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1 Lecture 1
Let’s recall some concepts from Algebraic Topology I. Suppose K is a finite complex. If we take

the set Cp (K) of all p-chains on K, then this set has a free abelian group structure. The elementary
p-chains corresponding to the oriented p-simplices form a basis of Cp (K). Since K is finite complex,
there are finitely many oriented p-simplices. Hence, Cp (K) is of finite rank.

If we take the boundary homomorphism ∂p : Cp (K) → Cp−1 (K), the kernel of ∂p is a subgroup of
Cp (K). It is known as the group of p-cycles, and we write it Zp (K). Since Cp (K) is free abelian of
finite rank, so is Zp (K).

The image of ∂p+1 is also a subgroup of Cp (K). It is known as the group of p-boundaries, and we
write it Bp (K). The p-th homology group is defined as Hp (K) = Zp (K) /Bp (K).

Since Zp (K) is free abelian of finite rank, Hp (K) is finitely generated. So we can apply Fundamental
theorem of finitely generated abelian group on Hp (K). The betti number and torsion coefficients of
Hp (K) are called, classically, the betti number and torsion coefficients of K in dimension p.

Let’s first prove a lemma that will help us to compute homology groups of some compact sur-
faces.

Lemma 1.0.1
Let L be the complex shown in the figure below (left) whose underlying space is a rectangle.

L

e1 σ1

σ2
σ3

σ4
e2

e3e4

e6

e7

e8

e5

Let BdL denote the complex whose underlying space is the boundary of the recatngle. We orient
each 2-simplex σi of L in the counterclockwise direction, and orient the 1-simplices arbitrarily. One
possible orientation of the central rectangle is shown on the right. Then the following statements
hold:

(i) Every 1-cycle of L is homologous to a 1-cycle carried by BdL.

(ii) If d is a 2-chain of L and ∂2d is carried by BdL, then d is a multiple of the 2-chain
∑
σi.

Proof. We prove (ii) first. Let σi and σj be two simplices with a common edge e. We know that, for a
given 2-chain d, ∂2d is carried by BdL. And the 1-simplices of BdL is not shared by two 2-simplices.
So ∂2d is 0 on e.

e

σj

σi
b

c

f

a

We orient the four 1-simplices (a, b, c, f) arbitrarily. Suppose d =
∑
nkσk. So, the value of d on the
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1 Lecture 1 5

oriented 2-simplies σi, σj are ni, nj respectively. From the figure, we get that

∂2σi = c+ f + e and ∂2σj = a+ b− e

Therefore, the value of ∂2d on e becomes ni − nj . But we know that the value of ∂2d on e is 0.
Therefore, ni = nj .

Similarly, the value of d on all 2-simplices are the same. In other words, nk = n for all k for some
fixed n. Hence, d = n

∑
σi.

Let’s prove (i) now. We orient the 1-simplices in such a way that the central rectangle looks like
the one given on the right of the first figure. Now, let c be a 1-chain of L given by

c =
∑
i∈S

niei +
∑
i ̸∈S

niei , where S = {1, 2, . . . , 8}

The value of c on the 1-simplex e1 is n1. Now we define a 1-chain c′1 by c′1 = c+∂2 (n1σ1). As a result,

c′1 =
∑
i∈S

niei +
∑
i ̸∈S

niei + n1 (e5 + e2 − e1) =
∑

i∈S\{1}

n′iei +
∑
i ̸∈S

n′iei

Therefore, c′1 is homologous to c and the value of c′1 on e1 is 0.
The value of c′1 on the 1-simplex e1 is n′2. Now we define a 1-chain c′′1 by c′′1 = c′1 + ∂2 (n

′
2σ2). As a

result,
c′′1 =

∑
i∈S\{1}

n′iei +
∑
i ̸∈S

n′iei + n′2 (e6 + e3 − e2) =
∑

i∈S\{1,2}

n′′i ei +
∑
i ̸∈S

n′′i ei

Therefore, c′′1 is homologous to c′1 and the value of c′′1 on e2 is 0.
The value of c′′1 on the 1-simplex e3 is n′′3. Now we define a 1-chain c1 by c1 = c′′1 + ∂2 (n

