented by the m×m complex matrix [σ(g)]B2

. Then (ρ⊕ σ) g ∈ GL (V ⊕W ) can be
represented by an (m+ n)× (m+ n) complex matrix

[(ρ⊕ σ) g]B =
[[ρ(g)]B1

0n×m

0m×n [σ(g)]B2

]
. (2.8)

From (2.8), it follows that

χρ⊕σ(g) = Tr [(ρ⊕ σ) g]B = Tr [ρ(g)]B1
+ Tr [σ(g)]B2

= χρ(g) + χσ(g). (2.9)

(b) Recall that (ρ⊗ σ) g (v⊗w) = ρ(g)v ⊗ σ(g)w, for v ∈ V and w ∈ W . Let {v1, . . . ,vn} be an
eigenbasis of V with respect to ρ(g) ∈ GL(V ) and {w1, . . . ,wm} be an eigenbasis of W with respect
to σ(g) ∈ GL(W ). Then

ρ(g)vi = λivi and σ(g)wj = µjwj , (2.10)

for i = 1, . . . , n and j = 1, . . . ,m. Then

(ρ⊗ σ) g (vi ⊗wj) = ρ(g)vi ⊗ σ(g)wj = λivi ⊗ µjwj = λiµj vi ⊗wj . (2.11)

Therefore, vi ⊗wj is an eigenvector of (ρ⊗ σ) g with the eigenvalue λiµj . We, therefore, see that
{vi ⊗wj | i = 1, . . . , n; j = 1, . . . ,m} forms an eigenbasis of V ⊗W . Therefore,

χρ⊗σ(g) =
∑

λ eigenvalues of (ρ⊗σ)g
λ

=
n∑
i=1

m∑
j=1

λiµj

=
n∑
i=1

λi

m∑
j=1

µj

= χρ (g) · χσ (g) . (2.12)
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(c) Recall that ρ∗ : G → GL (V ∗) is defined by (ρ∗ (g) ω̂) (v) = ω̂
(
ρ
(
g−1)v

)
, for ω̂ ∈ V ∗ and v ∈ V .

The relevant eigenvalue equations are ρ(g)vi = λivi.
Let {v1, . . . ,vn} be an eigenbasis of V with respect to ρ(g) ∈ GL(V ), and let

{
α̂1, . . . , α̂n

}
be the

associated dual basis of V ∗. Then(
ρ∗ (g) α̂j

)
(vi) = α̂j

(
ρ
(
g−1

)
vi
)

= α̂j
( 1
λi

vi
)

= 1
λj
α̂j (vi) ,

since α̂j (vi) = δj i. In other words,
ρ∗ (g) α̂j = 1

λj
α̂j . (2.13)

So
{
α̂1, . . . , α̂n

}
is an eigenbasis of V ∗ with respect to ρ∗(g) ∈ GL(V ∗). The eigenvalues are 1

λj
.

By Remark 2.1, |λj | = 1, so 1
λj

= λj . So we have

χρ∗ (g) =
n∑
j=1

λj =
n∑
j=1

λj = χρ(g). (2.14)

(d) Let {v1, . . . ,vn} be an eigenbasis of V with respect to ρ(g) ∈ GL(V ). The relevant eigenvalue
equations are ρ(g)vi = λivi, for i = 1, . . . , n. Then for 1 ≤ i < j ≤ n,

Λ2ρ (g) (vi ∧ vj) = ρ(g)vi ∧ ρ(g)vj = λivi ∧ λivj = λiλj vi ∧ vj . (2.15)

So {vi ∧ vj}1≤i<j≤n forms an eigenbasis of Λ2V with respect to Λ2ρ(g). Therefore,

χΛ2ρ(g) =
∑

1≤i<j≤n
λiλj . (2.16)

Now, the eigenvalues of ρ
(
g2) are λ2

i .

(χρ(g))2 − χρ
(
g2
)

=
(

n∑
i=1

λi

)2

−
n∑
i=1

λ2
i = 2

∑
1≤i<j≤n

λiλj . (2.17)

Therefore,
χΛ2ρ(g) = 1

2
[
(χρ(g))2 − χρ

(
g2
)]
. (2.18)

■

Remark 2.3. One can similarly compute the character of the second symmetric power of a given
representation, namely

χSym2 ρ (g) = 1
2
[
(χρ(g))2 + χρ

(
g2
)]
. (2.19)

Indeed, V ⊗2 ∼= Λ2V ⊕ Sym2 V , and ρ⊗ ρ = Λ2ρ⊕ Sym2 ρ so that we have

χρ⊗ρ = χΛ2ρ + χSym2 ρ. (2.20)

For any g ∈ G, we then compute

χSym2 ρ (g) = χρ⊗ρ (g)− χΛ2ρ (g)
= χρ (g)χρ (g)− χΛ2ρ (g)

= χρ (g)2 − 1
2
[
(χρ(g))2 − χρ

(
g2
)]

= 1
2
[
(χρ(g))2 + χρ

(
g2
)]
. (2.21)
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§2.2 Permutation representation and regular representation
Let X be a finite set and σ : G→ Aut(X) is a group homomorphism from the finite group G to the
premutation group of X. That is, given g ∈ G and x ∈ X, σ(g) : X → X is a bijection, so that
σ(g)x ∈ X. In other words, σ(g) permutes the elements of X.

Now, construct the |X|-dimensional complex vector space V as follows: V is the vector space with
basis {ex | x ∈ X}. Now, define the representation ρ : G→ GL(V ) by

ρ(g)
(∑
x∈X

axex

)
=
∑
x∈X

axeσ(g)x, (2.22)

with ax ∈ C. The representation of G on the complex vector space V constructed above is called the
permutation representation.

Lemma 2.2
If V is the permutation representation associated with the action of a group G on a finite set X,
where ρ : G→ GL(V ) is the corresponding group homomorphism, then χρ(g) is the number of
elements of X fixed by g.

Proof. We need to show that χρ(g) is the number of elements of X fixed by σ(g). Suppose we have
enumerated the elements of X:

X = {x1, x2, . . . , xn} . (2.23)

Then the n-dimensional vector space V has an ordered basis:

B = {ex1 , ex2 , . . . , exn} . (2.24)

Now let’s consider the n× n matrix representation of ρ(g) in the basis B. Suppose [ρ(g)]B = [Aij ]ni,j=1.
We claim that

Aii =
{

1 if σ (xi) = xi,

0 otherwise.
(2.25)

The i-th column of [Aij ]ni,j=1 looks like


A1i
A2i

...
Ani

. It signifies that the coordinate of ρ (g) (exi) in the

aforementioned basis is


A1i
A2i

...
Ani

. In other words,

ρ (g) (exi) =
n∑
j=1

Ajiexj . (2.26)

But ρ (g) (exi) = eσ(g)(xi). So we have

ρ (g) (exi) =
n∑
j=1

Ajiexj = eσ(g)(xi). (2.27)

Since every vector in a vector space can be uniquely written as a linear combination of the basis
vecctors, we can conclude from (2.27) that

Aji =
{

1 if xj = σ(xi),
0 otherwise.

(2.28)
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Hence,

Aii =
{

1 if σ (xi) = xi,

0 otherwise;
(2.29)

and our claim is proved. Therefore,

χρ (g) = Tr ρ(g) = Tr [ρ(g)]B =
n∑
i=1

Aii. (2.30)

We have shown that Aii = 1 if and only if σ(g) fixes xi, and Aii = 0 otherwise. Therefore,
∑n
i=1Aii is

equal to the number of xi’s such that σ(g) fixes xi. So

χρ(g) =
n∑
i=1

Aii = |{x ∈ X | σ(g) fixes x}| . (2.31)

■

There is another important representation called the regular representation of a given finite
group G, which is actually a special case of permutation representation. In this case, X = GSet, the
underlying set of the finite group G, and σ : G→ Aut (GSet) ∼= Sn, where n = |G|. Here Aut (GSet)
is the group of all bijections from the set GSet to itself. Since |G| = n, there is a bijection from G to
{1, 2, . . . , n}. So we can actually identify Aut (GSet) to Sn.

Take V = C[G], the group algebra corresponding to the finite group G. An element x ∈ C[G] is a
complex valued function on the finite set G. C[G] is easily seen to be a complex vector space with
basis {δg | g ∈ G}, where δg : G→ C is defined by

δg (h) =
{

1 if h = g,

0 if h ̸= g.
(2.32)

A generic element f ∈ C[G] can be represented as

α =
∑
g∈G

agδg, (2.33)

with ag ∈ C is the value α takes at g ∈ G, i.e. ag = α(g). We don’t talk about the algebra structure
of C[G] at the moment. All we need here is the vector space structure of C[G]. With these given
data, the regular representation of the finite group G is the associated permutation representation. If
ρ : G→ GL (C[G]) is the representation, then for a given h ∈ G, ρ(h) : C[G]→ C[G] is a linear map,
and ρ (h)

(∑
g∈G agδg

)
is a function from G to C. This is defined as follows: given k ∈ G,

ρ (h)

∑
g∈G

agδg

 (k) =
∑
g∈G

agδσ(h)g (k)

= ag such that σ(h)g = k

= aσ(h−1)k

=
∑
g∈G

agδg
(
σ
(
h−1

)
k
)
. (2.34)

If we denote
∑
g∈G agδg by α, then we can rewrite (2.34) as

(ρ (h)α) (k) = α
(
σ
(
h−1

)
k
)
. (2.35)

For the left-regular representation, we define the homomorphism σ : G→ Aut(G) as

σ (g) (h) = gh. (2.36)
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In this case, (2.35) reads
(ρ (h)α) (k) = α

(
h−1k

)
. (2.37)

In a similar manner, we can also define the right-regular representation, where σ : G→ Aut(G) is
defined as

σ (g) (h) = hg−1. (2.38)

In this case, (2.35) reads
(ρ (h)α) (k) = α (kh) . (2.39)

§2.3 An example of S3

Consider G = S3. It has 6 elements, 1, (1 2), (1 3), (2 3), (1 2 3), (1 3 2). There are 3 conjugacy classes:

{1} , {(1 2), (1 3), (2 3)} , {(1 2 3), (1 3 2)} . (2.40)

Here, G = Aut (X) with X = {1, 2, 3}. Consider V to be the vector space of all complex valued
functions on X. It is isomorphic to C3, and the basis we choose for V is {e1, e2, e3}.

Here ex can be seen as a complex valued function on X = {1, 2, 3}, i.e. ex : X → C, defined by

ex (y) =
{

1 if y = x,

0 if y ̸= x.
(2.41)

So the linear combination
∑
x∈X axex is also seen as a complex valued function on X. Now, (2.22)

reads
ρ (g)

(∑
x∈X

axex

)
=
∑
x∈X

axeσ(g)x, (2.42)

so that for y ∈ X,

ρ (g)
(∑
x∈X

axex

)
(y) =

∑
x∈X

axeσ(g)x (y)

= ax such that σ(g)x = y

= aσ(g−1)y

=
(∑
x∈X

aσ(g−1)xex

)
(y) .

Therefore,

ρ (g)
(∑
x∈X

axex

)
=
∑
x∈X

aσ(g−1)xex. (2.43)

We can identify a complex valued function on X = {1, 2, 3} by the column vector

a1
a2
a3

 ∈ C3, and the

action of g ∈ S3 on this triple is realized as

ρ (g)

a1
a2
a3

 =

aσ(g−1)1
aσ(g−1)2
aσ(g−1)3

 . (2.44)

For g = (1 2 3), g−1 = (1 3 2).

ρ ((1 2 3))

a1
a2
a3

 =

aσ((1 3 2))1
aσ((1 3 2))2
aσ((1 3 2))3

 =

a3
a1
a2

 =

0 0 1
1 0 0
0 1 0


a1
a2
a3

 . (2.45)
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Therefore, χρ ((1 2 3)) = 0. Similarly, for g = (1 2), g−1 = (1 2).

ρ ((1 2))

a1
a2
a3

 =

aσ((1 2))1
aσ((1 2))2
aσ((1 2))3

 =

a2
a1
a3

 =

0 1 0
1 0 0
0 0 1


a1
a2
a3

 . (2.46)

So χρ ((1 2)) = 1. Finally,

ρ (1)

a1
a2
a3

 =

a1
a2
a3

 =

1 0 0
0 1 0
0 0 1


a1
a2
a3

 (2.47)

So χρ (1) = 3.

The permutation representation C3 associated with the group homomorphism ρ : S3 → GL(C3)
that we studied above is not irreducible. If we take the subspace

a1
a2
a3

 ∈ C3 | a1 = a2 = a3

 ,
which is a 1-dimensional subspace of C3, it is invariant under the action of the permutation group as

all the coefficients a1, a2, a3 are the same. This 1-dimensional subspace of C3 is spanned by

1
1
1

. T1he

complementary subspace of this one-dimensional subspace is given by the set

V =


z1
z2
z3

 ∈ C3 | z1 + z2 + z3 = 0

 .
This is a 2-dimensional vector subspace of C3 that is also left invariant under the action of the
permutation group by Corollary 1.4. One can verify that the subrepresentations mentioned above are
irreducible representations of S3. The 2-dimensional irreducible representation of S3 is called the
standard representation of S3.

Let us denote the group homomorphism associated with the standard representation V of S3 by ρV .

Observe that

 1
−1
0

 and

 1
0
−1

 form a basis BV for the 2-dimensional subspace V of C3. Since

ρV (1 2 3)

 1
−1
0

 =

 0
1
−1

 and ρV (1 2 3)

 1
0
−1

 =

−1
1
0

 , (2.48)

one has the matrix representation of ρV (1 2 3) in the above basis as

[ρV ((1 2 3))]BV
=
[
−1 −1
1 0

]
. (2.49)

Similarly,

[ρV ((1 2))]BV
=
[
−1 −1
0 1

]
, and [ρV (1)]BV

=
[
1 0
0 1

]
(2.50)

so that
χρV ((1 2 3)) = −1, χρV ((1 2)) = 0, χρV (1) = 2. (2.51)

Recall that an element of S3 is even or odd if it can be written as a product of an even or odd number
of transpositions. The sign of an element of S3 is 1 if it is even and is −1 if it is odd. For example,
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sgn((1 2 3)) = 1 as (1 2 3) = (1 2)(1 3). Now, the alternating representation σ′ : S3 → GL(C) ∼= C× is
given by

σ′(g)v = sgn(g)v, (2.52)
for g ∈ S3 and v ∈ C. This is indeed a representation as

σ′ (g′) (σ′ (g) v
)

= σ′ (g′) (sgn(g)v) = sgn(g′)sgn(g)v = sgn(g′g)v = σ′(g′g)v.

Explicitly, considering GL(C) ∼= C×,

σ′(1) = 1, σ′((1 2)) = σ′((1 3)) = σ′((2 3)) = −1, σ′((1 2 3)) = σ′((1 3 2)) = 1.

And the character of the alternating representation is given by

χσ′(1) = 1, χσ′((1 2)) = −1, χσ′((1 2 3)) = 1. (2.53)

The alternating representation is a 1-dimensional (irreducible) representation of S3. And there is this
trivial 1-dimensional representation of S3, σ : S3 → GL(C) ∼= C× given by

σ(g) = 1, ∀ g ∈ S3. (2.54)

Then the character is given by

χσ(1) = 1, χσ((1 2)) = 1, χσ((1 2 3)) = 1. (2.55)

Now, take an arbitrary representation W of S3 whose associated homomorphism is given by ρW :
S3 → GL(W ). Now, S3 has an abelian subgroup of order 3, that is generated by a 3-cycle, say (1 2 3).
This finite abelian group is isomorphic to Z3. Let us denote this finite abelian subgroup by A3. Let us
denote by g1 one of the two 3-cycles that generate A3, i.e. A3 = ⟨g1⟩. Then W is also a representation
of A3.

The complex vector space W has an eigenbasis with respect to ρ(g1) ∈ GL(V ). By Remark 2.1, the
eiganvalues are cubic roots of unity, namely 1, ω, ω2. Then we write the respective eigenvalue equations
as

ρ (g1) vi = ωαivi, (2.56)
with {vi}ni=1 being the eigenbasis. Thus the representation W of A3 is decomoposed into one dimensional
complex vector spaces:

W =
n⊕
i=1

Vi,

where Vi = Cvi. This decomposition only refers to 3 elements: g1 = (1 2 3) , g2
1 = (1 3 2) , g3

1 = e of
S3. How does the decomposition (2.3) respond to when the rest of the elements of S3 are considered?
Choose a transposition, say (1 2) of S3 and denote it by g2. Observe that g2 = (1 2) and g1 = (1 2 3)
generate the whole of S3. Indeed, one has g2g1g2 = g2

1, i.e. g1g2 = g2g
2
1, since g2 = g−1

2 . We are trying
to find proper S3-invariant subspace that can’t be further decomposed. Now, for vi ∈W satisfying
(2.56), one has

ρW (g1) (ρW (g2)vi) = ρW (g1g2) vi
= ρW

(
g2g

2
1

)
vi

= ρW (g2) ρW
(
g2

1

)
vi

= ρW (g2)
(
ω2αivi

)
= ω2αi (ρW (g2)vi) . (2.57)

So ρW (g2)vi is an eigenvector of ρW (g1) with eigenvalue ω2αi . To check S3-invariance of a proper
subspace of the complex vector space W , it is sufficient to verify the invariance of the subspace in
question under the action of ρW (g1) and ρW (g2), as g1 and g2 generate S3. Also, let

s =

 ω1
ω2

 and t =

 1
ω
ω2


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with s, t being a basis for the 2-dimensional vector subspace V of C3 that is known as the standard
representation of S3. Recall that the permutation representation ρ : S3 → GL(C3) satisfies

ρ(g1)

 ω1
ω2

 =

ω2

ω
1

 = ω

 ω1
ω2

 ;

ρ(g1)

 1
ω
ω2

 =

ω2

1
ω

 = ω2

 1
ω
ω2

 ;

ρ(g2)

 ω1
ω2

 =

 1
ω
ω2

 ;

ρ(g1)

 1
ω
ω2

 =

 ω1
ω2

 .
Altogether, one has the following:

ρ (g1) s = ωs, ρ (g1) t = ω2t, ρ (g2) s = t, ρ (g2) t = s. (2.58)

Suppose that we start with an eigenvector v of ρW (g1). Then we have the following possibilities:

1. The eigenvalue of ρW (g1) corresponding to the eigenvactor v is ωi, where ωi ̸= 1. Then ω2i ̸= ωi.
In terms of the eigenvalue equations, one has

ρW (g1) v = ωiv and ρW (g1) ρW (g2) v = ω2iρW (g2) v. (2.59)

Since v and ρW (g2) v are eigenvectors of two different eigenvalues, they are linearly independent.
In other words, span {v, ρW (g2) v} =: V ′ is a 2-dimensional vector subspace of W that is invariant
under the action of S3 (as g1 and g2 generate S3).
Furthermore, this 2-dimensional representation V ′ is isomorphic to the standard representation
V of S3. In order to show this isomorphism, we need to prove the commutativity of the following
square for each g ∈ S3:

V V ′

V V ′,

j

ρ(g) ρW (g)

j

where j : V → V ′ is a vector space isomorphism. It suffices to verify the commutativity for g1
and g2 as they generate S3.
Here V = span {s, t} and V ′ = span {v, ρW (g2) v}. Consider the case i = 1 first. Then we define
j (s) = v and j (t) = ρW (g2) v. This is an isomorphism of vector spaces.

(ρW (g2) ◦ j) (c1s + c2t) = c1ρW (g2) (j (s)) + c2ρW (g2) (j (t))
= c1ρW (g2) v + c2ρW (g2) ρW (g2) v
= c1ρW (g2) v + c2v

(j ◦ ρ (g2)) (c1s + c2t) = c1j (ρ (g2) s) + c2j (ρ (g2) t)
= c1j (t) + c2j (s)
= c1ρW (g2) v + c2v.
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(ρW (g1) ◦ j) (c1s + c2t) = c1ρW (g1) (j (s)) + c2ρW (g1) (j (t))
= c1ρW (g1) v + c2ρW (g1) ρW (g2) v
= c1ωv + c2ω

2ρW (g2) v
(j ◦ ρ (g1)) (c1s + c2t) = c1j (ρ (g1) s) + c2j (ρ (g1) t)

= c1j (ωs) + c2j
(
ω2t

)
= c1ωv + c2ω

2ρW (g2) v.

Therefore, the following diagrams commute

V V ′

V V ′,

j

ρ(g2) ρW (g2)

j

V V ′

V V ′.

j

ρ(g1) ρW (g1)

j

So j : V → V ′ is an isomorphism of representations.
Now we are left with the case i = 2. We define j (s) = ρW (g2) v and j (t) = v. This is an
isomorphism of vector spaces.

(ρW (g2) ◦ j) (c1t + c2s) = c1ρW (g2) (j (t)) + c2ρW (g2) (j (s))
= c1ρW (g2) v + c2ρW (g2) ρW (g2) v
= c1ρW (g2) v + c2v

(j ◦ ρ (g2)) (cts + c2s) = c1j (ρ (g2) t) + c2j (ρ (g2) s)
= c1j (s) + c2j (t)
= c1ρW (g2) v + c2v.

(ρW (g1) ◦ j) (c1t + c2s) = c1ρW (g1) (j (t)) + c2ρW (g1) (j (s))
= c1ρW (g1) v + c2ρW (g1) ρW (g2) v
= c1ω

2v + c2ω
4ρW (g2) v

(j ◦ ρ (g1)) (c1t + c2s) = c1j (ρ (g1) t) + c2j (ρ (g1) s)

= c1j
(
ω2t

)
+ c2j (ωs)

= c1ω
2v + c2ωρW (g2) v.

Therefore, the following diagrams commute

V V ′

V V ′,

j

ρ(g2) ρW (g2)

j

V V ′

V V ′.

j

ρ(g1) ρW (g1)

j

So j : V → V ′ is an isomorphism of representations in i = 2 case as well.
Therefore, the 2-dimensional representation V ′ is isomorphic to V for both cases. Since V is
irreducible, so is V ′.

2. Now suppose the eigenvalue of ρW (g1) corresponding to the eigenvector v is 1. By (2.57),

ρW (g1) (ρW (g2) v) = ρW (g2) v. (2.60)

In other words, ρW (g2) v is an eigenvector of ρW (g1) with eigenvalue 1. But v is also an
eigenvector of ρW (g1) with eigenvalue 1.

30



2 Character Theory 31

Case 2(i): If v and ρW (g2) v are linearly dependent, then v is an eigenvector of ρW (g2). Since
g2

2 = e, the eigenvalue of ρW (g2) corresponding to the eigenvector v will be 1 or −1.
If the eigenvalue is 1, then ρW (g1) v = v and ρW (g2) v = v. Since g1 and g2 generate S3,
ρW (g) v = v for every g ∈ S3. So Cv is a 1-dimensional representation of S3 isomorphic to the
trivial representation.
If the eigenvalue is −1, then ρW (g1) v = v and ρW (g2) v = −v. Then the equation ρW (g) v =
(sgn g) v holds for g = g1, g2. Since g1, g2 generate S3, this holds for all g ∈ S3. Therefore, Cv is
a 1-dimensional representation of S3 isomorphic to the alternating representation.
Case 2(ii): Now suppose v and ρW (g2) v are linearly independent. Then v + ρW (g2) v span a
1-dimensional representation of S3 iromosphic to the trivial representation of S3. Indeed,

ρW (g1) (v + ρW (g2) v) = v + ρW (g2) v, ρW (g2) (v + ρW (g2) v) = ρW (g2) v + v. (2.61)

Since g1 and g2 generate S3, ρW (g) (ρW (g2) v + v) = ρW (g2) v + v for every g ∈ S3. There-
fore, span {ρW (g2) v + v} is a 1-dimensional representation of S3 isomosphic to the trivial
representation of S3. On the other hand,

ρW (g1) (v− ρW (g2) v) = v− ρW (g2) v, ρW (g2) (v− ρW (g2) v) = ρW (g2) v− v. (2.62)

The equation ρW (g) (v− ρW (g2) v) = (sgn g) (v− ρW (g2) v) holds for g = g1, g2. Since g1, g2
generate S3, this holds for all g ∈ S3. Therefore, span {v− ρW (g2) v} is a 1-dimensional
representation of S3 isomorphic to the alternating representation of S3.