′′
3σ3). As a

result,
c1 =

∑
i∈S\{1,2}

n′′i ei +
∑
i ̸∈S

n′′i ei + n′′3 (e7 + e4 − e3) =
∑

i∈S\{1,2,3}

n′′′i ei +
∑
i ̸∈S

n′′′i ei

Therefore, c1 is homologous to c′′1 and the value of c1 on e3 is 0.
So we get that c1 = c+∂2 (n1σ1 + n′2σ2 + n3σ

′′
3). Therefore, c1 is homologous to c. Also, c1 vanishes

on the 1-simplices e1, e2, e3. So the 1-chain c is homologous to a 1-chain c1 carried by the following
subcomplex of L:

Using the same method, one can find a 1-chain c2 that is homologous to c and carried by the
following subcomplex of L:

v2

v1
v3

v4
v5

v v′

v′′v′′′
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1 Lecture 1 6

Now, if the given 1-chain c is a 1-cycle, then c2 is also a 1-cycle. But in order for c2 to be a 1-cycle,
∂1c2 must vanish on the vertices v1, v2, v3, v4, v5.

Suppose c2 is a 1-cycle and its value on the 1-simplices [v, v5] , [v5, v1] , [v
′, v4] , [v

′′, v3] , [v
′′′, v2] are

n1, n2, n3, n4, n5 respectively. Since c2 is a 1-cycle, ∂1c2 = 0.
But the value of ∂1c2 on v5 is n1 − n2; on v1 is n2; on v2 is n5; on v3 is n4; on v4 is n3. Since ∂1c2

vanishes in all those vertices,

n1 = n2 , n2 = 0 , n5 = 0 , n4 = 0 , n3 = 0 =⇒ n1 = n2 = n3 = n4 = n5 = 0

It proves that the 1-cycle c2 is carried by the boundary of L, i.e. BdL. Therefore, for each 1-cycle c,
we can find another 1-cycle c2 which is homologous to c and carried by BdL. ■

§1.1 Homology Groups of Torus
Consider the following labelled rectangle L of the following figure:

L

σ1

σ2

a

d

e

a

a

d

e

a

b c

b c

R

S

The top edge, or equivalently the bottom edge, of L is denoted by S. The left edge, or equivalently
the right edge, of L is denoted by R.

Let T denote the complex represented by L. It’s underlying space is the torus.
Suppose g : |L| → |T | is the pasting map. In other words, it glues the left edge of L with the right

edge of L; and it glues the top edge of L with the bottom edge. Then we get a torus.

1
Let A = g (|BdL|). Then A is homeomorphic to space that is the union of two circles with a point

in common. Such a space is called wedge of two circles. In the figure, the blue circle is g (|R|) and
the black circle is g (|S|).

6



1 Lecture 1 7

We orient all 2-simplices of L counterclockwise. Let γ =
∑
σi be the sum of all 2-simplices of L.

Also, we orient the 1-simplices arbitrarily.

w1 := [a, b] + [b, c] + [c, a] and z1 := [a, d] + [d, e] + [e, a]

The gluing map g preserves orientation of the simplices. Therefore, the simplices of T behave exactly
the same way as those of L.

Since g makes identifications only among simplices of BdL, the arguments we gave earlier in proving
Lemma 1.0.1 still applies. Therefore, we have

(i) Every 1-cycle of T is homologous to a 1-cycle carried by A.

(ii) If d is a 2-chain of T and ∂2d is carried by A, then d is a multiple of γ.

In addition to these two results, T also satisfies some more properties.

Proposition 1.1.1
If c is a 1-cycle of T carried by A, then c is of the form nw1 +mz1.

Proof. Note that A = g (|BdL|), being the wedge sum of two circles, is actually the 1-dimensional
complex pictured below:

a

b

c

e

d

Let c be a 1-cycle carried by the above complex.

c = n1 [a, b] + n2 [b, c] + n3 [c, a] + n4 [a, e] + n5 [e, d] + n6 [d, a]

Since c is a 1-cycle, ∂1c = 0.