In conclusion, there are 3 irreducible subrepresentations of W of S3: the 2-dimensional irreducible
representation isomorphic to the standard representation; the 1-dimensional irreducible representation
isomorphic to the trivial representation; the 1-dimensional irreducible representation isomorphic to
the alternating representation. By Maschke’s theorem, W can be expressed as a direct sum of the 3
irreducible representations stated above:

ρW ∼= σ⊗a ⊕
(
σ′)⊗b ⊕ ρ⊗c

V . (2.63)

Here, σ⊗a stands for the a-fold direct sum of the trivial representation σ : S3 → GL(C) with itself;
(σ′)⊗b stands for the b-fold direct sum of the alternating representation σ′ : S3 → GL(C) with itself;
ρ⊗c
V stands for the c-fold direct sum of the standard representation ρV : S3 → GL(V ) with itself. Now,

how do we determine the multiplicities a, b, c?

Suppose v ∈ V is an eigenvector of ρV (g1) ∈ GL(V ) with eigenvalue ω. Then ρV (g1) v = ωv.
Take ρ⊗c

V (g1) ∈ GL (V c). There is a v in each copy of V in V c. There are c-many linearly independent
eigenvectors in W of ρW (g1) with eigenvalue ω, namely

0a×1
0b×1

v
02×1
· · ·

02×1


,



0a×1
0b×1
02×1

v
· · ·

02×1


, . . . ,



0a×1
0b×1
02×1
· · ·

02×1
v


.

Therefore, the number of linearly independent eigenvectors in W of ρW (g1) with eigenvalue ω is equal
to c. Now, ρW (g2) has eigenvalues 1 or −1. It has a+ c eigenvectors of eigenvalue 1, namely

1
0
· · ·
0

0b×1
02c×1


, . . . ,



0
0
· · ·
1

0b×1
02c×1


,



0a×1
0b×1

v + ρV (g2) v
02×1
· · ·

02×1


, . . . ,



0a×1
0b×1
02×1
· · ·

02×1
v + ρV (g2) v


.
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Finally, ρW (g2) has b+ c eigenvectors of eigenvalue −1, namely

0a×1
1
0
· · ·
0

02c×1


, . . . ,



0a×1
0
0
· · ·
1

02c×1


,



0a×1
0b×1

v− ρV (g2) v
02×1
· · ·

02×1


, . . . ,



0a×1
0b×1
02×1
· · ·

02×1
v− ρV (g2) v


.

Hence, the nonnegative integer a+ c in (2.63) is the multiplicity of the eigenvalue 1 of ρW (g2); and
b+ c is the multiplicity of the eigenvalue −1 of ρW (g2).

§2.4 Projection formulae
Recall that if V and W are two finite dimensional complex representations of a finite group G, then
HomG (V,W ) is the vector space of all G-linear maps (sometimes called G-module homomorphisms)
from the finite dimensional complex representation V to the finite dimensional complex representation
W of the finite group G. Now, given any representation ρ : G→ GL(V ), we define

V G = {∈V | ρ (g) v = v for every g ∈ G} . (2.64)

Observe that for a given g0 ∈ G, the automorphism ρ (g0) : V → V is not necessarily a G-module
homomorphism as ρ (g) ◦ ρ (g0) and ρ (g0) ◦ ρ (g) are not necessarily equal for every g ∈ G. If we,
instead, take the average of all the automorphisms ρ (g) ∈ GL(V ), for all g ∈ G, and denote it by φ, i.e.

φ = 1
|G|

∑
g∈G

ρ(g), (2.65)

then φ is a G-module homomorphism. Indeed, for any g′ ∈ G,

ρ
(
g′) ◦ φ = 1

|G|
ρ
(
g′) ∑

g∈G
ρ(g) = 1

|G|
∑
g∈G

ρ
(
g′) ρ(g) = 1

|G|
∑
g∈G

ρ
(
g′g
)

= 1
|G|

∑
g∈G

ρ (g) .

φ ◦ ρ
(
g′) = 1

|G|

∑
g∈G

ρ(g)

 ρ (g′) = 1
|G|

∑
g∈G

ρ(g)ρ
(
g′) = 1

|G|
∑
g∈G

ρ
(
g′) = 1

|G|
∑
g∈G

ρ (g) .

Therefore,
ρ
(
g′) ◦ φ = φ ◦ ρ

(
g′) = φ (2.66)

for every g′ ∈ G, i.e. the following diagram commutes:

V V

V V

φ

ρ(g′) ρ(g′)

φ

Proposition 2.3
The map φ : V → V G is a projection of V onto V G.

Proof. Let us first show that imφ = V G. Suppose v = φ (w). Then for any h ∈ G,

ρ (h) v = [ρ (h) ◦ φ] (w) = φ (w) = v, (2.67)

since we proved ρ (h) ◦ φ = φ in (2.66). So we have ρ (h) v = v for any h ∈ G. Therefore, v ∈ V G, i.e.
imφ ⊆ V G.
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Conversely, suppose v ∈ V G. Then ρ (g) v = v for any g ∈ G. So

φ (v) = 1
|G|

∑
g∈G

ρ(g)v = 1
|G|

∑
g∈G

v = v. (2.68)

So v = φ (v) ∈ imφ, i.e. V G ⊆ imφ. Hence, imφ = V G.
Now, for v ∈ V ,

(φ ◦ φ) (v) = φ (φ (v)) = φ (v) , (2.69)

since φ (v) ∈ V G and we showed earlier that φ (w) = w for w ∈ V G. Therefore, φ : V → V G is a
surjective map satisfying φ ◦ φ = φ. So it is a projection map of V onto V G. ■

Given a finite dimensional complex representation V of the finite group G, we want to calculate the
dimension of the vector space V G. We refer back to the projection map φ : V → V G. One can
decompose V as V = V G ⊕Kerφ. Now, one can form a basis B of V by taking the union of a basis of
V G and a basis of Kerφ. In this chosen basis of V , φ can be expressed as the following block-diagonal
matrix:

[φ]B =
[
1V G

0k×k

]
,

where k = dim Kerφ. From this block-diagonal form, one obtains

dimV G = Trφ = 1
G

∑
g∈G

Tr (ρ (g)) = 1
G

∑
g∈G

χρ (g) . (2.70)

If one denotes dimC V
G = m, then one immediately finds that the nonnegative integer m is precisely the

number of times the trivial (1-dimensional) representation of G appears in the direct sum decomposition
of V . In particular, if V is an irreducible representation other than the trivial representation of G,
then since there is no ptoper G-invariant subspace of V , one must have dimV G = 0. In other words, if
ρ : G→ GL(V ) is an irreducible representation (other than the trivial representation), then∑

g∈G
χρ (g) = 0. (2.71)

Now, given two finite dimensional representations V and W with associated group homomorphisms
ρ : G→ GL(V ) and σ : G→ GL(W ), Hom (V,W ) is also a representation with group homomorphism
γ : G→ GL (Hom (V,W )) defined by

γ (g)ψ = σ (g) ◦ ψ ◦ ρ
(
g−1

)
. (2.72)

In other words, the following diagram commutes:

V W

V W

ψ

σ(g)ρ(g−1)

γ(g)ψ

Now, using the definition (2.64),

Hom (V,W )G = {ψ ∈ Hom (V,W ) | γ (g)ψ = ψ for every g ∈ G} (2.73)

Proposition 2.4
HomG (V,W ) = Hom (V,W )G.
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Proof.

ψ ∈ Hom (V,W )G ⇐⇒ γ (g)ψ = ψ for every g ∈ G

⇐⇒ σ (g) ◦ ψ ◦ ρ
(
g−1

)
= ψ for every g ∈ G

⇐⇒ σ (g) ◦ ψ = ψ ◦ ρ (g) for every g ∈ G
⇐⇒ ψ ∈ HomG (V,W ) ,

because σ (g) ◦ ψ = ψ ◦ ρ (g) is equivalent to the commutativity of the following diagram:

V W

V W

ρ(g)

ψ

σ(g)

ψ

Therefore, Hom (V,W )G = HomG (V,W ). ■

Remark 2.4. Note that in Proposition 2.4, on the right side, Hom (V,W ) is the representation of G
given by the group homomorphism γ : G→ GL (Hom (V,W )) defined by (2.72). On the left hand side
of Proposition 2.4, HomG (V,W ) is the vector space of all G-module homomorphisms from the finite
dimensional complex representation V to the finite dimensional complex representation W .

If V is irreducible and W is reducible with the multiplicity of V in the decomposition of W being m,
i.e. W = V m ⊕ · · ·, then by Proposition 1.8,

m = dimC HomG (V,W ) = dimC Hom (V,W )G . (2.74)

Similarly, if W is irreducible and V is reducible with the multiplicity of W in the decomposition of V
being n, i.e. V = Wn ⊕ · · ·, then by Proposition 1.8,

n = dimC HomG (V,W ) = dimC Hom (V,W )G . (2.75)

When both the representations V and W of the finite group G are irreducibles, then

dimC Hom (V,W )G =
{

1 if V ∼= W as representations;
0 if V ̸∼= W as representations.

(2.76)

In Proposition 1.1, we showed that Hom (V,W ) and V ∗ ⊗W are isomorphic as representations, i.e.
γ ∼= ρ∗ ⊗ σ. Now, using Proposition 2.1, we get

χγ (g) = χρ (g)χσ(g). (2.77)

Now, using (2.70),

dimC Hom (V,W )G = 1
|G|

∑
g∈G

χγ (g) = 1
|G|

∑
g∈G

χρ (g)χσ(g). (2.78)

In the case when both V and W are irreducible representations, with the respective group homomor-
phisms ρ : G→ GL(V ) and σ : G→ GL(W ), then

1
|G|

∑
g∈G

χρ (g)χσ(g) =
{

1 if V ∼= W,

0 if V ̸∼= W.
(2.79)

(Here, the isomorphism is isomorphism of representations.)
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Definition 2.2 (Class functions). A class function on G is a complex valued function f : G→ C
that is constant on the conjugacy classes of G. We will denote the space of all class functions on a
finite group G by Cclass [G].

Character associated with a finite dimensional representation is an example of a class function. Now
we define a Hermitian inner product on Cclass [G] by

(α, β) = 1
|G|

∑
g∈G

α(g)β(g). (2.80)

Then (2.79) translates into the following theorem.

Theorem 2.5
In terms of the inner product (2.80), the characters of the irreducible representations of G are
orthonormal.

Cclass [G] is, in fact, a complex inner product space endowed with the hermitial inner product given by
(2.80). The dimension of Cclass [G] is the number of conjugacy classes of G. Theorem 2.5 tells us that
the irreducible characters are linearly independent, so that the number of irreducible representations is
less than or equal to the number of conjugacy classes. We will soon prove that these two are, indeed,
the same.

Corollary 2.6
Any representation is determined by its character. In other words, if σ1 : G → GL(V ), σ2 :
G→ GL (W ) are two representations of G such that χσ1 = χσ2 , then σ1 and σ2 are isomorphic
representations.

Proof. Suppose ρi : G→ GL(Vi) are all the irreducible representations, for i = 1, . . . , k. We express V
and W as direct sum of irreducible representations:

V =
k⊕
i=1

V ai
i and W =

k⊕
i=1

V bi
i , (2.81)

for ai, bi ∈ Z≥0.

χσ1 =
k∑
i=1

aiχρi and χσ2 =
k∑
i=1

biχρi . (2.82)

Since χσ1 = χσ2 , we have
k∑
i=1

(ai − bi)χρi = 0. (2.83)

Since {χρi}
k
i=1 is a linearly independent set in the space of all class functions, we must have ai − bi = 0

for each i. Therefore, ai = bi for each i, and hence, σ1 and σ2 are isomorphic representations. ■

Corollary 2.7
A representation ρ : G→ GL(V ) is irreducible if and only if (χρ, χρ) = 1.

Proof. We have already proved one direction: if ρ : G → GL(V ) is irreducible, then (χρ, χρ) = 1,
by Theorem 2.5. Conversely, suppose (χρ, χρ) = 1. Suppose ρi : G→ GL(Vi) are all the irreducible
representations, for i = 1, . . . , k. We express V and W as direct sum of irreducible representations:

V =
k⊕
i=1

V ai
i , (2.84)
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for ai ∈ Z≥0. Then

χρ =
k∑
i=1

aiχρi . (2.85)

Now, the sesqui-linearity of inner product along with the orthonormality of irreducible character gives
us

1 = (χρ, χρ)

=

 k∑
i=1

aiχρi ,
k∑
j=1

ajχρj


=

k∑
i,j=1

ai aj
(
χρi , χρj

)

=
k∑

i,j=1
ai aj δij

=
k∑
i=1
|ai|2 . (2.86)

ai are each non-negative integers, and their square-sum is 1. This is only possible when ai0 = 1 for
some i0, and ai = 0 for other i ̸= i0. Therefore, ρ = ρi0 , and hence ρ is irreducible. ■

Corollary 2.8
Let ρi : G → GL(Vi) be an irreducible representation, and ρ : G → GL(V ) be any other
representation. Then the multiplicity ai of Vi in V is given by

ai = (χρ, χρi) = (χρi , χρ) . (2.87)

Proof. Follows trivially from (2.74), (2.75), (2.78). ■

Corollary 2.9
Any irreducible representation Vi appears in the regular representation with multiplicity dimVi.

Proof. Let R = C[G] be the vector space on which the regular representation acts on, and ρ : G →
GL (C [G]) be the associated group homomorphism. As we know that regular representation is a special
case of permutation representation, with the set X being GSet.

ρ (h)

∑
g∈G

agδg

 =
∑
g∈G

agδσ(h)g, (2.88)

where σ(h) : GSet → GSet is a bijection (i.e. permutation), which we define as σ(h)g = hg. Therefore,
the character χρ(h) of the regular representation indicates the number of elements of GSet fixed by
σ (h) (Lemma 2.2).

σ(h)g = g ⇐⇒ hg = g ⇐⇒ h = e. (2.89)

If h = e, then all the elements of GSet are fixed by σ(e). Otherwise, none of the elements are fixed. So

χρ(h) =
{
|G| if h = e,

0 otherwise.
(2.90)
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Let ρi : G→ GL (Vi) be an irreducible representation. Then the number of times Vi appears in the
regular representation R is given by

(χρ, χρi) = 1
|G|

∑
g∈G

χρ(g)χρi(g) = 1
|G|

χρ(e)χρi(e) = 1
|G|
|G| dimVi = dimVi. (2.91)

Therefore, Vi appears in R with multiplicity dimVi. ■

Corollary 2.10
Let ρi : G→ GL (Vi), i = 1, 2, . . . ,m be the irreducible representations of G. Then

m∑
i=1

(dimVi)2 = |G| . (2.92)

Proof. By Corollary 2.9,

C[G] = V dimV1
1 ⊕ V dimV2

2 ⊕ · · · ⊕ V dimVm
m =

m⊕
i=1

V dimVi
i . (2.93)

The dimension of C[G] is |G|. So equating the dimensions in (2.93), we have

|G| =
m∑
i=1

dim
(
V dimVi
i

)
. (2.94)

dim
(
V k
)

= k dimV , so

|G| =
m∑
i=1

dim
(
V dimVi
i

)
=

m∑
i=1

(dimVi) (dimVi) =
m∑
i=1

(dimVi)2 . (2.95)

■

Proposition 2.11
Let α : G → C be any function on G, and V be a complex representation of G with the group
homomorphism ρ : G→ GL(V ). Let

ϕα,V =
∑
g∈G

α(g)ρ(g) : V → V

be a linear map. Then ϕα,V ∈ HomG (V, V ) for all V if and only if α is a class function.

Proof. Suppose α is a class function. To prove that ϕα,V ∈ HomG (V, V ), we need to show that for all
h ∈ G, ϕα,V ◦ ρ(h) = ρ(h) ◦ ϕα,V .

ϕα,V ◦ ρ(h) =
∑
g∈G

α(g)ρ(g)ρ (h) . (2.96)

Write h−1gh = g′ so that g = hg′h−1. Since h is fixed, as g varies in G, g′ also varies in G. Hence,

ϕα,V ◦ ρ(h) =
∑
g′∈G

α
(
hg′h−1

)
ρ
(
hg′h−1

)
ρ (h) . (2.97)

Since α is a class function, α(hg′h−1) = α(g′). So

ϕα,V ◦ ρ(h) =
∑
g′∈G

α
(
g′) ρ (hg′) = ρ (h)

∑
g′∈G

α
(
g′) ρ (g′) = ρ (h) ◦ ϕα,V . (2.98)
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So ϕα,V ∈ HomG (V, V ).

Conversely, assume α is not a class function. Then we shall prove that ϕα,V is not a G-linear map, for
V = C [G], the regular representation. Since α is not a class function, there exists h, k ∈ G such that
α
(
h−1k

)
̸= α

(
kh−1).

Assume for the sake of contradiction that ϕα,V is a G-linear map. Then, ϕα,V ◦ ρ(h) = ρ(h) ◦ ϕα,V .
In other words, ∑

g∈G
α(g)ρ(g)

 ◦ ρh = ρ (h) ◦

∑
g∈G

α(g)ρ(g)

 . (2.99)

We can rewrite it as follows: ∑
g∈G

α(g)ρ(gh) =
∑
g∈G

α(g)ρ(hg). (2.100)

With the change of variable gh→ g′ on LHS and hg → g′ on RHS, we have∑
g′∈G

α
(
g′h−1

)
ρ
(
g′) =

∑
g∈G

α
(
h−1g′

)
ρ
(
g′) . (2.101)

Since these two are equal, they’ll yield the same value when acted on δe ∈ C[G]. Hence,∑
g′∈G

α
(
g′h−1

)
ρ
(
g′) (δe) =

∑
g∈G

α
(
h−1g′

)
ρ
(
g′) (δe)

=⇒
∑
g′∈G

α
(
g′h−1

)
δg′ =

∑
g′∈G

α
(
h−1g′

)
δg′ . (2.102)

Since
{
δg′
}
g′∈G is a basis for C[G], (2.102) gives us that α

(
g′h−1) = α

(
h−1g′) for every g′ ∈ G. But we

know that there exists k ∈ G with α
(
h−1k

)
̸= α

(
kh−1). Thus we arrive at a contradiction! Therefore,

ϕα,V is not a G-linear map, for V = C [G], if α is not a class function. ■

Lemma 2.12
A complex representation ρ : G → GL(V ) is irreducible if and only if its dual representation
ρ∗ : G→ GL (V ∗) is irreducible.

Proof.

ρ is irreducible ⇐⇒ (χρ, χρ) = 1

⇐⇒ 1
|G|

∑
g∈G

χρ(g)χρ(g) = 1

⇐⇒ 1
|G|

∑
g∈G

χρ∗(g)χρ∗(g) = 1

⇐⇒ 1
|G|

∑
g∈G

(χρ∗ , χρ∗) = 1

⇐⇒ ρ∗ is irreducible.

■

Definition 2.3 (Irreducible Characters). The characters of the irreducible representations are called
irreducible characters.
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Theorem 2.13
The set of irreducible characters forms an orthonormal basis of Cclass [G].

Proof. Let α ∈ Cclass [G] and (α, χρ) = 0 for every irreducible representation ρ : G→ GL(V ). We need
to show that α = 0. That would prove that {χρ}ρ spans Cclass [G].

Consider ϕα,V =
∑
g∈G α(g)ρ(g) : V → V . By Proposition 2.11, ϕα,V ∈ HomG (V, V ). Since V is

an irreducible representation, by Schur’s lemma, dim HomG (V, V ) = 1. Since 1V ∈ HomG (V, V ), one
must have ϕα,V = λ1V for some λ ∈ C. Let n = dimV . Taking trace on both sides of ϕα,V = λ1V ,
we have

Trϕα,V = λTr1V =⇒ Tr

∑
g∈G

α(g)ρ(g)

 = λn

=⇒
∑
g∈G

α(g) Tr ρ (g) = λn

=⇒
∑
g∈G

α(g)χρ (g) = λn

=⇒
∑
g∈G

α(g)χρ (g) = λn = λn

=⇒ 1
|G|

∑
g∈G

α(g)χρ∗ (g) = n

|G|
λ

=⇒ (α, χρ∗) = n

|G|
λ

Since ρ is irreducible, so is ρ∗. By hypothesis, (α, χρ) = 0 for every irreducible representation ρ.
Therefore, (α, χρ∗) = 0. n

|G| ≠ 0, so λ = 0. This gives us ϕα,V = 0 for every irreducible representation
ρ : G→ GL(V ), i.e. ∑

g∈G
α(g)ρ(g) = 0. (2.103)

One can, therefore, conclude that for any representation W =
⊕k

i=1 V
ri
i of G, associated with the

group homomorphism σ : G→ GL (W ) = GL
(⊕k

i=1 V
ri
i

)
,

ϕα,W =
∑
g∈G

α (g)σ (g) = 0, (2.104)

i.e. the endomorophism ϕα,W is the zero map. In particular, (2.104) holds for the left-regular
representation C[G] of G. The group homomorphism associated with the left-regular representation is
σ : G→ GL (C[G]). Here, {δg | g ∈ G} is a basis for C[G]. Since ϕα,C[G] = 0, it will give out 0 if acted
upon δe. Hence,

0 =

∑
g∈G

α (g)σ (g)

 (δe) =
∑
g∈G

α (g) δg. (2.105)

{δg | g ∈ G} is a basis for C[G]. Therefore,
∑
g∈G α (g) δg = 0 implies α (g) = 0 for every g ∈ G, i.e.

α : G→ C has to be the 0-function. ■

Note that Cclass [G] has a basis of complex valued functions which are 1 on a given conjugacy class
and 0 otherwise (characteristic functions on conjugacy classes of the group). The number of such
characteristic functions is precisely the total number of conjugacy classes of the group. Hence, the
dimension of the complex vector space Cclass[G] is the number of conjugacy classes of the group G.
By Theorem 2.13, on the other hand, the number of irreducible characters and hence the number of
irreducible representation of G is also equal to the dimension of Cclass[G].

Corollary 2.14
The number of irreducible representations of G is equal to the number of conjugacy class of G.
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Representation ring of G

Take the isomorphism classes of representations of G. Suppose the group homomorphism ρ : G→ GL(V )
defines a representation of G on the finite dimensional vector space V . By the class [ρ], one denotes
the isomorphism classes of all such group homomorphism. We call [ρ] an isomorphism class of
representations of G. Then form the free abelian group generated by these isomorphism classes.
Elements of the resulting abelian group are like m [ρ] + n [σ] + p [τ ], where m,n, p ∈ Z and [ρ] , [σ] , [τ ]
are isomorphism classes of representations of the finite group G.

Now take the quotient group R(G) of the above free abelian group by modding out the subgroup
generated by elements of the form [ρ] + [σ]− [ρ⊕ σ]. For example, in this quotient group R(G) of the
free abelian group, [ρ] + 2 [σ] is the same as [ρ⊕ σ ⊕ σ]. Now, a ring structure can be imposed on
R(G) as follows:

[ρ] · [σ] := [ρ⊗ σ] . (2.106)

One can then extend the product on the whole of R(G) by linearity. For instance, the product of
[ρ] + 2 [σ] and [ρ]− [σ] in R(G) reads as

([ρ] + 2 [σ]) · ([ρ]− [σ]) = [ρ⊗ ρ]− [ρ⊗ σ] + 2 [σ ⊗ ρ]− 2 [σ ⊗ σ] . (2.107)

Now let us revisit the terms that we are familiar with using representation ring of a finite group G.
The character defines a map

χ : R (G)→ Cclass[G]

by χ ([ρ]) = χρ. We have seen that Cclass[G] is a complex inner product space. The set of class
functions Cclass[G] also comes equipped with certain algebraic structures, namely those of a ring: it is
a commutative ring under pointwise addition and multiplication:

(f1 + f2) (g) = f1 (g) + f2 (g) and (f1 · f2) (g) = f1 (g) f2 (g) . (2.108)

The additive identity is the constant function with value 0; and the multiplicative ideneity is the
constant function with value 1. By Proposition 2.1, χ : R (G)→ Cclass[G] is a ring homomorphism.