0 = ∂1c = n1 (b− a) + n2 (c− b) + n3 (a− c) + n4 (e− a) + n5 (d− e) + n6 (a− d)

= a (−n1 + n3 − n4 + n6) + b (n1 − n2) + c (n2 − n3) + d (n5 − n6) + e (n4 − n5)

Equating both sides, we get

−n1 + n3 − n4 + n6 = n1 − n2 = n2 − n3 = n5 − n6 = n4 − n5 = 0

7



1 Lecture 1 8

∴ n1 = n2 = n3 and n4 = n5 = n6

Therefore,
c = n1 ([a, b] + [b, c] + [c, a])− n4 ([a, d] + [d, e] + [e, a]) = nw1 +mz1

where n = n1 and m = −n4. ■

Proposition 1.1.2
∂2γ = 0.

Proof. Let’s look back at the complex L again:

L

σ1

σ2

a

d

e

a

a

d

e

a

b c

b c

f

h

Recall that all the 2-simplices σi are oriented counterclockwise. Then

∂2σ1 = [b, a] + [a, f ] + [f, b] and ∂2σ2 = [a, b] + [b, h] + [h, a]

Therefore, in ∂2σ1 + ∂2σ2 the contribution of [a, b] is 0. In other words, ∂2γ =
∑
∂2σi has the value 0

on the 1-simplex [a, b].
Similarly, one can show that ∂2γ vanishes on all 1-simplices of BdL. Also, one can explicitly show

that ∂2γ vanishes on all 1-simplices not in BdL. Therefore, ∂2γ. ■

Now we can compute the holomogy groups of T .

Theorem 1.1.3
H1 (T ) ∼= Z ⊕ Z and H2 (T ) ∼= Z. Furthermore, γ generates H2 (T ); w1 and z1 represent a basis
for H1 (T ).

Proof. Let’s take a 1-cycle c in T . By Property (i), c is homologous to a 1-cycle c1 carried by A. By
Proposition 1.1.1, c1 = nw1 +mz1 for some n,m ∈ Z. Therefore, Z1 (T ) is a free group generated by
w1 and z1. Hence, Z1 (T ) ∼= Z⊕ Z.

Now, such a cycle bounds if there exists a 2-chain d of T such that c1 = ∂2d. Since c1 carried by A,
d is also carried by A. Then by Property (ii), d = pγ for some p ∈ Z. Now, by Proposition 1.1.2,

c1 = ∂2d = ∂2 (pγ) = p ∂2γ = 0

Therefore, B1 (T ) = 0. As a result, H1 (T ) = Z1 (T ) /B1 (T ) = Z1 (T ) ∼= Z ⊕ Z. And it is generated
by w1 and z1.

Let us compute H2 (T ) now. Let d be a 2-cycle of T . Then ∂2d = 0. In particular, ∂2d is 0 on every
1-simplex not in A. Thus ∂2d is carried by A. Therefore, by Property (ii), d = pγ for some p ∈ Z.
Hence, Z2 (T ) is a free group generated by γ. So Z2 (T ) ∼= Z.

There are no 3-chains in T . So ∂3 is a trivial homomorphism. As a result, B2 (T ) = 0. Hence,
H2 (T ) = Z2 (T ) /B2 (T ) = Z2 (T ) ∼= Z. And it is generated by γ. ■
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1 Lecture 1 9

§1.2 Homology Groups of Klein Bottle
Consider the following labelled rectangle L of the following figure:

L

σ1

σ2

a

d

e

a

a

e

d

a

b c

b c

R

S

σ3

σ4

f

h

k

The top edge of L is denoted by S. The left edge of L is denoted by R.
Let K denote the complex represented by L. Suppose g : |L| → |K| is the pasting map. Then K is

a klein bottle

Let A = g (|BdL|). Then A is homeomorphic to a wedge of two circles. In the figure, the blue circle
is g (|R|) and the black loop is g (|S|).

We orient all 2-simplices of L counterclockwise. Let γ =
∑
σi be the sum of all 2-simplices of L.