The multiplicative identity of R(G) is the trivial representation 1C, which is the 1-dimensional trivial
representation of the group G. Indeed, 1C ⊗ ρ and ρ belong to the same isomorphism class in R(G), so
that we have

[1C ] · [ρ] = [ρ] (2.109)

in R(G). Since 1C is the one-dimensional trivial representation of G, χ1C is the constant function that
maps all the group elements to the constant 1 ∈ C, which is precisely the multiplicative identity of
Cclass[G]. One also has

χ ([ρ] + [σ]) = χ ([ρ⊕ σ]) = χρ⊕σ = χρ + χσ = χ ([ρ]) + χ ([σ]) ;
χ ([ρ] · [σ]) = χ ([ρ⊗ σ]) = χρ⊗σ = χρ · χσ = χ ([ρ]) · χ ([σ]) .

Therefore, χ : R (G)→ Cclass[G] is, indeed, a ring homomorphism. However, it is not an isomorphism.
It’s injective, as a representation is uniquely determined by its character (Corollary 2.6). There are
too many elements in the codomain Cclass[G]. Cclass[G] is a complex vector space, while R(G) is a
Z-module. We can form the tensor product R(G)⊗ C which will then be a free C-vector space of all
isomorphism classes of representations of G modulo the C-subspace spanned by elements of the form
[ρ] + [σ]− [ρ⊕ σ]. One then has an isomorphism

χC : R(G)⊗ C→ Cclass[G].

Proposition 2.15
Let V be a finite dimensional complex representation of a finite group G, and ρ : G→ GL(V ) be
the associated group homomorphism. Let ρ =

⊕m
i=1 ρ

⊕ai
i be the canonical decomposition of ρ into

irreducibles ρi : G→ GL (Vi), for i = 1, 2, . . . ,m, so that the representation space decomposes as
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V =
⊕m

i=1 V
ai
i . Then

πi = dimVi
1
|G|

∑
g∈G

χρi (g) ρ(g) ∈ End(V ) (2.110)

is the projection of V onto V ai
i .

Proof. Let us first prove that

pji = dimVi
|G|

∑
g∈G

χρi (g) ρj(g) : Vj → Vj

satisfies pji = δji 1Vj . First observe that pji ∈ HomG (Vj , Vj), since χρi is a class function (by Proposi-
tion 2.11). Now, since 1Vj ∈ HomG (Vj , Vj), and Vj is irreducible, by Schur’s lemma, dim HomG (Vj , Vj) =
1, so that pji = λ1Vj for some λ ∈ C. Taking trace, we have

λ dimVj = Tr pji = dimVi
|G|

∑
g∈G

χρi (g) Tr ρj(g)

= dimVi
|G|

∑
g∈G

χρi (g)χρj (g)

= dimVi
(
χρi , χρj

)
= dimViδ

j
i . (2.111)

Therefore, λ = dimVi
dimVj

δji = δji . As a result,

pji = δji 1Vj . (2.112)

Now, write an element v ∈ V =
⊕m

i=1 V
ai
i as


v1
v2
...

vm

, with vi ∈ V ai
i . Then

πi (v) = dimVi
1
|G|

∑
g∈G

χρi (g)
(

m⊕
i=1

ρ⊕ai
i

)
(g)


v1
v2
...

vm



=



dimVi
1

|G|
∑
g∈G χρi (g)ρ⊕a1

1 (g) v1
...

dimVi
1

|G|
∑
g∈G χρi (g)ρ⊕ai

i (g) vi
...

dimVi
1

|G|
∑
g∈G χρi (g)ρ⊕am

m (g) vm



=



0
...

vi
...
0


.

Therefore, πi (v) = vi, so πi is the projection onto V ai
i . ■
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3 Character Table

The character of a representation of a group G is actually a function on the set of conjugacy classes
of G. In the character table, we list the character values on the conjugacy classes in different rows.
We write the number of elements in each conjugacy class just above the class. By Corollary 2.14, the
number of irreducible representations of G is equal to the number of conjugacy class of G. Therefore,
a character table will have the same number of rows and columns. A typical character table looks as
follows:

#

G g1 g2 · · · gm

ρ1
ρ2
· · ·
ρm

Here, g1, . . . , gm are representatives of the conjugacy classes. Above these group elements, we write
the size of the conjugacy classes. Then we fill out the table by writing out the values of the character
of irreducible representations ρ1, . . . , ρm on each conjugacy classes.

Example 3.1. We have already calculated the irreducible representations of S3. There are 3 conjugacy
classes of S3:

{1} , {(1 2) , (1 3) , (2 3)} , {(1 2 3) , (1 3 2)} .

Likewise, there are 3 irreducible representations: the trivial representation σ : S3 → C× that maps
g ∈ S3 to 1; the sign representation σ′ : S3 → C× that maps g ∈ S3 to sgn g; the standard
representation ρstd : S3 → GL (V ), where V ⊆ C3 is the subapace

V =


z1
z2
z3

 | z1 + z2 + z3 = 0

 .
We have calculated the characters in (2.51).

χρstd((1 2 3)) = −1, χρstd((1 2)) = 0, χρstd(1) = 2. (3.1)

So, the character table of S3 is

# 1 2 3

S3 1 (1 2 3) (1 2)

σ 1 1 1
σ′ 1 1 −1
ρstd 2 −1 0

§3.1 Conjugacy classes of symmetric group Sn

Two group elements x1, x2 ∈ G are conjugate if and only if there exists another group element y ∈ G
such that x1 = yx2y

−1. The group can be divided into classes of conjugate group elements. Indeed,
conjugacy is an equivalence relation, and the equivalence classes (i.e. the classes of conjugate elements)
form a partition of the group.
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3 Character Table 43

For example, take x1 = (1 5 3 6 7 4 2) (8 10) ∈ Sn. Let us represent y ∈ Sn by the follwing array:

y =
(

1 2 3 · · · 10 · · ·
i1 i2 i3 · · · i10 · · ·

)
.

Let x2 = yx1y
−1. Then

x2 (ij) = yx1y
−1 (ij) = yx1 (j) = ix1(j). (3.2)

Since x1 does not change values larger than 10, x2 will not change ij for j > 10. So we can express x2
as the following array:

x2 =
(
i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 · · ·
i5 i1 i6 i2 i3 i7 i4 i10 i9 i8 · · ·

)
.

Therefore,
x2 = (i1 i5 i3 i6 i7 i4 i2) (i8 i10) .

It has the same cycle structure as x1 (it is comprised of a 7-cycle and a 2-cycle). Thus, one verifies
that elements in the same conjugacy class of Sn have the same cycle structure. We, then, have the
following result on the symmetric group Sn:

Theorem 3.1 (a) Every permutation, i.e. an element of Sn can be represented by a product of
disjoint cycles. This decomposition is unique up to an ordering of factors– the product of
disjoint cycles is commutative.

(b) Every permutation may be represented by a product of transpositions. The number of
transpositions in any decomposition of a given g ∈ Sn is invariant mod 2.

Since the cycle lengths themselves are characterized by partition of n and all the elements in the
same conjugacy classes have the same cycle structure, the number of conjugacy classes is precisely the
number of distinct partitions of n. For instance S3 has 3 conjugacy classes, as there are 3 partitions of
3: 3, 2 + 1, 1 + 1 + 1. Also, S4 has 5 conjugacy classes, since there are 5 partitions of 4: 4, 3 + 1, 2 + 2,
2 + 1 + 1, 1 + 1 + 1 + 1.

Because the disjoint cycles commute, we can order them from large to small. The partitions may be
characterized by the set of non-negative integers α = (α1, . . . , αn) such that

n = α1 + 2α2 + 3α3 + · · ·+ nαn. (3.3)

Example 3.2. Elements in the same conjugacy class of Sn have the same cycle structure. If an
element of Sn is given by the cycle structure α = (α1, . . . , αn) such that n = α1 +2α2 +3α3 + · · ·+nαn,
then the element is written as a product of αi i-cycles, for i = 1, 2, . . . , n. Then the number of elements
in the conjugacy class of Sn containing this element is

hα = n!∏n
j=1 αj !jαj

. (3.4)

Indeed, there are n!∏n

j=1 j!
αj many ways to divide n numbers into α1-many subsets of size 1, α2-many

subsets of size 2, . . ., αn-many subsets of size n. The ordering of the subsets of same size doesn’t really
matter, so we need to divide by

∏n
j=1 αj !. Then each of the subsets of size j gives us (j − 1)! many

different j-cycles. So we need to further multiply it by
∏n
j=1(j − 1)!αj . Finally, the result we get is

n!∏n
j=1 j!αj

1∏n
j=1 αj !

n∏
j=1

(j − 1)!αj = n!∏n
j=1 αj !jαj

.

Consider S4. For n = 4, then the possible candidates for the quadruple α = (α1, α2, α3, α4) are

(4, 0, 0, 0) , (2, 1, 0, 0) , (1, 0, 1, 0) , (0, 2, 0, 0) , (0, 0, 0, 1) .
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Cycle Structure
α = (α1, α2, α3, α4)

Relevant partition
of n = 4

number of elements
in conjugacy class

(4, 0, 0, 0) 1 + 1 + 1 + 1 4!
4!·14 = 1

(1, 0, 1, 0) 3 + 1 4!
1!·11·1!·3 = 8

(2, 1, 0, 0) 2 + 1 + 1 4!
2!·12·1!·21 = 6

(0, 2, 0, 0) 2 + 2 4!
2!·22 = 3

(0, 0, 0, 1) 4 4!
1!·41 = 6

Theorem 3.2
The order of a conjugacy class divides the order of the group G.

Proof. We define a subgroup Ux, called the centralizer of x ∈ G:

Ux =
{
y ∈ G | yxy−1 = x

}
. (3.5)

Now observe that, two elements uxu−1 and vxv−1 are identical if and only if u and v belong to the
same left coset of Ux. Indeed,

uxu−1 = vxv−1 ⇐⇒ x =
(
u−1v

)
x
(
v−1u

)
=
(
u−1v

)
x
(
u−1v

)−1

⇐⇒ u−1v ∈ Ux ⇐⇒ v ∈ uUx.

Hence, if two elements uxu−1 and vxv−1 that are conjugate to x are distinct, then u and v must belong
to distinct cosets of Ux and vice versa. Therefore, the number of distinct elements that are conjugate
to x is precisely the number of left cosets of the subgroup Ux. This is the index of the subgroup Ux,
which is |G|

|Ux| . Clearly, this number divides |G|. ■

§3.2 Character table properties
Before we compute the character table of some interesting groups, we need some results about the
character table. Theorem 2.5 says that the rows of the character table are orthonormal. Similarly, the
columns are also orthogonal, which is illustrated in the following result.

Theorem 3.3
If g, h ∈ G, then

m∑
i=1

χi (g)χi (h) =


|G|
c(g) if g is conjugate to h,
0 otherwise;

(3.6)

where m is the number of irreducible representations of G, and c(g) is the number of group
elements that belong to the conjugacy class containing g.

Proof. By Corollary 2.14, the number of irreducible representations is the same as the number of
conjugacy classes of the group G. This means that the character table T = [χi (cj)] is a square matrix.
Hence, there will be m conjugacy classes in this case. We denote a representative of the j-th conjugacy
class by gj . The size of the j-th conjugacy class is then c (gj). The row orthonormality condition
(Theorem 2.5) gives us that

(χi, χj) = 1
|G|

∑
g∈G

χi (g)χj (g) = δij

=⇒ 1
|G|

∑
g∈G

c (gk)χi (gk)χj (gk) = δij .
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In the matrix form, this equation translates to

T


c(g1)
|G| 0 · · · 0
0 c(g2)

|G| · · · 0
...

... . . . ...
0 0 · · · c(gm)

|G|

T † = Im×m. (3.7)

In other words, TDT † = I, where D is the diagonal matrix in the middle. Therefore, T †T = D−1. In
the component form, this gives us(

T †T
)
ij

=
(
D−1

)
ij

=⇒
m∑
k=1

T †
ikTkj =

(
D−1

)
ij

=⇒
m∑
k=1

T kiTkj =
(
D−1

)
ij

=⇒
m∑
k=1

χk (gi)χk (gj) =


|G|
c(gj) if i = j,

0 otherwise.

Therefore, we have the desired result
m∑
i=1

χi (g)χi (h) =


|G|
c(g) if g is conjugate to h,
0 otherwise.

(3.8)

■

Remark 3.1. By Theorem 3.2, the index of Ug (the centralizer of g) in G is the order c (g) of the
conjugacy class containing g, which is |G|

|Ug | . Therefore,

|Ug| =
|G|
c (g) . (3.9)

Therefore, when g, h are conjugate to each other,
m∑
i=1

χi (g)χi (h) = |Ug| . (3.10)

Remark 3.2. Theorem 2.5 and Theorem 3.3 will help us fill in the missing rows or columns of character
table without explicitly computing the representations.

Lemma 3.4
Let σ : G → GL(V ) be an irreducible representation of the finite group G. If ρ : G → C× is a
1-dimensional representation of G, then σ ⊗ ρ is also an irreducible representation of G.

Proof. Since ρ is a 1-dimensional representation, ρ (g) ∈ C× is some root of unity. So |χρ (g)|2 = 1.

(χσ⊗ρ, χσ⊗ρ) = 1
|G|

∑
g∈G

χσ⊗ρ (g)χσ⊗ρ (g)

= 1
|G|

∑
g∈G

χσ (g)χρ(g)χσ (g)χρ(g)

= 1
|G|

∑
g∈G

χσ (g)χσ (g)χρ(g)χρ(g)

= 1
|G|

∑
g∈G

χσ (g)χσ (g) = 1.

So σ ⊗ ρ is also an irreducible representation by Corollary 2.7. ■
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Lemma 3.5
Let ρ : G→ GL(V ) be a representation of G. If χρ (g) = χρ (e), then ρ(g) = ρ(e).

Proof. Let λ1, . . . , λn be the eigenvalues of ρ(g). Since ρ (g)|G| = ρ
(
g|G|

)
= ρ(1) = 1V , we have

λ
|G|
j = 1 for each j, i.e. each λj is some root of unity. In particular, |λj | = 1. Now,

n = |χρ(g)| =

∣∣∣∣∣∣
n∑
j=1

λj

∣∣∣∣∣∣ ≤
n∑
j=1
|λj | = n. (3.11)

The equality case of triangle inequality occurs when all the summands have the same argument. Since
all λj ’s have the same modulus as well, all λj ’s are equal; i.e. λ1 = λ2 = · · · = λn =: λ.

n = χρ(g) = Tr [ρ (g)] =
n∑
j=1

λj = nλ. (3.12)

So λ = 1. Now, ρ(g) is diagonalizable, with all the eigenvalues being 1. Therefore, ρ(g) = 1V = ρ(e). ■

Theorem 3.6
If V is a faithful representation of G, i.e., ρ : G → GL(V ) is injective, then any irreducible
representation of G is contained in some tensor power V ⊗n of V .

Proof. If χρ (g) = χρ (e), then ρ (g) = ρ (e) (by Lemma 3.5). But in this case, ρ is a faithful
representation. So, there does not exist any g ∈ G such that χρ (g) = χρ (e).

Let σ : G→ GL (W ) be an irreducible representation of G.

W is contained in V ⊗n as a direct summand ⇐⇒
(
χσ, χρ⊗n

)
∈ Z>0.

But
(
χσ, χρ⊗n

)
is a non-negative integer, so it suffices to prove that this inner product is nonzero.

Consider
an =

(
χσ, χρ⊗n

)
=
(
χσ, χ

n
ρ

)
= 1
|G|

∑
g∈G

χσ (g)χρ (g)n . (3.13)

Assume for the sake of contradiction that an = 0 for every n. Then the formal power series
∑∞
n=0 ant

n

is identically 0.

0 =
∞∑
n=0

ant
n

= 1
|G|

∞∑
n=0

∑
g∈G

χσ (g)χρ (g)n tn

= 1
|G|

∞∑
n=0

∑
C

|C| χσ (gC)χρ (gC)n tn, (3.14)

where the sum runs over all the conjugacy classes C of G, gC is a representative of C. Since the C-sum
is a finite sum, it commutes with the n-sum. Therefore,

0 = 1
|G|

∑
C

|C| χσ (gC)
∞∑
n=0

χρ (gC)n tn

= 1
|G|

∑
C

|C| χσ (gC) 1
1− χρ (gC) t . (3.15)

So we have ∑
C

|C| χσ (gC)
1− χρ (gC) t = 0. (3.16)
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For C ̸= {e}, 1− χρ (gC) t ̸= 1− χρ(e)t. So, the sum is of the following form:
c1

1− b1t
+ c2

1− b2t
+ · · ·+ ck

1− bkt
= 0, (3.17)

where bi’s are pairwise disjoint. WLOG, b1 = χρ(e) = dimV ̸= 0. So c1 = χσ (e) = dimW . The other
bi’s are χρ (gC). If there exists C,C ′ with χρ (gC) = χρ (gC′), we combine them into one term ai

1−bit
.

Multiplying (3.17) by
∏k
i=1 (1− bit), we get

c1
∏
i ̸=1

(1− bit) + c2
∏
i ̸=2

(1− bit) + · · ·+ ck
∏
i ̸=k

(1− bit) = 0. (3.18)

This holds for all values of t. Plugging in t = 1
b1

, we have 1− b1t = 0. As a result, (3.18) becomes

c1
∏
i ̸=1

(
1− bi

b1

)
= 0. (3.19)

So we have c1 = 0. But c1 = dimW ̸= 0, since irreducible representations are by definition nonzero. So
we have a contradiction. Therefore, there must exist some n such that an ̸= 0, and we are done! ■

§3.3 Character table of S4

Let us now compute the character table of S4. As we have seen earlier, there are 5 conjugacy classes, and
hence there are 5 irreducible representations. There is a trivial representation σ : S4 → GL (C) ≡ C×

with σ (g) = 1 for every g ∈ S4. There is an alternating representation as well: σ′ : S4 → GL (C) ≡ C×

given by σ′ (g) = sgn g for every g ∈ S4.

Cycle Structure
α = (α1, α2, α3, α4)

Representative of
conjugacy class

number of elements
in conjugacy class

sign of
permutation

(4, 0, 0, 0) 1 1 1
(1, 0, 1, 0) (1 2 3) = (1 2) (2 3) 8 1
(2, 1, 0, 0) (1 2) 6 −1
(0, 2, 0, 0) (1 2) (3 4) 3 1
(0, 0, 0, 1) (1 2 3 4) = (1 3) (3 4) (1 2) 6 −1

Let ρ be the permutation representation of S4 on the set {1, 2, 3, 4}. By Lemma 2.2, χρ(g) is the
number of elements of X = {1, 2, 3, 4} fixed by g. Therefore,

χρ (1) = 4, χρ ((1 2)) = 2, χρ ((1 2 3)) = 1, χρ ((1 2 3 4)) = 0, χρ ((1 2) (3 4)) = 0. (3.20)

Now,

(χρ, χρ) = 1
24
[
χρ(1)χρ(1) + 8χρ ((1 2 3))χρ ((1 2 3)) + 6χρ ((1 2))χρ ((1 2))

+ 3χρ ((1 2) (3 4))χρ ((1 2) (3 4)) + 6χρ ((1 2 3 4))χρ ((1 2 3 4))
]

= 1
24 [16 + 8 + 24 + 0 + 0] = 2 ̸= 1.

Therefore, the permutation representation ρ is not irreducible. By (2.86), (χρ, χρ) =
∑
i |ai|

2, where ai
are the multiplicities of the irreducible representations. Here,

∑
i |ai|

2 = 2, so there are two i such that
ai = 1, and the rest ai’s are all 0. In other words, the permutation representation is the direct sum of
two irreducibles. Now,

(χσ, χρ) = 1
24

∑
g∈S4

χρ (g) = 1
24
[
χρ(1) + 8χρ ((1 2 3)) + 6χρ ((1 2))

+ 3χρ ((1 2) (3 4)) + 6χρ ((1 2 3 4))
]

= 1
24 [4 + 8 + 12 + 0 + 0] = 1.
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Therefore, the trivial representation σ is a direct summand of the permutation representation ρ. The
other direct summand is called the standard representation, which we denote as ρstd. Therefore,

ρ ∼= σ ⊕ ρstd, (3.21)

so that
χρstd = χρ − χσ = χρ − 1. (3.22)

Using this, we can fill out the first 3 rows of the character table.

# 1 8 6 3 6

S4 1 (1 2 3) (1 2) (1 2) (3 4) (1 2 3 4)

σ 1 1 1 1 1
σ′ 1 1 −1 1 −1
ρstd 3 0 1 −1 −1

By Lemma 3.4, ρstd ⊗ σ′ is also an irreducible representation. Its character is given by χρstdχσ′ .

# 1 8 6 3 6

S4 1 (1 2 3) (1 2) (1 2) (3 4) (1 2 3 4)

σ 1 1 1 1 1
σ′ 1 1 −1 1 −1
ρstd 3 0 1 −1 −1

ρstd ⊗ σ′ 3 0 −1 −1 1
τ x y z t p

By Corollary 2.10, 12 + 12 + 32 + 32 + x2 = 24. Therefore, x = 2. So τ is a 2-dimensional irreducible
representation. By Lemma 3.4, τ ⊗ σ′ is also an irreducible representation. But there are no more
2-dimensional irreducible representations. Therefore, τ ∼= τ ⊗ σ′. As a result, z = p = 0, because
otherwise, τ ⊗ σ′ will have character values −z and −p for the conjugacy classes of (1 2) and (1 2 3 4),
respectively, which is different from that of τ .

Now, we are only left with the value of y and p. Orthogonality of the first and second column gives
us that

1 · 1 + 1 · 1 + 3 · 0 + 3 · 0 + xy = 0 =⇒ y = −1, (3.23)

since x = 2. (χσ, χτ ) = 0 gives us that
∑
g∈G χτ (g) = 0. Hence,

2 + 8 · (−1) + 6 · 0 + 3t+ 6 · 0 = 0 =⇒ t = 2. (3.24)

Therefore, the complete character table of S4 is

# 1 8 6 3 6

S4 1 (1 2 3) (1 2) (1 2) (3 4) (1 2 3 4)

σ 1 1 1 1 1
σ′ 1 1 −1 1 −1
ρstd 3 0 1 −1 −1

ρstd ⊗ σ′ 3 0 −1 −1 1
τ 2 −1 0 2 0
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§3.4 Character table of S5

There are 7 partitions of n = 5, corresponding to 7 conjugacy classes.

Cycle Structure
α = (α1, α2, α3, α4, α5)

Relevant partition
of n = 5

Representative of
conjugacy class

number of elements
in conjugacy class

(5, 0, 0, 0) 1 + 1 + 1 + 1 + 1 1 5!
5!·15 = 1

(1, 0, 0, 1, 0) 4 + 1 (1 2 3 4) 5!
1!·11·1!·41 = 30

(0, 1, 1, 0, 0) 3 + 2 (1 2 3) (4 5) 5!
1!·31·1!·21 = 20

(2, 0, 1, 0, 0) 3 + 1 + 1 (1 2 3) 5!
1!·31·2!·12 = 20

(3, 1, 0, 0, 0) 2 + 1 + 1 + 1 (1 2) 5!
3!·13·1!·21 = 10

(0, 0, 0, 0, 1) 5 (1 2 3 4 5) 5!
51·1! = 24

(1, 2, 0, 0, 0) 2 + 2 + 1 (1 2) (3 4) 5!
2!·22·1!·11 = 15

So, there are 7 irreducible representations of S5. We get 4 irreducible representations for free, using our
knowledge of the representation theory of S4: the trivial representation σ, the alternating representation
σ′, the standard representation ρstd, tensor product of the standard representation and the alternating
representation ρstd ⊗ σ′.

Let ρ be the permutation representation of S5 on the set {1, 2, 3, 4, 5}. By Lemma 2.2, χρ(g) is the
number of elements of X = {1, 2, 3, 4, 5} fixed by g. Therefore,

χρ (1) = 5, χρ ((1 2)) = 3, χρ ((1 2 3)) = 2, χρ ((1 2 3 4)) = 1,
χρ ((1 2) (3 4)) = 1, χρ ((1 2 3) (4 5)) = 0, χρ ((1 2 3 4 5)) = 0.