Also, we orient the 1-simplices arbitrarily.

w1 := [a, b] + [b, c] + [c, a] and z1 := [a, d] + [d, e] + [e, a]

Since g makes identifications only among simplices of BdL, the arguments we gave earlier in proving
Lemma 1.0.1 still applies. Therefore, we have

9



1 Lecture 1 10

(i) Every 1-cycle of K is homologous to a 1-cycle carried by A.

(ii) If d is a 2-chain of K and ∂2d is carried by A, then d is a multiple of γ.

In addition to these two results, K also satisfies some more properties. Since A is a wedge of two
circles, Proposition 1.1.1 holds for klein bottle too.

Proposition 1.2.1
∂2γ = 2z1.

Proof. According to the picture of the complex L,

∂2σ1 = [b, a] + [a, f ] + [f, b] and ∂2σ2 = − [b, a] + [b, h] + [h, a]

Therefore, the value of ∂2γ on [a, b] is 0. Similarly, one can verify that ∂2γ vanishes on [b, c] and [c, a]
too. Similar to the case of torus, ∂2γ vanishes on all the 1-simplices not belonging to BdL. Now,

∂2σ3 = [a, d] + [d, f ] + [f, a] and ∂2σ4 = [a, d] + [d, k] + [k, a]

Therefore, the value of ∂2γ on [a, d] is 2. Similarly, the value of ∂2γ on [d, e] and [e, a] are both 2.
Hence, ∂2γ = 2 [a, d] + 2 [d, e] + 2 [e, a] = 2z1. ■

Now we are ready to compute the homology groups of K.

Theorem 1.2.2
H1 (K) ∼= Z⊕ Z2 and H2 (K) = 0. Furthermore, the torsion element of H1 (K) is represented by
the chain z1, and a generator for the group H1 (K) modulo torsion is represented by w1.

Proof. Let’s take a cycle c in K. By Property (i) and Proposition 1.1.1, c is homologous to a 1-cycle
c1 of the form c1 = nw1 +mz1. Therefore, Z1 (K) ∼= Z⊕ Z.

If the 1-cycle c1 also bounds, then c1 = ∂2d for some 2-chain d of K. By Property (ii), since c1 is
carried by A, d = pγ for some p ∈ Z. Hence,

c1 = ∂2d = ∂2 (pγ) = p ∂2γ = 2pz1

Therefore, the 1-cycle c1 = nw1 +mz1 bounds if and only if n = 0 and m is even. A generic element
of B1 (K) is (0, 2p) for p ∈ Z. Therefore, B1 (K) ∼= 2Z.

Now, H1 (K) = Z1 (K) /B1 (K) contains equivalence classes of ordered pairs of integers under the
following equivalence relation ∼:

for (m,n) ,
(
m′, n′

)
∈ Z⊕ Z , (m,n) ∼

(
m′, n′

)
if m = m′ and 2 | n− n′

So, the equivalence classes in H1 (K) look like [(a, 0)] or [(b, 1)]. As a result, H1 (K) ∼= Z⊕ Z2. Here
z1 represents the torsion element of H1 (K), while w1 generates H1 (K) /T1 (K) where T1 (K) is the
torsion subgroup of H1 (K).

Let’s now compute H2 (K). Let d be a 2-cycle of K. Then ∂2d = 0. Since ∂2d vanished on every
1-simplex not belonging in A, by Property (ii), d = pγ for some p ∈ Z. If p 6= 0,

∂2d = ∂2 (pγ) = p ∂2γ = 2pz1 6= 0

Therefore, p = 0 and hence d = 0. This concludes that the group Z2 (K) of 2-cycles is trivial. As a
result, H2 (K) = Z2 (K) /B2 (K) is also trivial, i.e. H2 (K) = 0. ■

10
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§1.3 Homology Groups of Projective Plane
Consider the following labelled rectangle L of the following figure:

L

σ1

σ2

a

f

e

d

d

e

f

a

b c

c b

σ5

σ6

σ3

σ4

h

j

∼=

D/∼

Let P 2 denote the complex represented by L. The underlying space
∣∣P 2
∣∣ of the complex P 2 (after

identifications are made along the edges obeying the labels) is the projective plane. Suppoe g : |L| →∣∣P 2
∣∣ is the corresponding gluing map.