(3.25)

Now,

(χρ, χρ) = 1
120

[
χρ(1)χρ(1) + 30χρ ((1 2 3 4))χρ ((1 2 3 4)) + 20χρ ((1 2 3) (4 5))χρ ((1 2 3) (4 5))

+ 20χρ ((1 2 3))χρ ((1 2 3)) + 10χρ ((1 2))χρ ((1 2))

+ 24χρ ((1 2 3 4 5))χρ ((1 2 3 4 5)) + 15χρ ((1 2) (3 4))χρ ((1 2) (3 4))
]

= 1
120 [25 + 30 + 0 + 80 + 90 + 0 + 15] = 2 ̸= 1.

Therefore, the permutation representation ρ is not irreducible. By (2.86), (χρ, χρ) =
∑
i |ai|

2, where ai
are the multiplicities of the irreducible representations. Here,

∑
i |ai|

2 = 2, so there are two i such that
ai = 1, and the rest ai’s are all 0. In other words, the permutation representation is the direct sum of
two irreducibles. Now,

(χσ, χρ) = 1
120

∑
g∈S5

χρ (g) = 1
120

[
χρ(1) + 30χρ ((1 2 3 4)) + 20χρ ((1 2 3) (4 5))

+ 20χρ ((1 2 3)) + 10χρ ((1 2))

+ 24χρ ((1 2 3 4 5)) + 15χρ ((1 2) (3 4))
]

= 1
120 [5 + 30 + 0 + 40 + 30 + 0 + 15] = 1.

Therefore, the trivial representation σ is a direct summand of the permutation representation ρ. The
other direct summand is called the standard representation, which we denote as ρstd. Therefore,

ρ ∼= σ ⊕ ρstd, (3.26)
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so that
χρstd = χρ − χσ = χρ − 1. (3.27)

Using this, we can fill out the first 3 rows of the character table.

# 1 30 20 20 10 24 15

S5 1 (1 2 3 4) (1 2 3) (4 5) (1 2 3) (1 2) (1 2 3 4 5) (1 2) (3 4)
σ 1 1 1 1 1 1 1
σ′ 1 −1 −1 1 −1 1 1
ρstd 4 0 −1 1 2 −1 0

By Lemma 3.4, ρstd ⊗ σ′ is also an irreducible representation. Its character is given by χρstdχσ′ .

# 1 30 20 20 10 24 15

S5 1 (1 2 3 4) (1 2 3) (4 5) (1 2 3) (1 2) (1 2 3 4 5) (1 2) (3 4)
σ 1 1 1 1 1 1 1
σ′ 1 −1 −1 1 −1 1 1
ρstd 4 0 −1 1 2 −1 0

ρstd ⊗ σ′ 4 0 1 1 −2 −1 0

Now, ρstd is a faithful representation. Indeed, if g ∈ Ker ρstd, then ρstd (g) = ρstd (1). By taking trace,
we have χρstd (g) = χρstd (1) = 4. From the character table, we can see that no element other than the
identity element 1 ∈ S5 satisfies χρstd (g) = 4. Therefore, Ker ρstd = {1}, and hence, ρstd is a faithful
irreducible representation.

Then by Theorem 3.6, every irreducible representation of S5 is contained in some tensor power
ρstd

⊗n as a direct summand. So it’s natural to look inside ρstd ⊗ ρstd. We know that

ρstd ⊗ ρstd ∼= Λ2ρstd ⊕ Sym2 ρstd. (3.28)

Let’s now find the characters χΛ2ρstd and χSym2 ρstd
. By Proposition 2.1(d),

χΛ2ρstd (g) = 1
2
[
(χρstd(g))2 − χρstd

(
g2
)]
. (3.29)

χΛ2ρstd (1) = 1
2
[
(χρstd(1))2 − χρstd

(
12
)]

= 1
2
[
42 − 4

]
= 6.

χΛ2ρstd ((1 2 3 4)) = 1
2
[
(χρstd((1 2 3 4)))2 − χρstd

(
(1 2 3 4)2

)]
= 1

2
[
(χρstd((1 2 3 4)))2 − χρstd ((1 3) (2 4))

]
= 1

2
[
02 − 0

]
= 0.

χΛ2ρstd ((1 2 3) (4 5)) = 1
2
[
(χρstd((1 2 3) (4 5)))2 − χρstd

(
((1 2 3) (4 5))2

)]
= 1

2
[
(−1)2 − χρstd ((1 3 2))

]
= 1

2 [1− 1] = 0.

χΛ2ρstd ((1 2 3)) = 1
2
[
(χρstd((1 2 3)))2 − χρstd

(
(1 2 3)2

)]
= 1

2
[
(1)2 − χρstd ((1 3 2))

]
= 1

2 [1− 1] = 0.
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χΛ2ρstd ((1 2)) = 1
2
[
(χρstd((1 2)))2 − χρstd

(
(1 2)2

)]
= 1

2
[
(2)2 − χρstd (1)

]
= 1

2 [4− 4] = 0.

χΛ2ρstd ((1 2 3 4 5)) = 1
2
[
(χρstd((1 2 3 4 5)))2 − χρstd

(
(1 2 3 4 5)2

)]
= 1

2
[
(−1)2 − χρstd ((1 3 5 2 4))

]
= 1

2 [1− (−1)] = 1.

χΛ2ρstd ((1 2) (3 4)) = 1
2
[
(χρstd((1 2) (3 4)))2 − χρstd

(
((1 2) (3 4))2

)]
= 1

2
[
(0)2 − χρstd (1)

]
= 1

2 [−4] = −2.

Then its norm is(
χΛ2ρstd , χΛ2ρstd

)
= 1

120
[
χΛ2ρstd(1)χΛ2ρstd(1) + 30χΛ2ρstd ((1 2 3 4))χΛ2ρstd ((1 2 3 4))

+ 20χΛ2ρstd ((1 2 3) (4 5))χΛ2ρstd ((1 2 3) (4 5))
+ 20χΛ2ρstd ((1 2 3))χΛ2ρstd ((1 2 3)) + 10χΛ2ρstd ((1 2))χΛ2ρstd ((1 2))
+ 24χΛ2ρstd ((1 2 3 4 5))χΛ2ρstd ((1 2 3 4 5))

+ 15χΛ2ρstd ((1 2) (3 4))χΛ2ρstd ((1 2) (3 4))
]

= 1
120 [36 + 0 + 0 + 0 + 0 + 24 + 60] = 1.

Therefore, Λ2ρstd is an irreducible representation of S5. So we can update the character table:

# 1 30 20 20 10 24 15

S5 1 (1 2 3 4) (1 2 3) (4 5) (1 2 3) (1 2) (1 2 3 4 5) (1 2) (3 4)
σ 1 1 1 1 1 1 1
σ′ 1 −1 −1 1 −1 1 1
ρstd 4 0 −1 1 2 −1 0

ρstd ⊗ σ′ 4 0 1 1 −2 −1 0
Λ2ρstd 6 0 0 0 0 1 −2

Tensoring it with σ′ doesn’t give us a new representation. Let’s now calculate the character of Sym2 ρstd.
By Remark 2.3,

χSym2 ρstd
(g) = 1

2
[
(χρstd(g))2 + χρstd

(
g2
)]
. (3.30)

χSym2 ρstd
(1) = 1

2
[
(χρstd(1))2 + χρstd

(
12
)]

= 1
2
[
42 + 4

]
= 10.

χSym2 ρstd
((1 2 3 4)) = 1

2
[
(χρstd((1 2 3 4)))2 + χρstd

(
(1 2 3 4)2

)]
= 1

2
[
(χρstd((1 2 3 4)))2 + χρstd ((1 3) (2 4))

]
= 1

2
[
02 + 0

]
= 0.

χSym2 ρstd
((1 2 3) (4 5)) = 1

2
[
(χρstd((1 2 3) (4 5)))2 + χρstd

(
((1 2 3) (4 5))2

)]
= 1

2
[
(−1)2 + χρstd ((1 3 2))

]
= 1

2 [1 + 1] = 1.

χSym2 ρstd
((1 2 3)) = 1

2
[
(χρstd((1 2 3)))2 + χρstd

(
(1 2 3)2

)]
= 1

2
[
(1)2 + χρstd ((1 3 2))

]
= 1

2 [1 + 1] = 1.
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χSym2 ρstd
((1 2)) = 1

2
[
(χρstd((1 2)))2 + χρstd

(
(1 2)2

)]
= 1

2
[
(2)2 + χρstd (1)

]
= 1

2 [4 + 4] = 4.

χSym2 ρstd
((1 2 3 4 5)) = 1

2
[
(χρstd((1 2 3 4 5)))2 + χρstd

(
(1 2 3 4 5)2

)]
= 1

2
[
(−1)2 + χρstd ((1 3 5 2 4))

]
= 1

2 [1 + (−1)] = 0.

χSym2 ρstd
((1 2) (3 4)) = 1

2
[
(χρstd((1 2) (3 4)))2 + χρstd

(
((1 2) (3 4))2

)]
= 1

2
[
(0)2 + χρstd (1)

]
= 1

2 [0 + 4] = 2.

Let’s now calculate the norm of χSym2 ρstd
.

(
χSym2 ρstd

, χSym2 ρstd

)
= 1

120
[
χSym2 ρstd

(1)χSym2 ρstd
(1) + 30χSym2 ρstd

((1 2 3 4))χSym2 ρstd
((1 2 3 4))

+ 20χSym2 ρstd
((1 2 3) (4 5))χSym2 ρstd

((1 2 3) (4 5))

+ 20χSym2 ρstd
((1 2 3))χSym2 ρstd

((1 2 3))

+ 10χSym2 ρstd
((1 2))χSym2 ρstd

((1 2))

+ 24χSym2 ρstd
((1 2 3 4 5))χSym2 ρstd

((1 2 3 4 5))

+ 15χSym2 ρstd
((1 2) (3 4))χSym2 ρstd

((1 2) (3 4))
]

= 1
120 [100 + 0 + 20 + 20 + 160 + 0 + 60] = 3.

Therefore, the permutation representation Sym2 ρstd is not irreducible. By (2.86),
(
χSym2 ρstd

, χSym2 ρstd

)
=∑

i |ai|
2, where ai are the multiplicities of the irreducible representations. Here,

∑
i |ai|

2 = 3, so there
are three i such that ai = 1, and the rest ai’s are all 0. In other words, the permutation representation
is the direct sum of three irreducibles. Now,(

χσ, χSym2 ρstd

)
= 1

120
∑
g∈S5

χSym2 ρstd
(g)

= 1
120

[
χSym2 ρstd

(1) + 30χSym2 ρstd
((1 2 3 4)) + 20χSym2 ρstd

((1 2 3) (4 5))

+ 20χSym2 ρstd
((1 2 3)) + 10χSym2 ρstd

((1 2))

+ 24χSym2 ρstd
((1 2 3 4 5)) + 15χSym2 ρstd

((1 2) (3 4))
]

= 1
120 [10 + 0 + 20 + 20 + 40 + 0 + 30] = 1.

Therefore, the trivial representation σ is a direct summand of Sym2 ρstd.(
χσ′ , χSym2 ρstd

)
= 1

120
∑
g∈S5

(sgn g)χSym2 ρstd
(g)

= 1
120

[
χSym2 ρstd

(1)− 30χSym2 ρstd
((1 2 3 4))− 20χSym2 ρstd

((1 2 3) (4 5))

+ 20χSym2 ρstd
((1 2 3))− 10χSym2 ρstd

((1 2))

+ 24χSym2 ρstd
((1 2 3 4 5)) + 15χSym2 ρstd

((1 2) (3 4))
]

= 1
120 [10− 0− 20 + 20− 40 + 0 + 30] = 0.
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So, the alternating representation σ′ is NOT a direct summand of Sym2 ρstd.(
χρstd , χSym2 ρstd

)
= 1

120
∑
g∈S5

χρstd(g)χSym2 ρstd
(g)

= 1
120

[
χSym2 ρstd

(1)− 30χSym2 ρstd
((1 2 3 4))− 20χSym2 ρstd

((1 2 3) (4 5))

+ 20χSym2 ρstd
((1 2 3))− 10χSym2 ρstd

((1 2))

+ 24χSym2 ρstd
((1 2 3 4 5)) + 15χSym2 ρstd

((1 2) (3 4))
]

= 1
120 [4 · 10 + 30 · 0 · 0 + 20 · (−1) · 1 + 20 · 1 · 1 + 10 · 2 · 4 + 24 · (−1) · 0 + 15 · 0 · 2]

= 1
120 [40 + 0− 20 + 20 + 80 + 0 + 0] = 1.

Therefore, the standard representation ρstd is a direct summand of Sym2 ρstd. The other direct
summand is a 5-dimensional irreducible representation, which we don’t know of yet. Let’s call that ψ.
Then

Sym2 ρstd ∼= σ ⊕ ρstd ⊕ ψ, (3.31)

so that
χψ = χSym2 ρstd

− χσ − χρstd . (3.32)

Using this formula, we fill out another row of the character table.

# 1 30 20 20 10 24 15

S5 1 (1 2 3 4) (1 2 3) (4 5) (1 2 3) (1 2) (1 2 3 4 5) (1 2) (3 4)
σ 1 1 1 1 1 1 1
σ′ 1 −1 −1 1 −1 1 1
ρstd 4 0 −1 1 2 −1 0

ρstd ⊗ σ′ 4 0 1 1 −2 −1 0
Λ2ρstd 6 0 0 0 0 1 −2
ψ 5 −1 1 −1 1 0 1

By Lemma 3.4, ψ ⊗ σ′ is also an irreducible representation. Its character is given by χψχσ′ . Therefore,
the complete character table is:

# 1 30 20 20 10 24 15

S5 1 (1 2 3 4) (1 2 3) (4 5) (1 2 3) (1 2) (1 2 3 4 5) (1 2) (3 4)
σ 1 1 1 1 1 1 1
σ′ 1 −1 −1 1 −1 1 1
ρstd 4 0 −1 1 2 −1 0

ρstd ⊗ σ′ 4 0 1 1 −2 −1 0
Λ2ρstd 6 0 0 0 0 1 −2
ψ 5 −1 1 −1 1 0 1

ϕ = ψ ⊗ σ′ 5 1 −1 −1 −1 0 1

§3.5 Properties of group from character table
In this section, we will examine what information about the group we can extract from the character
table. Indeed, if two groups are isomorphic, then their irreducible representations are in a one-to-one
correspondecne. Then the character values of those irreducible representations are also equal. Therefore,
if two groups are isomorphic, then their character tables are identical. In this section, we will explore
whether the converse is true or not.
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Intuitively speaking, to know a group, it suffices to know all its irreducible representations. Because
the regular representation C [G] is a faithful representation as we’ll soon see. This regular representation
contains all the irreducible representations as V subrepresentations, with multiplicity dimV . Therefore,
if we know all the irreducible representations, then we can construct the regular representations. If we
know the regular representation, then we know the group.

The character table gives us the trace values of the irreducible representations. For a given group G,
the characters determine a representation up to isomorphism. But given a character table, can we
actually reconstruct the group up to isomorphism? This is the question we will try to answer in this
section.

Proposition 3.7
If a value α appears in the character table of a group G then also α appears in the character table

Proof. Let ρ : G→ GL (V ) be an irreducible representation. Let λ1, . . . , λn be the eigenvalues of ρ (g).
All of these eigenvalues are |G|-th root of unities, since g|G| = e. The eigenvalues of ρ (g)−1 will be
λ−1

1 , . . . , λ−1
n . Therefore,

χρ
(
g−1

)
=

n∑
i=1

λ−1
i =

n∑
i=1

λi =
n∑
i=1

λi = χρ (g). (3.33)

So, if α appears in the row of ρ in the character table as χρ(g), then α also appears in the row of ρ in
the character table as χρ(g−1). ■

Corollary 3.8
If all the entries in the character table are real, then every element of the group is conjugate to its
inverse.

Proof. If all the entries of the character table are real, then it means χ (g) = χ
(
g−1) for every irreducible

character χ and every g ∈ G. Since irreducible characters form a basis for the space of class functions,
we have c (g) = c

(
g−1) for every class function c. Now consider the class function c

c (h) =
{

1 if h is in the conjugacy class of g,
0 otherwise.

(3.34)

Clearly, c (g) = 1. Therefore, c
(
g−1) = 1, and hence g and g−1 are conjugate. ■

Proposition 3.9
For a finite group G,

Z(G) = {g ∈ G | |χ(g)| = χ(e), for every irreducible character χ} .

Proof. Take g ∈ Z (G). Let ρ : G → GL(V ) be an irreducible representation, and χρ be the
corresponding irreducible character. Since gx = xg for every x ∈ G, ρ (g) : V → V is a G-linear map.
Indeed, the following diagram commutes:

V V

V V

ρ(x)

ρ(g) ρ(g)

ρ(x)
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ρ (g) ◦ ρ (x) = ρ (gx) = ρ (xg) = ρ (x) ◦ ρ (g) . (3.35)
So ρ (g) : V → V is a G-linear map. Since V is an irreducible representation, by Schur’s lemma,
ρ (g) = 0 or ρ (g) an isomorphism of representations. But since ρ

(
g−1) is the inverse of ρ (g), ρ (g) = 0

is not possible. Hence, ρ (g) an isomorphism of representations.
Again, by Schur’s lemma, dim HomG (V, V ) = 0 or 1. But HomG (V, V ) contains 1V , so it is 1-

dimensional. Therefore, all the elements of HomG (V, V ) are scalar multiples of 1V . In particular,
ρ (g) = c1V for some c ∈ C.

ρ (g)|G| = ρ
(
g|G|

)
= ρ(1) = 1V =⇒ c|G| 1V = 1V =⇒ c|G| = 1. (3.36)

So we have, |c| = 1. Now,

|χρ (g)| = |Tr [ρ (g)]| = |Tr [c1V ]| = |c dimV | = |c| dimV = dimV = χρ (e) . (3.37)

So we have proved that if g ∈ Z (G), then for any irreducible character χρ, |χρ (g)| = χρ (e).

Now, conversely, suppose |χρ (g)| = χρ (e) for every irreducible character χρ associated with the
irreducible representation ρ : G→ GL(V ). We need to show that g ∈ Z (G).

Following the analysis of Lemma 3.5 in (3.11), |χρ (g)| = χρ (e) implies that all the eigenvalues of ρ (g)
are equal, say λρ. ρ (g) is diagonalizable, and all its eigenvalues are λρ ∈ C. Therefore, ρ (g) = λρ 1V .
This is true for any irreducible representation ρ : G→ GL(V ). As a result, for any x ∈ G and v ∈ V ,

ρi (gx) v = ρi (g) ρi (x) v
= λρiρi (x) v
= ρi (x) (λρiv)
= ρi (x) [ρi (g) v]
= ρi (xg) v. (3.38)

This holds for any v ∈ Vi. Therefore, ρi (gx) = ρi (xg). Let σ : G → GL (C [G]) be the regular
representation defined by

σ (h)
(∑
x∈G

axδx

)
=
∑
x∈G

axδhx =
∑
x∈G

ah−1xδx. (3.39)

This is a faithful representation. Indeed, if h ∈ Kerσ, then σ (h) is the identity map on C [G].

σ (h)
(∑
x∈G

axδx

)
=
∑
x∈G

axδx =⇒
∑
x∈G

ah−1xδx =
∑
x∈G

axδx

=⇒ h−1x = x ∀x ∈ G
=⇒ h = e. (3.40)

Now, any irreducible representation ρ : G→ GL(V ) appear in the regular representation dimV times.
Suppose ρi : G → GL (Vi), i = 1, 2, . . . , k are all the irreducible representations, with dimVi = ni.
Then

C [G] ∼= V n1
1 ⊕ V n2

2 ⊕ · · · ⊕ V nk
k =

k⊕
i=1

V ni
i =: W. (3.41)

This is an isomorphism of representations. In other words,

σ ∼=
k⊕
i=1

ρ⊕ni
i =: ψ. (3.42)

We have shown earlier that ρi (g) = λρi 1Vi for any irreducible representation ρi : G→ GL(Vi). We
have also showed that for any x ∈ G, ρi (gx) = ρi (xg). Now we want to show that ψ (gx) = ψ (xg) for
any x ∈ G. A generic element from W looks like(

v(1)
1 ,v(1)

2 , . . . ,v(1)
n1 ,v

(2)
1 ,v(2)

2 , . . . ,v(2)
n2 , . . . ,v

(k)
1 ,v(k)

2 , . . . ,v(k)
nk

)
,
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with v(i)
j ∈ Vi.

ψ (gx)
(
v(1)

1 , . . . ,v(1)
n1 ,v

(2)
1 , . . . ,v(2)

n2 , . . . ,v
(k)
1 , . . . ,v(k)

nk

)
=
[
k⊕
i=1

ρ⊕ni
i (gx)

] (
v(1)

1 , . . . ,v(1)
n1 ,v

(2)
1 , . . . ,v(2)

n2 , . . . ,v
(k)
1 , . . . ,v(k)

nk

)
=
(
ρ1 (gx) v(1)

1 , . . . , ρ1 (gx) v(1)
n1 , ρ2 (gx) v(2)

1 , . . . , ρ2 (gx) v(2)
n2 , . . . , ρk (gx) v(k)

1 , . . . , ρk (gx) v(k)
nk

)
=
(
ρ1 (xg) v(1)

1 , . . . , ρ1 (xg) v(1)
n1 , ρ2 (xg) v(2)

1 , . . . , ρ2 (xg) v(2)
n2 , . . . , ρk (xg) v(k)

1 , . . . , ρk (xg) v(k)
nk

)
=
[
k⊕
i=1

ρ⊕ni
i (xg)

] (
v(1)

1 , . . . ,v(1)
n1 ,v

(2)
1 , . . . ,v(2)

n2 , . . . ,v
(k)
1 , . . . ,v(k)

nk

)
= ψ (xg)

(
v(1)

1 , . . . ,v(1)
n1 ,v

(2)
1 , . . . ,v(2)

n2 , . . . ,v
(k)
1 , . . . ,v(k)

nk

)
.

Therefore, ψ (gx) = ψ (xg) for any x ∈ G. ψ is isomorphic to a faithful representation σ (the regular
representation), so it is faithful as well. Therefore, gx = xg for any x ∈ G. So g ∈ Z(G). This proves
the equality

Z(G) = {g ∈ G : |χ(g)| = χ(e), for every irreducible character χ} . (3.43)

■

Definition 3.1 (Commutator subgroup). Given a group G, we define commutator in G as

[g, h] = g−1h−1gh, (3.44)

for g, h ∈ G. The commutator subgroup of G, often denoted as G′ or [G,G] is the subgroup
generated by all the commutator elements [g, h].

Lemma 3.10
Given a group G, G/G′ is abelian. Furthermore, if G/N is abelian, then N must contain G′.

Proof. The commutator subgroup G′ is generated by all the commutators [g, h] = g−1h−1gh. Consider
g1G

′, g2G
′ ∈ G/G′. Then(

g1G
′) · (g2G

′) = (g1g2)G′ = g2g1 [g1, g2]G′ = g2g1G
′ =

(
g2G

′) · (g1G
′) (3.45)

So G/G′ is abelian.

Given a group homomorphism f : G1 → G2,

f ([g, h]) = f
(
g−1h−1gh

)
= f(g)−1f(h)−1f(g)f(h) = [f (g) , f (h)] . (3.46)

Now consider the quotient map f : G→ G/N . Given any g, h ∈ G, since G/N is abelian, [f (g) , f (h)] =
eG/N , the identity of G/N . Therefore,

f ([g, h]) = [f (g) , f (h)] = eG/N . (3.47)

So [g, h] ∈ Ker f = N . Therefore, all the commutators [g, h] = g−1h−1gh are contained in N . So the
subgroup generated by all the commutators is also contained in N . Hence, G′ ⊆ N . ■

Proposition 3.11
Given a finite group G, |G/G′| is the number of 1-dimensional representations of G.
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Proof. Since G/G′ is abelian, all its irreducible representations are 1-dimensional. Also, since it is
abelian, all conjugacy classes are singletons. Therefore, there are |G/G′|-many 1-dimensional irreducible
representations of G/G′.

G G/G′ C×π ρ

Given a 1-dimensional irreducible representation ρ of G/G′, we have a 1-dimensional irreducible
representation of G as ρ ◦ π, where π : G→ G/G′ is the projection map. Therefore,

# of 1-dimensional irreducible representation of G ≥
∣∣G/G′∣∣ . (3.48)

Now, if σ : G→ C× is a 1-dimensional irreducible representations of G, then G/Kerσ ∼= σ (G) is an
abelian group. So G′ ⊆ Kerσ.

This gives us a representation of G/G′: τ : G/G′ → C×, given by τ (gG′) = σ (g). This is well-defined,
for gG′ = hG′, h−1g ∈ G′ ⊆ Kerσ, so that σ (h) = σ (g). Hence,

τ
(
gG′) = σ (g) = σ (h) = τ

(
hG′) . (3.49)

Therefore, every 1-dimensional irreducible representations of G gives rise to a 1-dimensional represen-
tation of G/G′. So we have

# of 1-dimensional irreducible representation of G ≤
∣∣G/G′∣∣ . (3.50)

Combining these,

|G|
|G′|

= # of 1-dimensional irreducible representation of G. (3.51)

■

Lemma 3.12
For a finite group G, G′ =

⋂
ρ 1-d irrep

Ker ρ.

Proof. If ρ : G → C× is a 1-dimensional representation, then im ρ = G/Ker ρ is abelian, so Ker ρ
contains G′. Since this is true for every ρ, therefore,

G′ ⊆
⋂

ρ 1-d irrep
Ker ρ. (3.52)

On the other hand, suppose g ∈ Ker ρ for every 1-dimensional irreducible representations ρ. Then
ρ (g) = 1 for every 1-dimensional irreducible representations ρ. Therefore,

ρ′ (gG′) = 1 (3.53)

for every 1-dimensional irreducible representations ρ′ of G/G′. G/G′ has only 1-dimensional irreducible
representations. Therefore, χ (gG′) = 1 for every irreducible character χ of G/G′. Hence, c (gG′) = 1
for every class function c on G/G′. This proves that gG′ = eG′, so that g ∈ G′. Therefore,⋂

ρ 1-d irrep
Ker ρ ⊆ G′. (3.54)

Hence,
⋂

ρ 1-d irrep
Ker ρ = G′. ■

If two finite groups G and H have the same character table,

• Their order is also equal, because |G| =
∑
ρ χρ(e)2.
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• Their number of 1-dimensional irreducible representations is also equal. Hence, |G/G′| = |H/H ′|.
Then |G| = |H| implies |G′| = |H ′|. Therefore, if two groups have the identical character table,
their commutator subgroups have the same order.

• There will be same number of elements such that |χ (g)| = χ (e) for every irreducible character χ.
So |Z(G)| = |Z(H)|, by Proposition 3.9.

So, the character table uniquely identifies these properties of the group. Can the character table
uniquely identify the group (up to isomorphism)? Let’s see a few examples.

Example 3.3. The quaternion group is Q = {±1,±i,±j,±k} with i2 = j2 = k2 = −1 and ij = k,
jk = i, ki = j, ji = −k, kj = −i, ik = −j. The conjugacy classes of Q are

{1} , {−1} , {i,−i} , {j,−j} , {k,−k} .

Suppose ρ : Q→ GL (C) ≡ C× is a 1-dimensional representation of Q.

ρ (k) = ρ (ij) = ρ (i) ρ (j) = ρ (j) (ρi) = ρ (ji) = ρ (−k) = ρ (−1) ρ (k) . (3.55)

Therefore, ρ (−1) = 1. Since i2 = j2 = k2 = −1, this gives us that ρ (i) , ρ (j) , ρ (k) ∈ {1,−1}.
Furthermore, since ρ (−1) = 1,

ρ (i) = ρ (−i) , ρ (j) = ρ (−j) , ρ (k) = ρ (−k) . (3.56)

If all of them are 1, then we have the trivial representation. If two of them are 1, then it forces the
third one to be 1 as well because of ij = k, jk = i, ki = j.

Now, suppose only one of them is 1, and WLOG, ρ (i) = ρ (−i) = 1. Since jk = i, this means we
must have either ρ (j) = ρ (k) = 1 or ρ (j) = ρ (k) = −1. This gives us a 1-dimensional representation
other than the trivial one.

For the other cases ρ (j) = ρ (−j) = 1 and ρ (k) = ρ (−k) = 1, we get two other nontrivial
1-dimensional representations. These are the all four 1-dimensional representations of Q.

Q 1 −1 i −i j −j k −k
ρ1 1 1 1 1 1 1 1 1
ρ2 1 1 1 1 −1 −1 −1 −1
ρ3 1 1 −1 −1 1 1 −1 −1
ρ4 1 1 −1 −1 −1 −1 1 1

There is a 2-dimensional irreducible representation. The embedding Q ⊂ GL2(C) is given by

1 ≡
[
1 0
0 1

]
, −1 ≡

[
−1 0
0 −1

]
, i ≡

[
i 0
0 −i

]
, −i ≡

[
−i 0
0 i

]
,

j ≡
[
0 −1
1 0

]
, −j ≡

[
0 1
−1 0

]
, k ≡

[
0 −i
−i 0

]
, −k ≡

[
0 i
i 0

]
.

(3.57)

From the matrices above, we can see that

χ (1) = 2, χ (−1) = −2, χ (i) = χ (−i) = χ (j) = χ (−j) = χ (k) = χ (−k) = 0. (3.58)

So |χ|2 is
|χ|2 = (χ, χ) = 1

|Q|
∑
g∈Q

χ (g)χ (g) = 1
8 (2 · 2 + (−2) · (−2)) = 1. (3.59)

So this is an irreducible representation as well. These are all the irreducible representations, since
12 + 12 + 12 + 12 + 22 = 8 = |Q8|. Then the character table of Q is
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# 1 1 2 2 2

Q 1 −1 i j k

ρ1 1 1 1 1 1
ρ2 1 1 1 −1 −1
ρ3 1 1 −1 1 −1
ρ4 1 1 −1 −1 1
ρ5 2 −2 0 0 0

Example 3.4. Consider the dihedral group, Dn, when n is even.

Dn =
{
sirj | i = 0, 1; j = 0, . . . , n− 1; rn = s2 = e and sr = rn−1s

}
.

D4 has 5 conjugacy classes:

{e} ,
{
r2
}
,
{
r, r3

}
,
{
s, sr2

}
,
{
sr, sr3

}
.

So, there are 5 irreducible representations of D4. Suppose ρ : D4 → C× is a 1-dimensional representation.
ρ (r)n = 1, so ρ (r) is one of the 4-th root of unities. ρ (s)2 = 1, so ρ (s) = ±1. sr = r−1s gives us that

ρ (s) ρ (r) = ρ (r)−1 ρ (s) =⇒ ρ (r) = ρ (r)−1 =⇒ ρ (r) = ±1. (3.60)

ρ (s) , ρ (r) ∈ {1,−1}. Therefore, we have total 4 choices, and hence 4 1-dimensional representations.

D4 e r r2 r3 s sr sr2 sr3

ρ1 1 1 1 1 1 1 1 1
ρ2 1 1 1 1 −1 −1 −1 −1
ρ3 1 −1 1 −1 1 −1 1 −1
ρ4 1 −1 1 −1 −1 1 −1 1

The remaining irreducible representation is a 2-dimensional representation, because there are exactly
5 of them, and 4 of them are 1-dimensional. If the remaining one has dimension d, then 8 = |D4| =
12 + 12 + 12 + 12 + d2; so d = 2. Suppose σ : Dn → GL

(
C2) is the 2-dimensional representation.

C4 =
{
ri | i = 0, . . . , 3

}
is an abelian subgroup of D4. All the irreducible representations of C4 are

1-dimensional, and there are exactly 4 of them. 1, i,−1,−i are the 4-th roots of unity. Then the
irreducible representations of Cn are ρj : Cn → C, ρj (r) = ij for j = 0, 1, 2, 3.
σ defines a 2-dimensional representation of C4, and it decomposes as direct sum of two 1-d irreducible

representations. Therefore, in the matrix representation, σ (r) should be a diagonal matrix:

σ (r) =
[
ik 0
0 il

]
, (3.61)

for k, l ∈ {0, 1, 2, 3}. Since s2 = e, σ (s) is a 2× 2 matrix of order 2. Therefore,

σ (s) =
[
0 1
1 0

]
. (3.62)

Since rs = sr−1, i.e. srs = r−1, one has[
0 1
1 0

] [
ik 0
0 il

] [
0 1
1 0

]
=
[
i−k 0
0 i−l

]
=⇒

[
il 0
0 ik

]
=
[
i−k 0
0 i−l

]
(3.63)

Therefore, k = −l, i.e.

σ (r) =
[
ik 0
0 i−k

]
. (3.64)
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If k = 0, or k = 2, σ (r) is I or −I, respectively. This does not define an irreducible representation,
since the 1-dimensional subspace

{
(z1, z2) ∈ C2 | z1 = z2

}
is invariant under the action of both σ(r)

and σ(s). For k = 1, we get

σ (r) =
[
i 0
0 −i

]
. (3.65)

Then we calculate the following:

σ (e) =
[
1 0
0 1

]
, σ (r) =

[
i 0
0 −i

]
, σ

(
r2
)

=
[
−1 0
0 −1

]
, σ

(
r3
)

=
[
−i 0
0 i

]

σ (s) =
[
0 1
1 0

]
, σ (sr) =

[
0 −i
i 0

]
, σ

(
sr2
)

=
[

0 −1
−1 0

]
, σ

(
sr3
)

=
[

0 i
−i 0

]
.

Then
(χσ, χσ) = 1

8
∑
g∈G
|χσ(g)|2 = 1

8
[
22 + 02 + (−2)2 + 02 + 02 + 02 + 02 + 02

]
= 1. (3.66)

Therefore, σ is a 2-dimensional irreducible representation. Now, the character table of D4 is

# 1 1 2 2 2

D4 e r2 r s sr

ρ1 1 1 1 1 1
ρ2 1 1 1 −1 −1
ρ3 1 1 −1 1 −1
ρ4 1 1 −1 −1 1
σ 2 −2 0 0 0

The two character tables of the quaternion group Q and the dihedral group D4 are identical. However,
D4 and Q are not isomorphic groups. There are 5 elements order 2 in D4: r2, s, sr, sr2, sr3. But the
only element of order 2 in Q is −1. Therefore, Q and D8 are not isomorphic. So we have reached the
conclusion that identical character table doesn’t necessarily imply that the groups are isomorphic.
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4 Induced Representation Theory
Suppose we have a finite group G and a subgroup H ≤ G. Given a representation ρ : H → GL (W )

of the subgroup H, we want to construct a representation of G in a “canonical” way. This canonical
representation of G will be called the induced representation

IndGH ρ : G→ GL (?) .

§4.1 Induced representation

Definition 4.1. A representation ρG : G→ GL(V ) is said to be induced by ρH : H → GL(W ) if

(a) W ⊆ V is an H-invariant subspace of V , i.e. ρG (h) (W ) ⊆W for every h ∈ H;

(b) for every left H-coset σ = gH ∈ G/H, there exists a vector subspace Wσ ⊆ V such that

V =
⊕

σ∈G/H
Wσ, (4.1)

and W = WeH ;

(c) for g ∈ G, we have an action ρG (g) : Wσ →Wgσ. Set theoretically, one writes

ρG (g) (WxH) = WgxH . (4.2)

Remark 4.1. Note that G acts on G/H by left multiplication:

g · (xH) = (gx)H. (4.3)

The group action ρG (g) on the subuspaces, on the other hand, is given by (4.2). Requirement (c) asks
for these two actions to be equivariant, i.e. the following diagram commutes for every g ∈ G:

G/H G/H

{Wσ}σ∈G/H {Wσ}σ∈G/H

g

ρG(g)

· · ·g1H = eH g2H g3H gnH

Wg1H Wg2H Wg3H WgnH

· · ·g2g
−1
1−−−→ g3g

−1
2−−−→

G/H

g4g
−1
3−−−→ gng

−1
n−1−−−−→
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Universal property of the induced representation:
Let W be an H-representation and V be a G-representation, with the corresponding group
homomorphisms ρH : H → GL(W ) and ρG : G→ GL(V ). One says that W α−→ V is an induction
if it satisfies the following universal property:

(i) α is H-linear: for every h ∈ H, the following diagram commutes:

W V

W V

α

ρH(h) ρG

∣∣
H

(h)

α

(ii) if Z is another representation of G, and β : W → Z is a H-linear map, then there exists a
unique G-linear map β : V → Z such that the following diagram commutes:

W V

Z

∀β

α

∃! β

i.e. β = β ◦ α.

Lemma 4.1
If V =

⊕
σ∈G/HWσ as in Definition 4.1, then W = WeH ↪→ V satisfies the universal property.

Proof. Let β : W → Z be any H-linear map with Z being a G-representation with the group
homomorphism ρZ : G→ GL (Z).

Uniqueness of β: Suppose the diagram

W V

Z

β

α

β (4.4)

commutes, with β being a G-linear map. We need to show that β is unique. Fix σ = gH ∈ G/H and
v ∈ Wσ. We know how Gacts on the subspaces Wσ labelled by the cosets σ ∈ G/H given by (4.2),
from which one obtains

ρG
(
g−1

)
(Wσ) = ρG

(
g−1

)
(WgH) = Wg−1gH = WeH = W. (4.5)

Since v ∈Wσ, ρG
(
g−1)v ∈W . By the commutativity of (4.4), one has β = β ◦ α. Also, α is just the

inclusion map W ↪→ V . Hence,

β
(
ρG
(
g−1

)
v
)

= β ◦ α
(
ρG
(
g−1

)
v
)

= β
(
ρG
(
g−1

)
v
)
. (4.6)

β is G-linear, so the following diagram commutes:

V Z

V Z

β

β

ρG(g−1) ρZ(g−1)
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Therefore,
β
(
ρG
(
g−1

)
v
)

= β
(
ρG
(
g−1

)
v
)

= ρZ
(
g−1

)
β (v) . (4.7)

Hence,
β (v) = ρZ (g)β

(
ρG
(
g−1

)
v
)
, (4.8)

for v ∈Wσ = WgH . (4.8) depends on the choice of g, so we need to show the well-definedness of (4.8).
Let σ = gH = g′H. Then g−1g′ ∈ H. Since β : W → Z is a H-linear map, the following diagram
commutes:

W Z

W Z

β

ρH(g−1g′) ρZ(g−1g′)

β

In other words,
β ◦ ρH

(
g−1g′

)
= ρZ

(
g−1g′

)
◦ β. (4.9)

Composing by ρZ (g) to the left, we have

ρZ (g) ◦ β ◦ ρH
(
g−1g′

)
= ρZ

(
g′) ◦ β. (4.10)

As a result,

ρZ
(
g′)β (ρG (g′ −1v

))
= ρZ (g)βρH

(
g−1g′

)
ρG
(
g′ −1v

)
= ρZ (g)βρG

(
g−1g′

)
ρG
(
g′ −1v

)
= ρZ (g)β

(
ρG
(
g−1

)
v
)
. (4.11)

Here we used the fact that W is a subspace of V , and so ρH = ρG
∣∣
H

when acted on vectors of W .
Hence, (4.8) is well-defined! (4.8) shows that β is uniquely determined by β on V =

⊕
σ∈G/HWσ.

Existence of β: For v ∈ Wσ = WgH , we define β by (4.8), and then extend it linearly to all of
V =

⊕
σ∈G/HWσ. We have shown that this definition is well-defined. We now need to show that

β = β ◦ α and β is G-linear. Indeed, for v ∈W = WeH ,

β (v) = ρZ (e)β
(
ρG
(
e−1

)
v
)

= β (v) . (4.12)

Since α : W ↪→ V is the inclusion, α (v) = v, so that from (4.12), we have

β (v) = β (v) = β (α (v)) . (4.13)

Therefore, β = β ◦ α. In order to show that β is G-linear, we need to show the commutativity of the
following diagram for all x ∈ G

V Z

V Z

β

ρG(x) ρZ(x)

β

Given v ∈WgH , ρG (x) v ∈ ρG (x) (WgH) = WxgH . Therefore,

β (ρG (x) v) = ρZ (xg) ◦ β
[
ρG
(
(xg)−1

)
ρG (x) v

]
= ρZ (x) ρZ (g) ◦ β

[
ρG
(
g−1

)
v
]

= ρZ (x) ◦ β (v) .

Therefore, β ◦ ρG (x) = ρZ (x) ◦ β on each WgH , and hence β is G-linear. ■
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§4.2 Explicit construction of IndGH W

Given an H-representation W , we’ll show that IndGHW indeed exists! We construct IndGHW in the
following way: first we pick representatives

g1 = e, g2, g3, . . . , gn ∈ G

of cosets in G/H, i.e. G/H = {g1H, g2H, . . . , gnH}. Define a vector space

V = W ⊕W ⊕ · · · ⊕W = Wn,

where the subspaces are labelled by the cosets, i.e.

V = WeH ⊕Wg2H ⊕ · · · ⊕WgnH . (4.14)

Then we define a G-action on V in the following way: for g ∈ G and v ∈WgiH , first find the unique j
such that

g (giH) = (ggi)H = gjH.

In otheer words, there exists a unique j and a unique h ∈ H such that

ggi = gjh. (4.15)

We need to consider vector space isomorphisms

fi : W = WeH →WgiH .

WgiH is the same vector space as W , just labelled differently. So fi is just the identity map. Then we
define

ρ (g) v =
(
fj ◦ ρH (h) ◦ f−1

i

)
v, (4.16)

for v ∈WgiH , and ggi = gjh.

WgiH W = WeH W = WeH
WgjH

v f−1
i (v)

ρH(h)f−1
i (v) fjρH(h)f−1

i (v) = ρ(g)v

f−1
i−−→ ρH(h)−−−−→

fj−→

Now we need to show that ρ : G→ GL(V ) is, indeed, a representation.

Proposition 4.2
ρ : G → GL(V ) defined as in (4.16) is a representation, i.e. ρ : G → GL(V ) is a group
homomorphism, where V =

⊕n
i=1WgiH .

Proof. Let g, g′ ∈ G, we need to show that ρ (g′g) = ρ (g′) ρ (g). Take v ∈WgiH . Choose the unique j
and h ∈ H such that ggi = gjh; then choose the unique k and h′ ∈ H such that g′gj = gkh

′. Then
(g′g) gi = gk (h′h). As a result,

ρ
(
g′g
)

v =
[
fkρH

(
h′h
)
f−1
i

]
v

=
[
fkρH

(
h′) ρH (h) f−1

i

]
v

=
[
fkρH

(
h′) f−1

j

] [
fjρH (h) f−1

i

]
v

= ρ
(
g′) [ρ (g) v] . (4.17)

Therefore, ρ (g′g) = ρ (g′) ρ (g), and hence ρ : G→ GL(V ) is a representation. ■
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Remark 4.2. From the construction, we can see that

dim IndGHW = dim⊕σ∈G/HWσ = |G/H|dimW = [G : H] dimW, (4.18)

where [G : H] is the index of the subgroup H in G, i.e. the number of distinct left-cosets of H in G.

Example 4.1. Let Ctriv be the 1-dimensional trivial representation on H. Then

IndGH (Ctriv) = C [G/H] . (4.19)

Here, the H-invariant subspace W is the 1-dimensional space CeH . In this case, the subspaces Wσ,
labelled by the cosets σ ∈ G/H, are all 1-dimensional, i.e. Wσ = Ceσ, for σ ∈ G/H. As a result,

IndGH (Ctriv) =
⊕

σ∈G/H
Wσ =

⊕
σ∈G/H

Ceσ = C [G/H] . (4.20)

In this case, the G-action on V =
⊕

σ∈G/H Ceσ is given by

ρ (g) eσ = egσ. (4.21)

Here, C [G/H] is the permutation representation of G associated with its action on the set G/H by left
multiplication. Hence, this permutation representation of G is induced from the trivial 1-dimensional
representation of H.

Remark 4.3. Take H = {e}, the subgroup containing just the identity element. Then

IndG{e} (Ctriv) = C [G] . (4.22)

Hence, the regular representation of G is induced from the 1-dimensional trivial representation of
{e} ≤ G.

Example 4.2. Let C [H] be the representation space of the left-regular representation of H. Then

IndGH (C [H]) = C [G] . (4.23)

Let H = {e, h1, . . . , hk}. Then the representation space C [H] is

W = C [H] = Cee ⊕ Ceh1 ⊕ · · · ⊕ Cehk
.

Clearly, W is H-invariant, since
ρ (hi)

(
ehj

)
= ehihj

∈W.

Now, let σ = gH ∈ G/H be a coset. Then define

Wσ = C ⟨egh : h ∈ H⟩ = C ⟨ex : x ∈ σ⟩ . (4.24)

Then ρ (g′) egh = eg′gh ∈Wg′gH , implying that

ρ
(
g′) (WgH) = Wg′gH .

Now,
IndGHW =

⊕
σ∈G/H

Wσ =
⊕

σ∈G/H
C ⟨ex : x ∈ σ⟩ =

⊕
g∈G

C ⟨eg⟩ = C [G] . (4.25)

Remark 4.4. Since the regular representation of the group containing only the ideneity element is the
1-dimensional trvial representation, one has C [{e}] = Ctriv. Plugging in H = {e} in Example 4.2, we
have

IndG{e} (Ctriv) = C [G] . (4.26)

(4.23) tells us that the regular representation of G is induced from the regular representation of H.

65



4 Induced Representation Theory 66

§4.3 Induction and restriction
Given a finite group G and its subgroup H ≤ G and a G-representation U with group homomorphism
ρ : G→ GL(U), one writes ResGH ρ for the restriction of the group homomorphism ρ, i.e.

ResGH ρ = ρ
∣∣
H

: H → GL(U),

so that ResGH ρ is a H-representation.

Lemma 4.3
Restriction is transitive, i.e. if H ≤ K ≤ G and ρ : G → GL(V ) is a G-representation, then
ResGH ρ = ResKH

(
ResGK ρ

)
.

Proof.
ResKH

(
ResGK ρ

)
=
(
ResGK ρ

) ∣∣
H

=
(
ρ
∣∣
K

) ∣∣
H

= ρ
∣∣
H

= ResGH ρ. (4.27)

■

Proposition 4.4
Induction is also transitive, i.e. if H ≤ K ≤ G and ρ : H → GL(W ) is a H-representation, then
IndGH ρ ∼= IndGK

(
IndKH ρ

)
.

The proof is a bit lengthy and tedius. We can make our lives easier when we learn about induced class
functions and induced characters. Then we’ll give a proof of this.

Recall the universal mapping property of induced representation. For H ≤ G, let W be a H-
representation, and IndGHW be the induced representation of G. Take the inclusion ι : W → IndGHW =⊕

σ∈G/HWσ. Then given any G-representation U and any H-linear map φ : W → U , there exists a
unique G-linear map φ̃ : IndGHW → U such that the following diagram commutes:

W IndGHW =
⊕

σ∈G/H
Wσ

U

ι

φ φ̃

(4.28)

i.e. φ̃ ◦ ι = φ.

Now, observe that φ is a H-linear map W → U . Hence, φ ∈ HomH

(
W,ResGH U

)
, because U

is a G-representation to begin with, and we can restrict to a H-representation. For every φ ∈
HomH

(
W,ResGH U

)
, there is a unique corresponding G-linear map φ̃ : IndGHW → U , i.e. φ̃ ∈

HomG

(
IndGHW,U

)
.

Similarly, obseve that ι : W → IndGHW =
⊕

σ∈G/HWσ is an H-linear map, because clearly the
following diagram commutes:

W
⊕

σ∈G/H
Wσ

W
⊕

σ∈G/H
Wσ

ι

ρH(h)
ρ
∣∣
H

(h)=ρH(h)
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Now, given any G-linear map φ̃ ∈ HomG

(
IndGHW,U

)
, φ̃ is automatically H-linear. Hence, the

composition φ̃ ◦ ι : W → ResGH U is a H-linear map. So given any φ̃ ∈ HomG

(
IndGHW,U

)
, there exists

a unique corresponding φ = φ̃ ◦ ι ∈ HomH

(
W,ResGH U

)
subject to the commutativity of (4.28). It

establishes the isomorphism of the two vector spaces

HomG

(
IndGHW,U

)
∼= HomH

(
W,ResGH U

)
. (4.29)

Proposition 4.5
Suppose G is a finite group and H ≤ G. Additionally, suppose U is a G-representation with group
homomorphism ρG : G → GL(U), and W is an H-representation with group homomorphism
ρH : H → GL(W ). Then

ρG ⊗ IndGH ρH = IndGH
(
ResGH ρG ⊗ ρH

)
. (4.30)

In terms of the representation space, this reads

U ⊗ IndGHW = IndGH
(
ResGH U ⊗W

)
. (4.31)

Proof. We’ll construct a G-linear isomorphism

φ : U ⊗

 ⊕
σ∈G/H

Wσ

→ ⊕
σ∈G/H

(U ⊗W )σ .