Proposition 1.3.1
A = g (|BdL|) is homeomorphic to a circle.

Proof. It is immediate that the labelled complex L, whose underlying space is a rectangle, is home-
omorphic to a 2-disk with the prescribed identification along the boundary (diametrically opposite
points of the disk are meant to be glued by the gluing map g).
D/∼ is the 2-disk with antipodal points identified on the boundary. Now, first we decompose D

into an annulus M and a smaller 2-disk so that attaching the inner circle of M along the boundary of
the smaller disk gives the full 2-disk D. Hence attaching a 2-disk to M/∼ should give D/∼∼= P 2.

Now, if we can show that M/∼ is homeomorphic to a Möbius band (whose boundary is homeomor-
phic to a circle), we’ll be able to show that A is homeomorphic to a circle; and the real projective
plane P 2 is the topological space one obtains by gluing the boundary of a Möbius band along the
boundary of a 2-disk.

The visual proof is presented below:

∼= ∼=

∼=

∼=∼=

Swap top
and bottom

reflect
top

M/∼

Möbius band
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1 Lecture 1 12

Hence, M/∼ is homeomorphic to a Möbius band. Therefore, A = g (|BdL|) is homeomorphic to
the boundary of a a Möbius band. Thus A ∼= S1. ■

We orient all 2-simplices of L counterclockwise. Let γ =
∑
σi be the sum of all 2-simplices of L. Also,

we orient the 1-simplices arbitrarily.
z1 := [a, b] + [b, c] + [c, d] + [d, e] + [e, f ] + [f, a]

Since g makes identifications only among simplices of BdL, the arguments we gave earlier in proving
Lemma 1.0.1 still applies. Therefore, we have

(i) Every 1-cycle of P 2 is homologous to a 1-cycle carried by A.

(ii) If d is a 2-chain of P 2 and ∂2d is carried by A, then d is a multiple of γ.
In addition to these two results, P 2 also satisfies some more properties.

Proposition 1.3.2
Every 1-cycle carried by A is a multiple of z1.

Proof. Since A is homeomorphic to a circle, we can picture it as the following complex:

a

b

c

d
e

f

Let c be a 1-cycle carried by A.
c = n1 [a, b] + n2 [b, c] + n3 [c, d] + n4 [d, e] + n5 [e, f ] + n6 [f, a]

Since c is a 1-cycle, ∂1c = 0.
0 = ∂1c = n1 (b− a) + n2 (c− b) + n3 (d− c) + n4 (e− d) + n5 (f − e) + n6 (a− f)

= a (n6 − n1) + b (n1 − n2) + c (n2 − n3) + d (n3 − n4) + e (n4 − n5) + f (n5 − n6)

Equating both sides, we get
n6 − n1 = n1 − n2 = n2 − n3 = n3 − n4 = n4 − n5 = n5 − n6 = 0

Therefore, n1 = n2 = n3 = n4 = n5 = n6 and thus c = n1z1. ■

Proposition 1.3.3
∂2γ = −2z1.

Proof. Let’s look back at the complex L again:

L

σ1

σ2

a

f

e

d

d

e

f

a

b c

c b

σ5

σ6

σ3

σ4

h

j
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1 Lecture 1 13

Recall that all the 2-simplices are oriented counterclockwise.

∂2σ1 = [b, a] + [a, h] + [h, b] and ∂2σ4 = [b, a] + [a, j] + [j, b]

Therefore, the value of ∂2σ1 + ∂2σ4 in [a, b] is −2. Thus the value of ∂2γ on the oriented 1-simplex
[a, b] is −2. Similarly,

∂2σ5 = − [f, a] + [f, h] + [h, a] and ∂2σ6 = − [f, a] + [f, j] + [j, a]

Therefore, the value of ∂2σ5 + ∂2σ6 in [f, a] is −2. Thus the value of ∂2γ on the oriented 1-simplex
[f, a] is −2.

Similarly, the value of ∂2γ on other oriented 1-simplices of z1 is −2. Similar as before, ∂2γ vanishes
on every 1-simplex not belonging to BdL. Therefore, ∂2γ = −2z1. ■

Theorem 1.3.4
H1

(
P 2
) ∼= Z2 and H2 (P ) = 0.