Let fi : W = WeH → WgiH and f i : U ⊗W = (U ⊗W )eH → (U ⊗W )giH
be the respective vector

space isomorphisms (which are just identity maps, as we have discussed earlier). Here, fi concerns
IndGHW =

⊕
σ∈G/HWσ, and f i concerns IndGH

(
ResGH U ⊗W

)
=
⊕

σ∈G/H (U ⊗W )σ.
We define the i-th compoenent of φ to be

φi = f i ◦
[
ρG
(
g−1
i

)
⊗ f−1

i

]
. (4.32)

It takes a vector u⊗w ∈ U ⊗WgiH to f i
(
ρG
(
g−1
i

)
u⊗ f−1

i w
)
∈ (U ⊗W )giH

. Here, f i, ρG
(
g−1
i

)
, fi

are all bijective linear maps. Hence, φ is a bijective linear map. Now we need to show the G-linearity
of φ.

At this point, let’s denote by ρ(g) the group action of G on U ⊗
(⊕

σ∈G/HWσ

)
, and by ρ̃ (g) the

group action of G on
⊕

σ∈G/H (U ⊗W )σ. Now, take u ∈ U and w ∈WgiH , so that u⊗w ∈ U ⊗WgiH .
Given g ∈ G, take the unique j and h ∈ H such that ggi = gjh. Then

ρ (g) (u⊗w) = ρG (g) u⊗
(
IndGH ρH

)
(w) = ρG (g) u⊗ fj

(
ρH (h) f−1

i (w)
)
. (4.33)

This vector is in U ⊗WgjH , and the j-th component of φ will act on it. Hence,

φ (ρ (g) (u⊗w)) = φj (ρ (g) (u⊗w))

= f j

[
ρG
(
g−1
j

)
⊗ f−1

j

] [
ρG (g) u⊗ fj

(
ρH (h) f−1

i (w)
)]

= f j

[
ρG
(
g−1
j g

)
u⊗ ρH (h) f−1

i w
]

= f j

[
ρG
(
hg−1

i

)
u⊗ ρH (h) f−1

i w
]

; (4.34)
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because ggi = gjh implies g−1
j g = hg−1

i . On the other hand,

ρ̃ (g) [φ (u⊗w)] = φ̃ (g) [φi (u⊗w)]

= ρ̃ (g)
[
f i ◦

[
ρG
(
g−1
i

)
⊗ f−1

i

]]
(u⊗w)

= ρ̃ (g)
[
f i

(
ρG
(
g−1
i

)
u⊗ f−1

i w
)]

=
[
f j ◦

(
ResGH ρG ⊗ ρH

)
(h) ◦ f−1

i

] [
f i

(
ρG
(
g−1
i

)
u⊗ f−1

i w
)]

= f j ◦ (ρG (h)⊗ ρH (h))
[(
ρG
(
g−1
i

)
u⊗ f−1

i w
)]

= f j

[
ρG (h) ρG (gi) u⊗ ρH (h) f−1

i w
]
. (4.35)

Comparing (4.34) and (4.35), we have

φ ◦ ρ (g) = ρ̃ (g) ◦ φ. (4.36)

In other words, the following diagram commutes:

U ⊗
( ⊕
σ∈G/H

Wσ

) ⊕
σ∈G/H

(U ⊗W )σ

U ⊗
( ⊕
σ∈G/H

Wσ

) ⊕
σ∈G/H

(U ⊗W )σ

φ

ρ(g)
ρ̃(g)

φ

This establishes the G-linearity of φ : U⊗
(⊕

σ∈G/HWσ

)
→
⊕

σ∈G/H (U ⊗W )σ. Hence, φ is a G-linear
bijective linear map, i.e. an isomorphism of representations, as required. ■

§4.4 Induced class function
We have seen that given H ≤ G and a G-representation U with group homomorphism ρ : G→ GL(U),
one writes ResGH ρ for the restruction of the group homomorphism ρ to the subgroup H, i.e. ResGH ρ =
ρ
∣∣
H

: H → GL(U).
Evidently, the representation space for both ρ and ResGH ρ is U . If χ is the character of G associated

with the representation ρ, then by ResGH χ we denote the character of the subgroup H ≤ G associated
with the representation ResGH ρ. One often writes χ

∣∣
H

or simply χH for ResGH χ.

Lemma 4.6
Suppose H ≤ G. If ψ is a nonzero character of H, then there exists an irreducible character χ of
G such that (

ResGH χ, ψ
)
H
̸= 0. (4.37)

(Here (α, β)H denotes the inner product in the space Cclass [H] of class functions on H.)

Proof. Let χ1, . . . , χk be the irreducible characters of G. Let us denote the character associated with
the regular representation of G by χreg. From (2.90), we know that

χreg(h) =
{
|G| if h = e,

0 otherwise.
(4.38)

Therefore, (
χreg

∣∣
H
, ψ
)
H

= 1
|H|

∑
g∈H

χreg
∣∣
H

(g)ψ (g) = 1
|H|
|G| ψ (e) . (4.39)
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By Corollary 2.9, every irreducible representation V is contained in the regular representation with
multiplicity dimV . Therefore, χreg =

∑k
i=1 niχi. So

(
χreg

∣∣
H
, ψ
)
H

=
(

k∑
i=1

niχi
∣∣
H
, ψ

)
H

=
k∑
i=1

ni
(
χi
∣∣
H
, ψ
)
H

=
k∑
i=1

ni
(
χi
∣∣
H
, ψ
)
H
. (4.40)

Since 1
|H| |G| ψ (e) ̸= 0, we have

k∑
i=1

ni
(
χi
∣∣
H
, ψ
)
H
̸= 0. (4.41)

Therefore, at least one of the summands is nonzero, i.e.
(
χi
∣∣
H
, ψ
)
H

≠ 0 for some i ∈ {1, 2, . . . , k}. ■

Remark 4.5.
(
ResGH χ, ψ

)
̸= 0 is also expressed as ψ ⊂ ResGH χ, or ψ is a constituent of ResGH χ.

Lemma 4.7
Let χ be an irreducible character of G, and let ResGH χ =

∑
i ciχi, where χi’s are irreducible

characters of H, with ci ∈ Z≥0. Then ∑
i

c2
i ≤ [G : H] , (4.42)

with equality if and only if χ (g) = 0 for every g ∈ G \H.

(Here [G : H] is the index of the subgroup H in the group G given by the formula [G : H] = |G|
|H| , which

is the number of left H-cosets in G.)

Proof. ∑
i

c2
i =

(
ResGH χ,ResGH χ

)
H

= 1
|H|

∑
h∈H
|χ (h)|2 . (4.43)

But since χ is an irreducible character of G, one has

1 = (χ, χ)G = 1
|G|

∑
g∈G
|χ (g)|2

= 1
|G|

∑
h∈H
|χ (h)|2 +

∑
g∈G\H

|χ (g)|2


= |H|
|G|

∑
i

c2
i + 1
|G|

∑
g∈G\H

|χ (g)|2

≥ |H|
|G|

∑
i

c2
i , (4.44)

with equality if and only if χ (g) = 0 for every g ∈ G \H. Therefore,

∑
i

c2
i ≤
|G|
|H|

= [G : H] . (4.45)

■

Definition 4.2 (Induction of class functions). Let ψ ∈ Cclass(H). We define the induced class
function IndGH ψ on G by

IndGH ψ (g) = 1
|H|

∑
x∈G

ψ̊
(
x−1gx

)
, (4.46)
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where ψ̊ is a piecewise function defined on the whole of G as follows:

ψ̊ (y) =
{
ψ(y) if y ∈ H,
0 if y /∈ H.

(4.47)

Lemma 4.8
If ψ ∈ Cclass(H), then IndGH ψ ∈ Cclass(G), and IndGH (e) = [G : H]ψ (e).

Proof. Let g and g′ be conjugate elements. Then there exists y ∈ G such that g′ = y−1gy. Then

IndGH ψ
(
g′) = 1

|H|
∑
x∈G

ψ̊
(
x−1g′x

)
= 1
|H|

∑
x∈G

ψ̊
(
x−1y−1gyx

)
= 1
|H|

∑
yx∈G

ψ̊
(
(yx)−1 g(yx)

)
= 1
|H|

∑
z∈G

ψ̊
(
z−1gz

)
= IndGH ψ (g) .

Therefore, IndGH ψ is a class function on G.

IndGH ψ (e) = 1
|H|

∑
x∈G

ψ̊
(
x−1ex

)
= 1
|H|
|G| ψ (e) = [G : H]ψ (e) . (4.48)

■

Let us now denote the index of the subgroup H in G by n, i.e. n = [G : H]. Then there are n-distinct
left H-cosets in G. Let g1 = e, g2, . . . , gn be a complete set of coset representatives, also known as left
transversal. Then g1H(= eH = H), g2H, g3H, . . . , gnH are precisely the left cosets of H in G.

Lemma 4.9
Given a transversal as above,

IndGH ψ (g) =
n∑
i=1

ψ̊
(
g−1
i ggi

)
. (4.49)

Proof. Using the definition of induced class function,

IndGH ψ (g) = 1
|H|

∑
x∈G

ψ̊
(
x−1gx

)
= 1
|H|

n∑
i=1

∑
x∈giH

ψ̊
(
x−1gx

)
. (4.50)

Now, for x ∈ giH, x = gih for some h ∈ H. So

ψ̊
(
x−1gx

)
= ψ̊

(
h−1g−1

i ggih
)
. (4.51)

If g−1
i ggi ∈ H, the RHS of (4.51) is equal to ψ

(
h−1g−1

i ggih
)

= ψ
(
g−1
i ggi

)
, since ψ is a class function

on H. On the other hand, if g−1
i ggi /∈ H, then h−1g−1

i ggih /∈ H as well. Then the RHS of (4.51) is 0,
so is ψ̊

(
g−1
i ggi

)
. In either case, the RHS of (4.51) is ψ̊

(
g−1
i ggi

)
. Hence,

IndGH ψ (g) = 1
|H|

n∑
i=1

∑
x∈giH

ψ̊
(
x−1gx

)
= 1
|H|

n∑
i=1

∑
x∈giH

ψ̊
(
g−1
i ggi

)
=

n∑
i=1

ψ̊
(
g−1
i ggi

)
. (4.52)

■
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Theorem 4.10 (Frobenius reciprocity)
Let ψ ∈ Cclass [H] and ϕ ∈ Cclass [G], where H ≤ G. Then(

ResGH ϕ, ψ
)
H

=
(
ϕ, IndGH ψ

)
G
. (4.53)

Proof. (
ϕ, IndGH ψ

)
G

= 1
|G|

∑
g∈G

ϕ(g) IndGH ψ (g) = 1
|G| |H|

∑
g∈G

ϕ(g)
∑
x∈G

ψ̊
(
x−1gx

)
. (4.54)

We use the change of variable y = x−1gx. Then g = xyx−1. For a fixed x ∈ G, as g varies in G, y also
varies in G. Hence,(

ϕ, IndGH ψ
)
G

= 1
|G| |H|

∑
x,y∈G

ϕ (xyx−1) ψ̊ (y) = 1
|G| |H|

∑
x,y∈G

ϕ (y) ψ̊ (y) , (4.55)

since ϕ is a class function on G. The summands are x-independent, so the x-sum will yield |G|. Also,
for y ̸∈ H, ψ̊ (y) = 0. So, the y-sum can be rewritten as a sum over y ∈ H. Hence,(

ϕ, IndGH ψ
)
G

= |G|
|G| |H|

∑
y∈H

ϕ (y)ψ (y) =
(
ResGH ϕ, ψ

)
H
. (4.56)

■

Corollary 4.11
If ψ is a character of H, then IndGH ψ is a character of G.

Proof. Let χ be an irreducible character of G. By Theorem 4.10,(
χ, IndGH ψ

)
G

=
(
ResGH χ, ψ

)
H
∈ Z≥0, (4.57)

since ψ and ResGH χ are both characters of H. Then (4.57) means that IndGH ψ is a Z≥0-linear
combination of irreducible characters of G. Therefore, IndGH ψ is a character of G. ■

So we have proved that the induced class function of a character of H is a character of G, and that is
precisely the character of the induced representation, as the following result states.

Theorem 4.12
Suppose H ≤ G, and let χ be the character of the representation ρ : H → GL(W ). Then IndGH χ
is the character of the induced representation IndGH ρ.

Proof. Let χIndG
H ρ be the character of the induced representation IndGH ρ. We need to show that

χIndG
H ρ = IndGH χ. Let g ∈ G, then

(
IndGH ρ

)
(g) :

n⊕
i=1

WgiH →
n⊕
i=1

WgiH ,

where g1 = e, g2, g3, . . . , gn is a complete set of left transversals. Let {v1,v2, . . . ,vk} be a basis for W .
Then {

v(1)
1 ,v(1)

2 , . . . ,v(1)
k ,

v(2)
1 ,v(2)

2 , . . . ,v(2)
k ,

. . . ,

v(n)
1 ,v(n)

2 , . . . ,v(n)
k

}
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is a basis for
⊕n

i=1WgiH . Let A be the matrix representation of
(
IndGH ρ

)
(g) in this basis. Aii denotes

the component of the i-th basis vector when
(
IndGH ρ

)
(g) applied to the i-th basis vector.

By definition of
(
IndGH ρ

)
(g), it takes WgiH to WgjH , where j is the unique number such that

ggi ∈ gjH. If i ̸= j,
(
IndGH ρ

)
(g) takes each of the vectors v(i)

1 ,v(i)
2 , . . . ,v(i)

k to some linear combinations

of v(j)
1 ,v(j)

2 , . . . ,v(j)
k . That contributes 0 to the diagonal entries of the matrix A.

On the contrary, when i = j,
(
IndGH ρ

)
(g) takes WgiH to itself. In that case ggi = gih, for some

unique h ∈ H. Then h = g−1
i ggi. Then the i-th component of

(
IndGH ρ

)
(g) is

fiρ (h) f−1
i = fiρ

(
g−1
i ggi

)
f−1
i : WgiH →WgiH .

Therefore,
Tr
[(

IndGH ρ
)

(g)
]

=
∑
i=j

Tr
[
fiρ (h) f−1

i

]
=

∑
g−1

i ggi∈H

Tr
[
ρ
(
g−1
i ggi

)]
. (4.58)

The summand is nothing but χ
(
g−1
i ggi

)
. This sum is the same as summing over all i, except when

g−1
i ggi ̸∈ H, we’ll consider the summand to be 0. Therefore,

χIndG
H ρ (g) =

n∑
i=1

χ
(
g−1
i ggi

)
if g−1

i ggi ∈ H,
0 otherwise.

=
n∑
i=1

χ̊
(
g−1
i ggi

)
= IndGH χ (g) , (4.59)

by Lemma 4.9. Hence, χIndG
H ρ = IndGH χ. ■

Let CG(g) denote the conjugacy class of G containing g.

CG(g) =
{
x−1gx | x ∈ G

}
.

For H ≤ G, take the set CG(g) ∩H, which can be written as the disjoint union of some H-conjugacy
classes. Note that CG(g)∩H cannot contain any H-conjugacy class partially. Indeed, let x ∈ CG(g)∩H,
and suppose x′ is conjugate to x in H. Then x′ = h−1xh for some h ∈ H, so x′ ∈ H. Since x ∈ CG(g),
x = y−1gy for some y ∈ G. As a result, x′ = h−1xh = h−1y−1gyh = (yh)−1 g (yh) ∈ CG(g). Hence,
x′ ∈ CG(g) ∩H. Therefore, CG(g) ∩H cannot contain any H-conjugacy class partially.

A brief on double cosets: Let H,K ≤ G. A double coset of H and K in G is a set of the form
HxK = {hxk | h ∈ H and k ∈ K}, for some x ∈ G. It’s well known that two double cosets are either
disjoint or equal, because double cosets are precisely the equivalence classes of the equivalence relation

x ∼ y ⇐⇒ there exists h ∈ H, k ∈ K such that y = hxk.

The cardinality of a double coset HxK is

|HxK| = |H| |K|
|H ∩ xKx−1|

= |H| |K|
|x−1Hx ∩K|

. (4.60)

Indeed, there is a bijection between HxK and HxKx−1. Therefore, these two sets have the same
cardinality. The latter is a product of two subgroups. We know that if H1, H2 ≤ G, then

|H1H2| =
|H1| |H2|
|H1 ∩H2|

. (4.61)
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Therefore,

|HxK| =
∣∣∣HxKx−1

∣∣∣ = |H|
∣∣xKx−1∣∣

|H ∩ xKx−1|
= |H| |K|
|H ∩ xKx−1|

. (4.62)

Similarly, the bijection between HxK and x−1HxK will give us

|HxK| = |H| |K|
|x−1Hx ∩K|

. (4.63)

Proposition 4.13
Let ψ be a character of H ≤ G, and let g ∈ G. Let

CG(g) ∩H =
m⋃
i=1

CH (xi)

where the CH (xi) are the pairwise disjoint H-conjugacy classes whose union is CG(g) ∩H. Then

IndGH ψ(g) =


0 if m = 0,

|CG (g)|
m∑
i=1

ψ(xi)
|CH(xi)| otherwise; (4.64)

where CG (g) =
{
x ∈ G | x−1gx = g

}
is the centralizer of g in G.

Proof. If m = 0, then CG(g) ∩H = ∅, i.e.
{
x ∈ G | x−1gx ∈ H

}
is an empty set. Then we have

IndGH ψ (g) = 1
|H|

∑
x∈G

ψ̊
(
x−1gx

)
= 1
|H|

∑
x∈G

{
ψ
(
x−1gx

)
if x−1gx ∈ H,

0 otherwise
= 0. (4.65)

Now let m > 0. Let Xi =
{
x ∈ G | x−1gx ∈ CH (xi)

}
, for 1 ≤ i ≤ m. Then Xi are pairwise disjoint,

and their union is the set
{
x ∈ G | x−1gx ∈ H

}
. By definition of the induced class function

IndGH ψ (g) = 1
|H|

∑
x∈G

ψ̊
(
x−1gx

)
= 1
|H|

m∑
i=1

∑
x∈Xi

ψ
(
x−1gx

)
. (4.66)

For x ∈ Xi, x−1gx is H-conjugate to xi, and ψ ∈ Cclass [H], so ψ
(
x−1gx

)
= ψ (xi). Therefore, there

are |Xi|-many contributions each equal to ψ (xi). As a result,

IndGH ψ (g) =
m∑
i=1

|Xi|
|H|

ψ (xi) . (4.67)

Let’s now calculate |Xi|
|H| . For each i, choose gi ∈ G such that g−1

i ggi = xi. We claim that CG (g) giH =
Xi.

x ∈ Xi ⇐⇒ x−1gx = h−1xih = h−1g−1
i ggih for some h ∈ H

⇐⇒ g
(
xh−1g−1

i

)
=
(
xh−1g−1

i

)
g for some h ∈ H

⇐⇒ xh−1g−1
i ∈ CG (g) for some h ∈ H

⇐⇒ x ∈ CG (g) giH.

Therefore, CG (g) giH = Xi, and as a result, we have

|Xi| = |CG (g) giH| =
|CG (g)| |H|∣∣∣g−1

i CG(g)gi ∩H
∣∣∣ . (4.68)
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Now,

x ∈ CG (xi) ⇐⇒ xxi = xix ⇐⇒ xg−1
i ggi = g−1

i ggix

⇐⇒
(
gixg

−1
i

)
g = g

(
gixg

−1
i

)
⇐⇒ gixg

−1
i ∈ CG (g) gi

⇐⇒ x ∈ g−1
i CG(g)gi,

proving that g−1
i CG(g)gi = CG (xi). So

|Xi| =
|CG (g)| |H|
|CG (xi) ∩H|

. (4.69)

Now,

h ∈ CG (xi) ∩H ⇐⇒ h−1xih = xi and h ∈ H ⇐⇒ h ∈ CH (xi) ,

so that CG (xi) ∩H = CH (xi). Therefore,

|Xi|
|H|

= |CG (g)|
CH (xi)

. (4.70)

Plugging it into (4.67), we have

IndGH ψ (g) =
m∑
i=1

|CG (g)|
CH (xi)

ψ (xi) = |CG (g)|
m∑
i=1

ψ (xi)
CH (xi)

. (4.71)

■

We now give a proof of Theorem 4.4 as promised.

Proposition 4.14 (Previously Proposition 4.4)
Induction is transitive, i.e. if H ≤ K ≤ G and ρ : H → GL(W ) is a H-representation, then
IndGH ρ ∼= IndGK

(
IndKH ρ

)
.

Proof. We show that the two associated characters are equal. Then by Corollary 2.6, we are done
proving the isomorphism of representations. Let χ be the character associated with the H-representation
ρ : H → GL(W ). By Theorem 4.12, induced character (induced as a class function) is the character of
the induced representation. So we need to show that

IndGH χ = IndGK
(
IndKH χ

)
. (4.72)

Take g ∈ G. Then (
IndGH χ

)
(g) = 1

|H|
∑
x∈G

χ̊
(
x−1gx

)
. (4.73)

On the other hand,[
IndGK

(
IndKH χ

)]
(g) = 1

|K|
∑
y∈G

y−1gy∈K

(
IndKH χ

) (
y−1gy

)

= 1
|K|

1
|H|

∑
y∈G

y−1gy∈K

∑
z∈K

z−1(y−1gy)z∈H

χ
(
z−1

(
y−1gy

)
z
)
. (4.74)

We can rewrite it as follows:[
IndGK

(
IndKH χ

)]
(g) = 1

|H|
1
|K|

∑
y∈G,z∈K

χ̊
(
(yz)−1 gyz

)
, (4.75)
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where χ̊ = χ on H, and χ̊ = 0 outside of H. Now, given any x ∈ G, there are exactly |K|-many
solutions to the equation x = yz where y ∈ G and z ∈ K. Indeed, given any z ∈ K, there is a unique
y ∈ G, namely y = xz−1. Therefore,[

IndGK
(
IndKH χ

)]
(g) = 1

|H|
1
|K|

∑
y∈G,z∈K

χ̊
(
(yz)−1 gyz

)
= 1
|H|

1
|K|

∑
x∈G
|K| χ̊

(
x−1gx

)
= 1
|H|

∑
x∈G

χ̊
(
x−1gx

)
=
(
IndGH χ

)
(g) . (4.76)

Hence, IndGH χ = IndGK
(
IndKH χ

)
, and we are done! ■

§4.5 Other constructions of IndGH W

There are actually several other constructions of the induced representation. But they all are equivalent
by the universal property of induced representation.

Theorem 4.15
Let H ≤ G, and let W be an H-representation. Suppose W

α1−→ V1 and W
α2−→ V2 are two

inductions of W to the group G. Then V1 and V2 are isomorphic as G-representations.

Proof. By the universal property of induced representation, if Z is another representation of G, and
β : W1 → Z is a H-linear map, then there exists a unique G-linear map β : V1 → Z such that the
following diagram commutes:

W V1

Z

∀β

α1

∃! β (4.77)

Similarly, there exists a unique G-linear map β
′ : V2 → Z such that the following diagram commutes:

W V2

Z

∀β

α2

∃! β′ (4.78)

Taking Z = V2 and β = α2 in (4.77), there exists a unique G-linear map f : V1 → V2 subject to the
commutativity of the following diagram:

W V1

V2

α2

α1

∃! f (4.79)

Similarly, taking Z = V1 and β = α1 in (4.78), there exists a unique G-linear map g : V2 → V1 subject

75



4 Induced Representation Theory 76

to the commutativity of the following diagram:

W V2

V1

α1

α2

∃! g (4.80)

Combining (4.79) and (4.80), we have the following commutative diagram:

V2

W V1

V2

g

α2

α1

α2

f

=⇒

W V2

V2

α2

α2

f◦g (4.81)

But taking Z = V2 and β = α2 in (4.78), there exists a unique G-linear map α2 : V2 → V2, namely
1V2 : V2 → V2 subject to the commutativity of the following diagram:

W V2

V2

α1

α2

∃! α2=1V2
(4.82)

But by (4.81), taking α2 = f ◦ g also makes the diagram commute. Therefore, by the uniqueness,
f ◦ g = 1V2 . Similarly, g ◦ f = 1V1 . f, g are G-linear maps. Therefore, f : V1 → V2 is an isomorphism
of G-representations. ■

§4.5.i Using right-cosets
We previously constructed IndGHW as the direct sum of WgiH ’s, where giH’s make up a complete set
of left-cosets of H. One can similarly construct IndGHW using right-cosets as well.

Let n = [G : H], so there are n right cosets of H in G. Take g1 = e, g2, g3, . . . , gn such that
Hg1, Hg2, . . . ,Hgn are all the right-cosets of H in G, so that

G = Hg1 ⊔Hg2 ⊔ · · · ⊔Hgn. (4.83)

(Here ⊔ signifies disjoint union) As before, we take

V = W ⊕W ⊕ · · · ⊕W = Wn. (4.84)

We label them with the cosets, so

V = WHg1 ⊕WHg2 ⊕ · · · ⊕WHgn . (4.85)

Suppose ρH : H → GL (W ) be the H-representation in question. We define the induced representation
ρ : G → GL (V ) as follows: For g ∈ G, we are going to define ρ (g) (v) for v ∈ WHgj . Suppose
gg−1
j = g−1

i h for some h ∈ H. Then

ρ (g) v := the copy of ρH (h) v in WHgi . (4.86)
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More formally speaking, suppose fi : W = WHe →WHgi be the identification. Then for v ∈WHgj and
gg−1
j = g−1

i h,
ρ (g) v =

[
fi ◦ ρH (h) ◦ f−1

j

]
v. (4.87)

Then it’s a routine check that this is, indeed, a representation. One can similarly check as in Lemma 4.1
that it satisfies the universal property of induced representation1.

§4.5.ii Using function space
Let ρH : H → GL(W ) be a representation of H, and H ≤ G. Consider the function space

V = {f : G→W | f (hx) = ρH (h) f (x) , ∀x ∈ G, h ∈ H} . (4.88)

We can define a representation ρ : G→ GL(V ) of G on V as follows:

[ρ (g) f ] (x) = f (xg) . (4.89)

We need to check that ρ (g) f is an element of V .

[ρ (g) f ] (hx) = f (hxg) = ρH (h) f (xg) = ρH (h) [ρ (g) f ] (x) . (4.90)

Therefore, ρ (g) f ∈ V . Given g, g′ ∈ G,[
ρ
(
gg′) f] (x) = f

(
xgg′) .[

ρ (g) ρ
(
g′) f] (x) =

[
ρ
(
g′) f] (xg) = f

(
xgg′) .

Therefore, ρ (gg′) f = ρ (g) ρ (g′) f , and hence, ρ : G→ GL(V ) is, indeed, a representation of G. We
want to show that this is also an induced representation, induced by ρH .

The crucial observation is that any function f ∈ V is completely determined by its values in the
right-coset representatives. To be precise, take g1 = e, g2, g3, . . . , gn such that Hg1, Hg2, . . . ,Hgn are
all the right-cosets of H in G, so that

G = Hg1 ⊔Hg2 ⊔ · · · ⊔Hgn.

Then any g ∈ G can uniquely be written as g = hgi for some h ∈ H and i ∈ {1, 2, . . . , n}. Then

f (g) = f (hgi) = ρH (h) f (gi) . (4.91)

So, if we know the value of f on each gi, then we know the value of f on the whole of G. Now we can
define an isomorphism of vector spaces:

ψ : Wn =
n⊕
i=1

WHgi → V

(w1,w2, . . . ,wn) 7→ f, f (gi) = wi ∀ i.

This is an isomorphism of vector spaces, because as mentioned earlier, f is completely determined by
its values on each gi. We claim that this is also a G-linear map.

Take wj ∈WHgj . Then ψ (w) ∈ V is a function, such that ψ (wj) (gj) = wj and ψ (wj) (gk) = 0 for
k ̸= j. We can write it as follows:

ψ (wj) (gk) =
{

wj if k = j,

0 if k ̸= j.
(4.92)

Let ρ1 : G → GL (
⊕n

i=1WHgi) and ρ2 : G → GL(V ) be the relevant group homomorphisms of the
representations. For g ∈ G,

[ρ2 (g)ψ (wj)] (gk) = ψ (wj) (gkg) . (4.93)
1Check https://atonurc.github.io/assets/catrep_talk_2.pdf (slides 24 to 29) for a detailed proof that this con-

struction satisfies the universal property of induced representation.
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gkg belongs to a right H-coset, say Hgl. Then gkg = h′gl. As a result,

[ρ2 (g)ψ (wj)] (gk) = ψ (wj)
(
h′gl

)
= ρH

(
h′)ψ (wj) (gl) . (4.94)

For l ̸= j, this is 0. Suppose, for k = i, we have l = j. Then gig = hgj , i.e. gg−1
j = hg−1

i . Then we have

[ρ2 (g)ψ (wj)] (gi) = ρH (h)ψ (wj) (gj) = ρH (h) wj . (4.95)

To summarize,

[ρ2 (g)ψ (wj)] (gk) =
{
ρH (h) wj if k = i, where i satisfies gg−1

j = hg−1
i ,

0 otherwise.
(4.96)

Now, ρ1 (g) wj gives us the copy of ρH (h) wj in the i-th component WHgi , where i satisfies gg−1
j = hg−1

i .
Therefore, applying ψ on it gives

[ψ (ρ1 (g) wj)] (gk) =
{
ρH (h) wj if k = i, where i satisfies gg−1

j = hg−1
i ,

0 otherwise.
(4.97)

Therefore,
ψ ◦ ρ1 (g) = ρ2 (g) ◦ ψ, (4.98)

i.e. the following diagram commutes for every g ∈ G:

n⊕
i=1

WHgi V

n⊕
i=1

WHgi V

ρ1(g)

ψ

ρ2(g)

ψ

Therefore, ψ is an isomorphism of G-representations. We have already seen that
n⊕
i=1

WHgi
∼= IndGHW .

As a result, V ∼= IndGHW .

§4.5.iii By extension of scalars
We have seen that a G-representation V can be thought of as a G-module. The concept of module we
know is that of a module over a ring. But G is not a ring. So “a module over G” doesn’t make any
sense. However, we can think of a G-representation V as a module over a ring as well. That ring is
precisely the group algebra C [G].

Definition 4.3. The group algebra C [G] is

C [G] = span {δg | g ∈ G} .

The multiplication rule is given by
δg · δg′ = δgg′ , (4.99)

and extend it linearly. The multiplicative identity is δe, where e ∈ G is the identity element.

If ρ : G→ GL(V ) is a representation, then V is a C [G]-module (module over the ring of C [G]).∑
g∈g

agδg

 · v :=
∑
g∈g

agρ (g) v. (4.100)
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Then one can check that this satisfies all the axioms of a module over the ring C [G]. Usually in a
module, the scalars come from the ground ring. Here, the ring is C [G]. In (4.100),

∑
g∈g agδg ∈ C [G]

is the scalar from the ring.
Similarly, a vector space V that has a C [G]-module structure is a representation of G. The

representation ρ : G→ GL(V ) is defined as follows:

ρ (g) v := δg · v. (4.101)

The multiplication δg · v on the RHS of (4.101) comes from the C[G]-module structure of V . Here
v ∈ V , and δg ∈ C [G]. The multiplication δg · v is the scalar multiplication of the module element v
by the scalar δg from the ground ring C [G].

So we have established that a representation of a group G is the same as a vector space V which has
the structure of a module over the ring C[G]. Now, let W be a representation of H, where H ≤ G,
with group homomorphism ρH : H → GL(W ). Then W is a C [H]-module:

δh ·w := ρH (h) w. (4.102)

We want to make a C [G]-module out of it. For that purpose, we need to extend the scalars of the
module from C [H] to C [G]. One way to do it is to take the tensor product

C [G]⊗C[H] W.

Here, both C [G] and W are representations of H, i.e. both are vector spaces that are C [H]-modules.
Then the tensor product C [G]⊗C[H]W is also a C [H]-module. This has the structure of a C [G]-module
as well:

δx ·
(
δg ⊗C[H] w

)
:= δxg ⊗C[H] w. (4.103)

Therefore, C [G] ⊗C[H] W defines a representation of the group G. Indeed, this is the same as the
induced representation IndGHW . To show this, first we fix representatives

g1 = e, g2, g3, . . . , gn ∈ G

of left-cosets in G/H, i.e. G/H = {g1H, g2H, . . . , gnH}. Then we define the linear map

ψ :
n⊕
i=1

WgiH → C [G]⊗C[H] W

as follows: given w ∈ WgiH (remember that W and WgiH are the same vector space, just labelled
differently), we define

ψ (w) = δgi ⊗C[H] w, for w ∈WgiH . (4.104)

To be precise, let fi : W →WgiH be the vector space isomorphisms. WgiH is the same vector space as
W , just labelled differently. So fi is just the identity map. Then for w ∈WgiH ,

ψ (w) = δgi ⊗C[H] f
−1
i w. (4.105)

This is a well-defined linear map. This is also an isomorphism of vector spaces, because the inverse
map is given by

ϕ : C [G]⊗C[H] W →
n⊕
i=1

WgiH .

It takes δg ⊗C[H] w, for some g ∈ G and w ∈W , and maps it to
⊕n

i=1WgiH . The way it is defined is
as follows: first identify which coset g belongs to, i.e. write g = gih for some h ∈ H. Then

δg ⊗C[H] w = δgih ⊗C[H] w = δgiδh ⊗C[H] w
= δgi ⊗C[H] δhw = δgi ⊗C[H] δhw
= δgi ⊗C[H] ρH (h) w. (4.106)
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So ϕ maps it to
ϕ
(
δg ⊗C[H] w

)
= the copy of ρH (h) w in WgiH . (4.107)

To be precise, for g = gih and w ∈W ,

ϕ
(
δg ⊗C[H] w

)
= fi [ρH (h) w] . (4.108)

Now, given w ∈WgiH ,

ϕ (ψ (w)) = ϕ
(
δgi ⊗C[H] f

−1
i w

)
= fif

−1
i w

= w ∈WgiH . (4.109)

Therefore, ϕ ◦ ψ = 1⊕n

i=1 WgiH
. On the other hand, given g ∈ G and w ∈W ,

ψ
(
ϕ
(
δg ⊗C[H] w

))
= ψ [fiρH (h) w] (4.110)

where g = gih, for h ∈ H. Then

ψ
(
ϕ
(
δg ⊗C[H] w

))
= ψ [fiρH (h) w]

= δgi ⊗C[H] f
−1
i [fiρH (h) w]

= δgi ⊗C[H] ρH (h) w
= δg ⊗C[H] w, (4.111)

by (4.106). Therefore, ψ ◦ ϕ = 1C⊗C[H]W . So ψ :
⊕n

i=1WgiH → C [G] ⊗C[H] W is an isomorphism of
vector space. Now we show that it is a G-linear map.

Let ρ1 : G→ GL (
⊕n

i=1WgiH) and ρ2 : G→ GL
(
C [G]⊗C[H] W

)
be the relevant group homomor-

phisms of the representations. To show that ψ is a homomorphism of representations, we need to show
that the following diagram commutes for every g ∈ G.⊕n

i=1WgiH C [G]⊗C[H] W

⊕n
i=1WgiH C [G]⊗C[H] W

ρ1(g)

ψ

ρ2(g)

ψ

Take w ∈WgiH . Suppose ggi = gjh for some h ∈ H.

ρ2 (g)ψ (w) = ρ2 (g)
[
δgi ⊗C[H] f

−1
i w

]
= δggi ⊗C[H] f

−1
i w

= δgjh ⊗C[H] f
−1
i w

= δgjδh ⊗C[H] f
−1
i w

= δgj ⊗C[H] δh
(
f−1
i w

)
= δgj ⊗C[H] ρH (h)

(
f−1
i w

)
. (4.112)

On the other hand,

ψ (ρ2 (g) w) = ψ
(
fjρH (h) f−1

i w
)

= δgj ⊗C[H] f
−1
j

(
fjρH (h) f−1

i w
)

= δgj ⊗C[H] ρH (h)
(
f−1
i w

)
. (4.113)

Therefore, ψ is a G-linear map, and hence it is an isomorphism of representations.
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5 Young Tableaux

In this chapter, we’ll see a very elegant description of irreducible representations of Sn through
Young tableaux.

§5.1 Young diagram

Definition 5.1. A partition of a positive integer n is a sequence of positive integer λ =
(λ1, λ2, . . . , λl) satisfying λ1 ≥ λ2 ≥ · · · ≥ λl > 0 with n = λ1 + λ2 + · · · + λl. We write
λ ⊢ n to denote that λ is a partition of n.

For instance the number 4 has five partitions: (4) , (3, 1) , (2, 2) , (2, 1, 1) , (1, 1, 1, 1). These partitions
are pictorially represented by Young diagrams as follows.

Definition 5.2 (Young diagram). A Young diagram is a finite collection of boxes arranged in
left-justified rows with row size weakly decreasing (equal or less). The Young diagram associated
with the partition λ = (λ1, λ2, . . . , λl) is the one that has l rows and the i-th row contains λi
boxes.

For example, the Young diagrams corresponding to the partitions of 4 are:

(4) (3, 1) (2, 2) (2, 1, 1) (1, 1, 1, 1)

Because of the 1-1 corresponsence between partitions and Young diagram, same symbol is used for
both of them. Foor example, by (3, 1), one represents the second Young diagram above. A Young
tableau is obtained by filling the boxes of a Young diagram with numbers.

Definition 5.3 (Young tableau). Suppose λ ⊢ n. A Young tableau t of shape λ is obtained by
filling in the boxes of λ with each of 1, 2, . . . , n exactly once. In this case, we say that t is a
λ-tableau.

We can easily see that there are n! such λ-tableaux. For example, corresponding to λ = (2, 1), there
are 3! = 6 such tableaux:

1 2
3

2 1
3

1 3
2

3 1
2

2 3
1

3 2
1

Definition 5.4 (Standard Young tableau). A standard Young tableau is a Young tableau whose
entries are increasing across each row and each column.

The only standard tableau for λ = (2, 1) are

1 2
3

1 3
2

Here is another example of a standard tableau associated with λ = (3, 3, 2, 1) ⊢ 9:
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1 2 4
3 5 6
7 8
9

We know from our previous discussions on character theory that the conjugacy classes of Sn are
characterized by the cycle types, and thus they correspond to partitions of n, which we have seen to
be equivalent to Young diagrams of size n. We also have learned from the construction of character
table that the number of irreducible representations of a finite group is equal to the number of its
conjugacy classes. So it makes perfect sense to talk about constructing an irreducible representation of
Sn corresponding to each Young diagram of size n.

§5.2 Tabloid and permutation module Mλ

Definition 5.5 (Young tabloid). Two λ-tableaux t1 and t2 are row-equivalent, denoted t1 ∼ t2, if
the corresponding rows of the two tableaux contain the same elements. A tabloid of shape λ, or
λ-tabloid is such an equibalence class, denoted by [t] = {t1 | t1 ∼ t}, where t is a λ-tabloid.

We draw the tabloid [t] by removing the vertical bars separating the entries within each row. For
instance, if

t = 1 2
3

,

then [t] is the tabloid drawn as

1 2
3

,

which represents the equivalence class containing the following tableaux:

1 2
3

and
2 1
3

Also, for example, notice that

1 4 7
3 6
2 5

=
4 7 1
6 3
2 5

̸=
4 7 1
6 2
3 5

̸=
4 7 1
2 3
6 5

.

We now want to define a representation of Sn on a vector space whose basis is the set of tabloids for a
given shape. For this, we need to find a way for the elements of Sn to act on the relevant tabloids.
There is an obvious choice of letting the permutations permute the entries of the tabloid. For instance,

(1 2 3)
1 2
3

=
2 3
1

. (5.1)

This is a well-defined action. Indeed, if t1 ∼ t2, then the rows of t1 and t2 contain the same elements.
After performing the permutation π ∈ Sn, the rows will also have the same elements. In other words,

[t1] = [t2] =⇒ π [t1] = π [t2] ,

i.e. the action of Sn on the tabloids is well-defined.
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Definition 5.6 (Permutation module). Suppose λ ⊢ n. Let Mλ denote the vector space whose basis
is the set of λ-tabloids. Then Mλ is a representation of Sn, known as the permutation module
corresponding to λ.

Example 5.1. Consider λ = (n). We see then Mλ = M (n) is the 1-dimesnional vector space spanned
by the single tabloid

1 2 3 · · · n

There is this single tabloid in the basis set of M (n) as there is only one row involved. Since this tabloid
is fixed under the action of Sn by permuting its entries, we see that M (n) is the 1-dimensional trivial
representation.

Example 5.2. Consider λ = (1, 1, . . . , 1). Then a λ-tabloid is simply a permutation of {1, 2, 3, . . . , n}.
Here is an example of such a λ-tabloid:

1
2
3
...
n

There are n! such distinct λ-tabloids. Each λ-tabloid corrresponds to a unique σ ∈ Sn. π ∈ Sn acting
on the λ-tabloid corrresponding to σ ∈ Sn gives us the λ-tabloid corresponding to πσ ∈ Sn. Therefore,
it follows that M (1,1,...,1) is isomorphic to the regular representation C [Sn].

Example 5.3. Consider λ = (n− 1, 1). Let [ti] be the λ-tabloid with i on the second row. Then Mλ

has basis as [t1] , [t2] , . . . , [tn]. For example, for n = 4, M (3,1) has the following basis:

[t1] =
2 3 4
1

, [t2] =
1 3 4
2

, [t3] =
1 2 4
3

, [t3] =
1 2 3
4

.

The action of π ∈ Sn sends [ti] to
[
tπ(i)

]
. Hence, M (n−1,1) is isomorphic to the defining permutation

representation of Sn on Cn.

Now we study the dimension and characters of Mλ.

Proposition 5.1
If λ = (λ1, λ2, . . . , λl) ⊢ n, then

dimMλ = n!
λ1!λ2! · · ·λl!

. (5.2)

Proof. The first row of a λ-tabloid has λ1-many entries, and there are
( n
λ1

)
-many ways to choose the

λ1-many entries of the first row. Then there are
(n−λ1
λ2

)
-many ways to choose the λ2-many entries

of the second row. Continuing this way, there are
(n−λ1−···−λl−1

λl

)
-many ways to choose the λl-many

entries of the l-th row. Choosing the entries is enough, we don’t need to arrange or permute the entries
in a row. Therefore, the total number of λ-tabloids is(

n

λ1

)(
n− λ1
λ2

)
· · ·
(
n− λ1 − · · · − λl−1

λl

)
= n!
λ1!λ2! · · ·λl!

. (5.3)

The dimension of Mλ is the number of λ-tabloids. Therefore, dimMλ = n!
λ1!λ2!···λl! . ■
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Proposition 5.2
Let λ = (λ1, λ2, . . . , λl) ⊢ n, and g ∈ Sn. Let (m1,m2, . . . ,mr) be the cycle type of g (i.e. g
is a product of an m1-cycle, an m2-cycle, and so forth in its the disjoint cycle product form).
Then the character of the representation of Sn on Mλ evaluated at g is equal to the coefficient of
xλ1

1 xλ2
2 · · ·x

λl
l in the product

r∏
i=1

(
xmi

1 + xmi
2 + · · ·+ xmi

l

)
.

Proof. Since Mλ can be realized as a permutation representation on the set of λ-tabloids, by Lemma 2.2,
the character value evaluated at g ∈ Sn is the number of λ-tabloids fixed by g. Now, only those
λ-tabloids will be g-fixed for which each cycle of g permutes the elements from a single row.

This is achieved by putting the mi-cycles in a single row (for all the rows) so that under the action
of that cycle, the tabloid remains invariant. There are r such steps where r comes from the fact that
the cycle type of g is given by the r-tuple (m1,m2, . . . ,mr).

As we expand the polynomial given above (also known as generating function), the variable we select
in each factor, say xi, corresponds to the choice of which row in the tabloid we would like to put the
cycle in. Specifically, choosing xmi

j corresponds to placing a cycle of length mi into the j-th row of the
tabloid. Then for any term after the expansion is carried out, the exponent of xj corresponds to the
total number of elements placed in the j-th row which we expect to be λj .

So, the coefficient of the term xλ1
1 xλ2

2 · · ·x
λl
l in the given polynomial expression precisely refers to

the number of tabloids of shape λ that emerges after this r-step process, i.e. the number of λ-tabloids
fixed by a permutation of cycle type (m1,m2, . . . ,mr). ■

Example 5.4. Let us calculate the full list of characters of the permutation modules for S4. We know
that the character at the identity element is equal to the dimension of the representation space.

dimM (4) = 4!
4! = 1

dimM (3,1) = 4!
3!1! = 4

dimM (2,2) = 4!
2!2! = 6

dimM (2,1,1) = 4!
2!1!1! = 12

dimM (1,1,1) = 4!
1!1!1!1! = 24.

Suppose, we want to calculate the character of S4 corresponding to M (2,2) at the permutation
(1 2) ∈ S4. Then λ = (2, 2) and the cycle type is (2, 1, 1). Hence, the generating polynomial is(

x2
1 + x2

2

)
(x1 + x2) (x1 + x2) = x4

1 + 2x3
1x2 + 2x2

1x
2
2 + 2x1x

3
2 + x4

2. (5.4)

The coefficient of x2
1x

2
2 in the above polynomial is 2. Hence, the character of S4 associated with M (2,2)

evaluated at (1 2) is 2. From the same polynomial, we see the coefficient of x3
1x2 is 2. So the character

of S4 associated with M (3,1) evaluated at (1 2) is also 2. Similarly, we can compute other characters
as well, which we can express in the following table:

Permutation 1 (1 2 3) (1 2) (1 2) (3 4) (1 2 3 4)

Cycle type (1, 1, 1, 1) (3, 1) (2, 1, 1) (2, 2) (4)

M (4) 1 1 1 1 1
M (3,1) 4 1 2 0 0
M (2,2) 6 0 2 2 0
M (2,1,1) 12 0 2 0 0
M (1,1,1,1) 24 0 0 0 0
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Note that this is NOT the character table of S4, because the permutation modules Mλ are not, in
general, irreducible representations.

Now we move forward to construct irreducible representations of Sn.

§5.3 Specht modules Sλ

In the previous section, we constructed representations Mλ of Sn, known as permutation modules. In
this section, we construct an irreducible subrepresentation of Mλ that corresponds uniquely to λ.

Definition 5.7. For a tableau t of size n, the row group of t, denoted by Rt is the subgroup of
Sn consisting of permutations which only permutes the elements within each row of t. Similarly,
the column group Ct is the subgroup of Sn consisting of permutations which only permutes the
elements within each column of t.

For example, if

t =
4 1 2
3 5

,

then

Rt = S{1,2,4} ×S{3,5} ∼= S3 ×S2,

Ct = S{3,4} ×S{1,5} ×S{2} ∼= S2 ×S2.

Let us select certain elements from the vector space Mλ to span a subspace.

Definition 5.8 (Polytabloid). If t is a tableau, then the associated polytabloid is

et =
∑
π∈Ct

(sgn π)π [t] . (5.5)

For example, if

t =
4 1 2
3 5

,

then the associated polytabloid et is

et = e
4 1 2
3 5

− (3 4)
4 1 2
3 5

− (1 5)
4 1 2
3 5

+ (3 4) (1 5)
4 1 2
3 5

=
4 1 2
3 5

−
3 1 2
4 5

−
4 5 2
3 1

+
3 5 2
4 1

Now, using the following lemma, we’ll see that Sn permutes the set of polytabloids.

Lemma 5.3
Let t be a tableau and π ∈ Sn. Then

eπt = πet. (5.6)

Proof. Let us denote the columns of the tableau t by C1, C2, . . . , Ck so that the column group can be
written as

Ct = SC1 ×SC2 × · · · ×SCk
.