Proof. Let’s take a 1-cycle c in P 2. By Property (i) and Proposition 1.3.2, c is homologous to a 1-cycle
c1 of the form c1 = nz1. So Z1

(
P 2
) ∼= Z.

If the 1-cycle bounds, then c1 = ∂2d for some 2 chain in P 2. c1 is carried by A. Hence, by
Property (ii), d = pγ for some p ∈ Z. Therefore,

c1 = ∂2d = ∂2 (pγ) = p ∂2γ = −2pz1

Hence, an element of B1

(
P 2
)

is an even multiple of z1. Now we set two 1-cycles c and c′ of P 2 to be
equivalent if c− c′ is an even multiple of z1.

In other words, all the elements of Z1

(
P 2
)

are divided into two classes: odd multiples of z1
and even multiples of z1. The class of even multiples of z1 correspond to the identity element of
Z1

(
P 2
)
/B1

(
P 2
)
= H1

(
P 2
)
; and the class of odd multiples of z1 correspond to the non-identity

element of H1

(
P 2
)
. Hence, H1

(
P 2
) ∼= Z2.

Let’s now compute H2

(
P 2
)
. Let d be a 2-cycle of P 2. Then ∂2d = 0. Since ∂2d vanished on every

1-simplex not belonging in A, by Property (ii), d = pγ for some p ∈ Z. If p 6= 0,

∂2d = ∂2 (pγ) = p ∂2γ = −2pz1 6= 0

Therefore, p = 0 and hence d = 0. This concludes that the group Z2

(
P 2
)

of 2-cycles is trivial. As a
result, H2

(
P 2
)
= Z2

(
P 2
)
/B2

(
P 2
)

is also trivial, i.e. H2

(
P 2
)
= 0 ■

13



2 Lecture 2

§2.1 Zero Dimensional Homology

Definition 2.1.1 (Star and Link). Let v be a vertex of a simplicial complex K. The star of v,
denoted by St v, is the union of the interior of all the simplices that have v as a vertex. The
closure of St v, denoted by Stv, is called the closed star of v. The set Stv \St v is called the link
of v and is denoted by Lk v.

In the following example, there are three 1-simplices and two 2-simplices that contain v1 as a vertex.
The interior of all these 5 simplices make St v1. Lk v1 is the L-shaped 1-dimensional subcomplex that
is drawn in bold.

K

Lk v2

Lk v1

Lk v0

v1

v0

v2

Since interior of a simplex is open, it follows immediately that St v is open; since union of open sets
is also open. Note that, star of a vertex contains that vertex itself. Because the 0-simplex v is its
own interior, so it is included in the union of the interior of all the simplices that have v as a vertex.
That’s why Lk v does not contain v, since v is in both St v and Stv.

Furthermore, each point of St v belongs to the interior of a simplex that has v as vertex. Suppose
w ∈ St v, and w ∈ Intσ where v is a vertex of σ. Let l denote the line segment joining w and v. Then
l \ {v} lies in Intσ. As a result, l ⊆ St v. This illustrates that St v is a star-convex set with respect to
the vertex v.

Theorem 2.1.1
Let K be a complex. Then the group H0 (K) is free abelian. If {vα}α is a collection consisting of
one vertex from each component of |K|, then the homology classes of the chains vα form a basis
for H0 (K).

Proof. Step 1. Let v and w be two vertices of K. Let us define a relation v ∼ w if there exists a
sequence a0, a1, . . . , an of vertices of K such that v = a0, w = an, and aiai+1 is a 1-simplex of K for
each i = 0, 1, . . . , n− 1. It’s easy to check that ∼ is an equivalence relation.

Given a vertex v of K, we define the following set

Cv =
⋃

{Stw : w ∼ v}

Our goal is to show that Cv are components of K. Cv is union of open sets, hence open. Now we shall
show that each Cv is path connected.

Let’s take any x ∈ Cv. We shall show that there is a path from v to x. This will suffice to show the
path-connectedness of Cv. Since x ∈ Cv, x ∈ Stw for some w with w ∼ v.

14



2 Lecture 2 15

Let a0 = v, a1, . . . , an = w be a sequence such that aiai+1 is a 1-simplex of K for each i =
0, 1, . . . , n − 1. Since x ∈ St an, the line segment anx lies in St an; because St an is star-convex with
respect to an.
ai ∼ v for each i, so St ai ⊆ Cv and St ai+1 ⊆ Cv for each i = 0, 1, . . . , n − 1. Therefore, aiai+1 ⊆

(St ai ∪ St ai+1) ⊆ Cv. As a result, the broken line with consecutive vertices a0 = v, a1, . . . , an, x lies
in Cv. It is a continuous path from v to x. Therefore, Cv is path connected, and thus connected.

Now we shall show that the distinct sets Cv and Cv′ are disjoint. Suppose the contrary, and
x ∈ Cv ∩ Cv′ . Then there exists a vertex w with x ∈ Stw and w ∼ v; also there exists another vertex
w′ with x ∈ Stw′ and w′ ∼ v′.

Now, x is contained in the interior of a simplex that has w as a vertex. Therefore, the barycentric
coordinate tw (x) of x with respect to w is strictly positive. So, tw (x) > 0. Similarly, tw′ (x) > 0.

But x lies in the interior of exactly one simplex of K. Since both tw (x) and tw′ (x) are strictly
positive, that simplex has both w and w′ as vertices. This means ww′ is a 1-simplex of K, so w ∼ w′.
Therefore, v ∼ w ∼ w′ ∼ v′, so v ∼ v′ and hence Cv = Cv′ . This leads to a contradiction, since we
assumed Cv and Cv′ to be distinct. Hence, Cv ∩ Cv′ = ∅.

Now, Cv are open, disjoint, connected, and their union is the whole |K|. Therefore, they are
necessarily the components of |K|. Note that, each such Cv is the underlying space of a subcomplex
of K. Each simplex of K lies entirely in exactly one of the Cv’s.

Step 2. Now we shall prove the theorem. Let {vα}α be a collection of vertices containing one vertex
vα from each component Cα of |K|. Given a vertex w of K, it belongs to a component of K, say Cα.

In other words, w ∼ vα. This means there exists a sequence a0 = vα, a1, . . . , an = w of vertices of
K such that aiai+1 is a 1-simplex of K for each i = 0, 1, . . . , n− 1.

The 1-chain given by [a0, a1] + [a1, a2] + · · · + [an−1, an] has boundary an − a0 = w − vα. In other
words,

w = vα + ∂1 ([a0, a1] + [a1, a2] + · · ·+ [an−1, an])

As a result, the 0-chain w is homologous to the 0-chain vα. (Note the abuse of notation – we used
the same symbol for the vertex and the elementary 0-chain corresponding to the vertex) Hence, every
elementary 0-chain is homologous to one of the vα’s from the collection {vα})α. Therefore, every
0-chain of K is homologous to an integral linear combination of the vα’s, i.e. c =

∑
α
nαvα with

nα ∈ Z.
Now we shall prove that no nontrivial chain of the form c =

∑
α
nαvα bounds, which will establish

that B0 (K) is trivial. Assume the contrary that c = ∂1d for some 1-chain d of K.
We have seen earlier in step 1 that each simplex of K lies entirely in one and excatly one of the

components of |K|. Therefore, each 1-simplex of K lies in a unique component of |K|. Now, using the
exact same arguments as above, we get that

d =
∑
α

mαdα , mα ∈ Z ,

and dα’s are elementary 1-chains carried by the components Cα’s of |K|.

∑
α

nαvα = c = ∂1d = ∂1

(∑
α

mαdα

)
=
∑
α

mα ∂1dα

Since dα is carried by Cα, then so is mα∂1dα. Therefore, nαvα = mα∂1dα. Now we claim that nα = 0.
Let ε : C0 (K) → Z be a group homomorphism, such that ε (v) = 1 for each elementary 0-chain v.