Then
Cπ(t) = Sπ(C1) ×Sπ(C2) × · · · ×Sπ(Ck),
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where π (Ci) consists of the images of the column Ci under π ∈ Sn. Given σ ∈ SCi , if

σ = (a1 a2 · · · ak) (b1 b2 · · · bm) · · · ,

and if π sends x to x′, then

πσπ−1 =
(
a′

1 a
′
2 · · · a′

k

) (
b′

1 b
′
2 · · · b′

m

)
· · · . (5.7)

Therefore, Sπ(Ci) = πSCiπ
−1. As a result,

πCtπ
−1 = Cπt. (5.8)

Then using the definition of polytabloid,

eπt =
∑
σ∈Cπt

(sgn σ)σ [πt]

=
∑

σ∈πCtπ−1

(sgn σ)σ [πt]

=
∑
σ′∈Ct

(
sgn

(
πσ′π−1

))
πσ′π−1 π [t]

= π
∑
σ′∈Ct

(
sgn σ′)σ′ [t]

= πet. (5.9)

■

Now we are ready to extract an irreducible subrepresentation from Mλ.

Definition 5.9 (Specht module). For any partition λ ⊢ n, the corresponding Specht module,
denoted by Sλ, is the submodule of Mλ spanned by the polytabloids et, where t is taken over all
tableaux of shape λ.

Let us pause a bit and loot at a few examples.

Example 5.5. Consider λ = (n). Then there is only one polytabloid, namely

1 2 3 · · · n

as there is nothing to permute along the columns. Since the polytabloid is fixed under the action of
any π ∈ Sn, we see that S(n) is the 1-dimensional trivial representation.

Example 5.6. Consider λ = (1, 1, . . . , 1). Let

t =

1
2
3
...
n

.

There is only one column here, which we denote by C. Ct = S{1,2,...,n} = Sn. There are n! many
elements in Ct. Hence, there are n! many λ-tabloids for this example. If t is such a λ tabloid, then one
can write down the polytabloid et associated with the given λ-tabloid using (5.5).

If one writes down the polytabloid et′ associated with another λ-tabloid t′ among the n! many
choices, then one easily finds that
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(i) if t′ is obtained from t through an even permutation, [t′] = σ [t], for sgn σ = 1. Then

et′ =
∑
π∈Ct

(sgn π)π
[
t′
]

=
∑
π∈Ct

(sgn π)πσ [t] =
∑
πσ∈Ct

(sgn(πσ))πσ [t] = et. (5.10)

(ii) if t′ is obtained from t through an odd permutation, [t′] = σ [t], for sgn σ = −1. Then

et′ =
∑
π∈Ct

(sgn π)π
[
t′
]

=
∑
π∈Ct

(sgn π)πσ [t] = −
∑
πσ∈Ct

(sgn(πσ))πσ [t] = −et. (5.11)

So there is only 1 linearly independent polytabloid, and hence Sλ is a 1-dimensional representation of
Sn. From Lemma 5.3, it follows that

πet = eπt = (sgn π) et. (5.12)

Hence, S(1,1,...,1) is the sign representation of Sn.

Example 5.7. Consider λ = (n− 1, 1). Let [ti] be the λ-tabloid whose entry in the second row is i.
There are n such λ-tabloids. For a given tableau ti of shape λ = (n− 1, 1),

ti =
j a b · · ·
i

, (5.13)

the polytabloid eti reads

eti =
j a b · · ·
i

−
i a b · · ·
j

= [ti]− [tj ] , (5.14)

as there is only two element in the column group Cti which permutes i and j. Now, the number of
linearly independent polytabloid eti is actually n− 1, namely

[t1]− [t2] , [t2]− [t3] , . . . , [tn−1]− [tn] .

If we denote [ti] by vi, then v1 − v2,v2 − v3, . . . ,vn−1 − vn forms a basis for S(n−1,1). Then

S(n−1,1) = {c1v1 + c2v2 + · · ·+ cnvn | c1 + c2 + · · ·+ cn = 0} . (5.15)

Indeed, dimS(n−1,1) = n − 1. This is an irreducible representation of Sn known as the standard
representation, which we studied earlier. The direct sum of the standard representation S(n−1,1) and
the trivial representation S(n) is the defining representation of Sn, i.e. S(n−1,1) ⊕ S(n) ∼= M (n−1,1).

For S3, we have seen that there ave exactly 3 irreducible representations of it, namely, trivial, sign,
and standard representation. These correspond to the 3 Specht modules discussed in the last 3 examples,
namely S(3), S(1,1,1), and S(2,1). So, we see that in this case the irreducible representations are precisely
the specht modules. Amazingly, this is true, in general, as given by the following Theorem:

Theorem 5.4
The Specht modules Sλ for λ ⊢ n form a complete list of irreducible representations of Sn over C.

Before diving into the proof of Theorem 5.4, we’ll need a few results.

Lemma 5.5
Let t and t′ be two λ-tableaux. Then

∑
π∈Ct

(sgn π)π [t′] = ±et. This sign is positive if t′ is
obtained from t using an even permutation, and negative otherwise.
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Proof. Suppose t′ is obtained from t by applying g ∈ Sn, i.e. [t′] = g [t]. In fact, we can assume WLOG
that g ∈ Ct. Indeed, if [t′] = [t], then g = e. Otherwise, suppose (i j) is a transposition in g. We can
rearrange the rows of t′ so that i and j are in the same column of t. Thus, we get (i j) ∈ Ct. Similarly,
all the transpositions of g are in Ct. So we can assume g ∈ Ct. As a result, when π varies in Ct, πg
also varies in Ct. ∑

π∈Ct

(sgn π)π
[
t′
]

=
∑
π∈Ct

(sgn π)πg [t]

= (sgn g)
∑
πg∈Ct

(sgn(πg)) (πg) [t]

= (sgn g) et. (5.16)

■

Definition 5.10 (Lexicographic ordering). Let λ = (λ1, . . . , λl) and µ = (µ1, . . . , µk) be two partitions
of n with λ ̸= µ. Let i be the first index where λ and µ differ. If λi < µi, we write λ ≺ µ. This is
called the lexicographic order on the set of partitions of n.

The lexicographic ordering is a total order, as one can verify easily. In other words, given any λ ̸= µ,
either λ ≺ µ or µ ≺ λ.

Lemma 5.6 (Dominance lemma)
Let λ = (λ1, . . . , λl) and µ = (µ1, . . . , µk) be two partitions of n with λ ≺ µ. Let t be a λ-tableau
and t′ be a µ-tableau. Then there exists a pair (x, y) such that x, y are in the same row of t′ and
in the same column of t.

Proof. Let i be the first index where λ and µ differ. By hypothesis, λi < µi. Assume the contrary.
Then for each j, the elements of the j-th row of t′ are all in different columns of t. We sort the entries
in the column of t so that the elements of the first j rows of t′ all occur in the first j rows of t. We can
do this because if there is a column of t that contains more that j entries from the first j rows of t′,
then we must have two entries in the column coming from the same row, which we assumed doesn’t
happen. Now,

λ1 + · · ·+ λi = number of elements in the first i rows of t
≥ number of elements of t′ in the first i rows of t
= number of elements of in the first i rows of t′

= µ1 + · · ·+ µi.

This contradicts the fact that i is the first index where λ and µ differ, and λi < µi. ■

Lemma 5.7
Let λ = (λ1, . . . , λl) and µ = (µ1, . . . , µk) be two partitions of n with λ ≺ µ. Let t be a λ-tableau
and t′ be a µ-tableau. Then ∑

π∈Ct

(sgn π)π
[
t′
]

= 0,

where the equality holds in Mµ.

Proof. By Dominance lemma, there exists a transposition (x y) ∈ Ct and (x y) ∈ Rt′ . Let’s call the
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transposition g := (x y). sgn g = −1; and since g ∈ Ct, when π varies in Ct, πg also varies in Ct.∑
π∈Ct

(sgn π)π
[
t′
]

=
∑
π∈Ct

(sgn(πg)) (πg)
[
t′
]

= −
∑
π∈Ct

(sgn π)π
[
g · t′

]
= −

∑
π∈Ct

(sgn π)π
[
t′
]
, (5.17)

since g ∈ Rt′ . Therefore,
∑
π∈Ct

(sgn π)π [t′] = 0. ■

Lemma 5.8
If λ = (λ1, . . . , λl) and µ = (µ1, . . . , µk) are two partitions of n with λ ̸= µ, then Sλ and Sµ are
not isomorphic representations.

Proof. WLOG, assume λ ≺ µ. Assume the contrary that f : Sλ → Sµ is an isomorphism of
representations. Then for any v ∈ Sλ and any g ∈ Sn,

f (g · v) = g · f (v) . (5.18)

Then it follows that for any λ-tableau t,

f

∑
π∈Ct

(sgn π)π · v

 =
∑
π∈Ct

(sgn π)π · f (v) . (5.19)

For any µ-tableau t′,
∑
π∈Ct

(sgn π)π [t′] = 0 by Lemma 5.7. Therefore, the RHS of (5.19) is always 0.
Now, take v = et. ∑

π∈Ct

(sgn π)π · et =
∑
π∈Ct

(sgn π)π
∑
σ∈Ct

(sgn σ)σ [t]

=
∑
π∈Ct

∑
σ∈Ct

(sgn π) (sgn σ) (πσ) [t]

=
∑
π∈Ct

∑
πσ∈Ct

(sgn(πσ)) (πσ) [t]

=
∑
π∈Ct

et = |Ct| et ̸= 0. (5.20)

Since the argument of f on the LHS (5.19) is nonzero, the LHS must also be nonzero since f is an
isomorphism. But we have seen that the RHS of (5.19) is always 0. Contradiction! Therefore, there is
no such isomorphism. ■

Lemma 5.9
Given λ ⊢ n, Sλ is an irreducible representation of Sn.

Proof. Let W be a nontrivial Sn-invariant subspace of Sλ. Then take a nonzero vector w ∈W . Then
it is some complex linear combination of [ti]’s where each ti is a λ-tableau (Sλ is a subspace of Mλ,
and Mλ is spanned by [ti]’s for ti being a λ-tableau). In other words,

w =
N∑
i=1

ci [ti] . (5.21)

Fix a λ-tableau t. Since W is a Sn-invariant subspace,
∑
π∈Ct

(sgn π)π ·w is also in W .

∑
π∈Ct

(sgn π)π ·
N∑
i=1

ci [ti] =
N∑
i=1

ci
∑
π∈Ct

(sgn π)π [ti] =
N∑
i=1
±ciet, (5.22)

by Lemma 5.5. This is a scalar multiple of et, say c et. Then we have two cases:
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(i) c = 0 for every choice of nonzero w ∈ W : By (5.20),
∑
π∈Ct

(sgn π)π applied to et gives us
|Ct| et. Since c = 0 for every choice of nonzero w ∈W , this means et ̸∈W . Not only that, the
component of et in any vector of W must also be 0.
Hence, et ∈W⊥. Since W⊥ is also a Sn-invariant subspace, eσt = σ et ∈W⊥ for every σ ∈ Sn.
As a result, every et is in W⊥, as we can get to any λ-tableau by permuting the entries of t.
Hence, W⊥ is the whole Sλ. In other words, W = 0.

(ii) c ̸= 0 for some nonzero w ∈W : In this case, since W is a subspace, we have et ∈W . Since W is
a Sn-invariant subspace, eσt = σ et ∈W for every σ ∈ Sn. As a result, every et is in W , as we
can get to any λ-tableau by permuting the entries of t. Hence, W is the whole Sλ.

Therefore, Sλ is irreducible. ■

Now we gather all the pieces of the puzzle to complete the proof of Theorem 5.4.

Proof of Theorem 5.4. The number of partitions of n is the same as the number of conjugacy classes of
Sn, which is the number of irreducible representations of Sn. The collection

{
Sλ | λ ⊢ n

}
is a collection

of pairwise non-isomorphic irreducible representations. The number of irreducible representations in
this collection is precisely the number of irreducible representations Sn can have. Therefore, this is
the collection of all irreducible representations Sn. ■

Polytabloids are, in general, linearly dependent, as we have seen in the examples before. We know
that the Specht module Sλ is spanned by the polytabloids. We may ask how to select a basis for Sλ
from the set of polytabloids. The answer is given in the following theorem.

Theorem 5.10
Let λ ⊢ n. The set

{et | t is a standard λ-tableau }

forms a basis for Sλ as a vector space.

As before, we need a few machinaries to prove Theorem 5.10. For λ ⊢ n, let fλ denote the number
of standard λ tabloids. We want to show that dimSλ = fλ. Since Sλ’s are all the irreducible
representations, the sum of the square of their dimensions will be the cardinality of Sn. So we will have∑

λ

(
fλ
)2

= n!

We will prove a combinatorial identity first, which proves that this is indeed the case.

Proposition 5.11 (Robinson–Schensted correspondence)
There is a one-to-one correspondence between elements of Sn and pairs (P,Q) of standard tableaux,
both of the same shape λ. In other words,∑

λ⊢n

(
fλ
)2

= n! (5.23)

Proof. Let σ ∈ Sn be a permutation:

σ =
(

1 2 3 · · · n
σ(1) σ(2) σ(3) · · · σ(n)

)
.

From this permutation, we construct a sequence of standard tableaux (P0, Q0) , (P1, Q1) , . . . , (Pn, Qn),
with (Pn, Qn) being the corresponding pair of standard tableaux, both of the same shape λ. (P0, Q0)
is the empty tableaux, and at the i-th step, we add one element to each of (Pi−1, Qi−1). Here is the
algorithm:
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5 Young Tableaux 91

1. Suppose we have constructed up to (Pi−1, Qi−1). Now we will insert i into Qi and σ (i) into Pi.

2. Look at the first row of Pi−1. If all the numbers are smaller than σ (i), then add σ (i) to the end
of the first row.

3. Otherwise, find the leftmost number x in the first row that is greater than σ (i). Replace x by
σ (i).

4. Head over to the next row, repeat the previous step for x. That is, either add x to the end of the
row, or find the leftmost number that is greater than x; replace that number with x; then do this
again for that number. We have to keep on doing this until a new box is added at the end of
some row. Thus we get Pi.

5. When a new box is created, create the same new box at the same spot in Qi−1, and write i in
that new box. Thus we get Qi.

Clearly, each Pi is a standard tableau. Q is a record of where a box was added in each step of the
construction of P . After the insertion of σ(i), one new box is added to the shape of Pi−1 to obtain
the shape of Pi. We add a box to the shape of Qi−1 and write i in the box. Then each Qi is also a
standard tableau, because a new box is added at the end of a row, or it creates a new row. The new
box always has a box above it (except in the first row), so the values in the columns and rows are
always in an increasing order.

We illustrate the process using the example of

σ =
(

1 2 3 4 5
3 4 1 5 2

)
∈ S5.

At the beginning P0 and Q0 are the empty tableaux.

1. i = 1, σ(i) = 3. So P1 and Q1 are:

P1 = 3 , Q1 = 1 .

2. i = 2, σ(i) = 4. We just add 4 to the end of P1.

P2 = 3 4 , Q2 = 1 2 .

3. i = 3, σ(i) = 1. The leftmost entry in the first row that is larger than σ(i) is 3. So we replace 1
with 3, and move 3 to the next row.

P3 =
1 4
3

, Q3 =
1 2
3

.

4. i = 4, σ(i) = 5. We just add 5 to the end of the first row of P3.

P4 =
1 4 5
3

, Q4 =
1 2 4
3

.

5. i = 5, σ (i) = 2. The leftmost entry in the first row that is larger than σ(i) is 4. So we replace 2
with 4, and move 4 to the next row. Then we can add 4 to the end of the next row.

P5 =
1 2 5
3 4

, Q5 =
1 2 4
3 5

.
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Thus, from a permutation in Sn, we get a pair of standard tableaux. The crucial fact about this
algorithm is that it is perfectly reversible. At the i-th step, we add a box containing i to Qi−1 in the
place where Pi got a new box. The reverse algorithm is as follows: Write the incomplete σ:

σ =
(

1 2 3 · · · n
∗ ∗ ∗ · · · ∗

)
.

We will fill out this.

1. Delete from Qi the box containing i. Locate that box in Pi and delete it. Suppose that box
contains the number x.

2. Move to the above row. Find the rightmost number less than x. Replace x with that number y.

3. Do the same for y. That is, go to the previous row. Find the righmost number less than y.
Replace that number with y. Then keep on repeating this process until finally some number k is
bumped from the first row.

4. Add k as σ(i) in the incomplete σ matrix:

σ =
(

1 2 · · · i− 1 i i+ 1 · · · n
∗ ∗ · · · ∗ k = σ(i) σ(i+ 1) · · · σ(n)

)
.

As before, we illustrate the process using the example of

P =
1 2 5
3 4

, Q =
1 2 4
3 5

.

1. Look up 5 from Q. The number in the corresponding place in P5 is 4. The rightmost number in
the previous row smaller than 4 is 2. Write 4 in place of 2. There is no previous row, and 2 is
removed. Therefore, σ(5) = 2.

P4 =
1 4 5
3

, Q4 =
1 2 4
3

, σ =
(

1 2 3 4 5
∗ ∗ ∗ ∗ 2

)
.

2. Look up 4 from Q. The number in the corresponding place in P4 is 5. There is no previous row,
and 5 is removed. Therefore, σ(4) = 5.

P3 =
1 4
3

, Q3 =
1 2
3

, σ =
(

1 2 3 4 5
∗ ∗ ∗ 5 2

)
.

3. Look up 3 from Q. The number in the corresponding place in P3 is 3. The rightmost number in
the previous row smaller than 3 is 1. Write 3 in place of 1. There is no previous row, and 1 is
removed. Therefore, σ(3) = 1.

P2 = 3 4 , Q2 = 1 2 , σ =
(

1 2 3 4 5
∗ ∗ 1 5 2

)
.

4. Look up 2 from Q. The number in the corresponding place in P2 is 4. There is no previous row,
and 4 is removed. Therefore, σ(2) = 4.

P1 = 3 , Q1 = 1 , σ =
(

1 2 3 4 5
∗ 4 1 5 2

)
.

5. This step is now obvious.

σ =
(

1 2 3 4 5
3 4 1 5 2

)
.
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Therefore, we have established a one-to-one correspondence

σ ∈ Sn ←→ pairs of standard tableaux (P,Q) .

Therefore, ∑
λ⊢n

(
fλ
)2

= n! (5.24)

■

Definition 5.11. Given λ ⊢ n, we define an ordering <row on the set of λ-tabloids as follows: let
[t] and [t′] be λ-tabloids with [t] ̸= [t′]. We say that [t] <row [t′] if and only if there exists some i
such that

(a) for all j > i, j is in the same row of [t] and [t′]; and

(b) i is in a higher row of [t] than [t′].

In other words, for [t] ≠ [t′], let i be the largest number which is not in the same row of [t] and [t′].
Then [t] <row [t′] if and only if i is in a higher row of [t] than [t′]. (Here, higher row means that if we
label the rows from top to bottom, the number of the row is smaller.) Given [t] ̸= [t′], then either
[t] <row [t′] or [t′] <row [t] holds.

Also, this ordering is transitive: Suppose [s] <row [t] and [t] <row [u]. Suppose i1 is the largest
number which is not in the same row of [s] and [t]; and i2 is the largest number which is not in the
same row of [t] and [u]. Let i = max {i1, i2}. Then for j > i, j is in the same row of [s], [t], [u]. We
have 3 cases:

1. If i = i1 = i2, then i is in a higher row of [s] than [t]; and i is in higher row of [t] than [u].
Therefore, i is in a higher row of [s] than [u], i.e. [s] <row [u].

2. Otherwise, if i = i1 > i2, i = i1 is in a higher row of [s] than [t]; and i > i2 is in the same row of
[t] and [u]. Therefore, i is in a higher row of [s] than [u], i.e. [s] <row [u].

3. Similarly, if i = i2 > i1, i > i1 is in the same row of [s] and [t]; and i = i2 is in a higher row of [t]
than [u]. Therefore, i is in a higher row of [s] than [u], i.e. [s] <row [u].

Therefore, <row is a total ordering on the set of all λ-tabloids. For instance, for n = 5, the number of
(3, 2)-tabloids is 5!

3!2! = 10. Here are all the (3, 2)-tabloids in the ascending order of <row.

3 4 5
1 2

<row
2 4 5
1 3

<row
1 4 5
2 3

<row
2 3 5
1 4

<row
1 3 5
2 4

<row
1 2 5
3 4

<row
2 3 4
1 5

<row
1 3 4
2 5

<row
1 2 4
3 5

<row
1 2 3
4 5

Lemma 5.12
Let λ ⊢ n, and let t be a standard λ-tableau. Then for π ∈ Ct with π ̸= e, π [t] <row [t].

Proof. Let i be the largest entry that is NOT fixed by π. Then all the entries j > i are not permuted
by π. So those entries are in the same row of π [t] and [t]. Since all the entries j > i are fixed, we
must have π(i) < i. Since t is a standard tableau, π (i) is in a higher row of [t] than i. Therefore, after
applying π, i will be in a higher row of π [t] that it was in [t].

To summarize, for j > i, j is in the same row of π [t] and [t]; and i is in a higher row of π [t] than [t].
Therefore, π [t] <row [t]. ■
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Lemma 5.13
Let λ ⊢ n. Then {et | t is a standard λ-tableau} is a linearly independent subset of Sλ.

Proof. Let t1, t2, . . . , tk be all the standard λ-tableaux. WLOG, we can assume

[t1] <row [t2] <row · · · <row [tk] .

Suppose c1, c2, . . . , ck ∈ C such that

c1 et1 + c2 et2 + · · ·+ ck etk = 0. (5.25)

When we expand etk , we get
etk = [tk]± π1 [tk]± π2 [tk]± · · ·

Hence,

0 = (ck [tk]± ck π1 [tk]± ck π2 [tk]± · · · ) +
k−1∑
i=1

ci
(
[ti]± π′ [ti] + · · ·

)
In order to cancel out [tk], it must appear again in the sum. But the other terms are either ±ckπ [tk],
or ±ciπ′ [ti] for i < k. By Lemma 5.13,

π [tk] <row [tk] . (5.26)

Also, for i < k, Also, the possible value of π′ [ti] is either [ti] itself (when π′ is the identity), or π′ [ti]
for some nontrivial π′ ∈ Cti . In either case, we have

[ti] <row [tk] or π′ [ti] <row [ti] <row [tk] . (5.27)

Therefore, [tk] doesn’t appear in the sum. Hence, ck must be 0. Inductively, all the ci’s must be 0. ■

Now we can finally give a proof of Theorem 5.10.

Proof of Theorem 5.10. By Lemma 5.13, {et | t is a standard λ-tableau } is a linearly independent set.
So dimSλ ≥ fλ. The order of a group is equal to the sum of square of the dimension of the irreducible
representations. Therefore,

n! = |Sn| =
∑
λ⊢n

(
dimSλ

)2
≥
∑
λ⊢n

(
fλ
)2

= n!, (5.28)

where the last equality follows from Robinson–Schensted correspondence. Therefore, dimSλ = fλ for
every λ. Now, {et | t is a standard λ-tableau } is a linearly independent set of cardinality fλ = dimSλ.
Therefore, it spans Sλ, i.e. it’s a basis for Sλ. ■

Example 5.8. For S3, we list standard λ-tableaux under each possible partitions:

(3) (2, 1) (1, 1, 1)

1 2 3
1 2
3

1
2
3

1 3
2

dimS(3) = 1 dimS(2,1) = 1 dimS(1,1,1) = 1

For S4, we list standard λ-tableaux under each possible partitions:
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(3) (2, 2) (3, 1) (2, 1, 1) (1, 1, 1, 1)

1 2 3 4
1 2
3 4

1 2 3
4

1 2
3
4

1
2
3
4

1 3
2 4

1 3 4
2

1 3
2
4

1 2 4
3

1 4
2
3

dimS(4) = 1 dimS(2,2) = 2 dimS(3,1) = 3 dimS(2,1,1) = 3 dimS(1,1,1,1) = 4

Theorem 5.14 (Frobenius character formula)
Suppose λ = (λ1, . . . , λl) , µ = (µ1, . . . , µm) are partitions of n. The character of Sλ evaluated
at an element of Sn with cycle type µ is equal to the coefficient of xλ1+l−1

1 xλ2+l−2
2 · · ·xλl

l in the
following polynomial ∏

1≤i<j≤l
(xi − xj)

m∏
i=1

(
xµi

1 + xµi
2 + · · ·+ xµi

l

)
.
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