Thus we have ε (nαvα) = nα. Also,

ε (∂1 [v, w]) = ε (w − v) = ε (w)− ε (v) = 1− 1 = 0

for any elementary 1-chain [v, w]. Therefore, ε (∂1dα) = 0. Thus we have

nα = ε (nαvα) = ε (mα∂1dα) = mα ε (∂1dα) = 0

15
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So nα = 0 for each α. Therefore, ∂1d = c = 0. In other words, a 0-chain that bounds is necessarily
trivial. So B0 (K) is trivial.

Since c =
∑

α nαvα for a given 0-chain (and hence a 0-cycle), and there are no non-trivial 0-chain
that bounds, {vα}α is a basis for H0 (K). ■

§2.2 Reduced Homology

Definition 2.2.1 (Augmentation Map). Let ε : C0 (K) → Z be the surjective homomorphism
defined by ε (v) = 1 for each vertex elementary 0-chain of K corresponding to the vertex v. Then
if c is a 0-chain, ε (c) equals the sum of the values of c on the vertices of K. The map ε is called
an augmentation map for C0 (K).

We have seen in the proof of Theorem 2.1.1 that ε (∂1d) = 0 for a 1-chain d of K.

Definition 2.2.2 (Reduced Homology Group). We define the reduced homology group of K in
dimension 0, denoted H̃0 (K), by the equation

H̃0 (K) = Ker ε/ im ∂1

If p > 0, we let H̃p (K) = Hp (K).

Theorem 2.2.1
The group H̃0 (K) is free abelian and H̃0 (K) ⊕ Z ∼= H0 (K). Thus H̃0 (K) vanishes if |K| is
connected. If |K| is not connected, let {vα}α consist of one vertex from each component of |K|;
also let α0 be a fixed index. Then the homology classes of the chains vα − vα0 , for α 6= α0, form
a basis for H̃0 (K).

Proof. Given a 0-chain c on K, we’ve seen earlier that c is homologous to a 0-chain of the form
c′ =

∑
α
nαvα; and c′ bounds only if c′ = 0, i.e. nα = 0 for each α.

If c ∈ Ker ε, then ε (c) = 0. Since c and c′ are homologous, c′ = c+∂1d for some 1-chain d. Therefore,

ε
(
c′
)
= ε (c+ ∂1d) = ε (c) + ε (∂1d) = ε (c)

∴ 0 = ε (c) = ε
(
c′
)
= ε

(∑
α

nαvα

)
=
∑
α

nαε (vα) =
∑
α

nα

If |K| is connected, there is only one component. And hence there is only one nα. Thus nα = 0 gives
us c′ = 0. So Ker ε is trivial. Since H̃0 (K) = Ker ε/ im ∂1 and Ker ε is trivial, we get that H̃0 (K) = 0.

Now suppose |K| has more that one component. Let’s fix an index α0.

0 =
∑
α

nα = nα0 +
∑
α ̸=α0

nα =⇒ nα0 = −
∑
α ̸=α0

nα

Substituting this expression into c′ =
∑
α
nαvα, we get

c′ =
∑
α

nαvα =
∑
α ̸=α0

nαvα + nα0vα0

=
∑
α ̸=α0

nαvα +

−
∑
α ̸=α0

nα

 vα0

=
∑
α ̸=α0

nα (vα − vα0)

16
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Therefore, c′ is a linear combination of the 0-chains vα−vα0 . And as before, such a 0-chain bounds only
if it is trivial. Hence, homology classes1 of the 0 chains {vα − vα0}α ̸=α0

forms a basis for H̃0 (K). ■

§2.3 The Homology of a Cone
Now our goal is to compute the homology groups of an n-simplex and of its boundary. For this, we
shall develop this very useful tool called cone.

§2.3.i Generalized Euclidean Space EJ

Let J be an arbitrary index set, and let Rj denote the J-fold product of R with itself. For instance,
we can have RN RQ or RR. An element of RJ is treated as a function from J to R. One usually uses
the follwoing “tuple” notation for an element of RJ :

RJ 3 x = (xα)α∈J

RJ is, of course, a vector space over the field R with the usual component-wise addition and scalar
multiplication.

(xα)α∈J + (yα)α∈J = (xα + yα)α∈J and k · (xα)α∈J = (k · xα)α∈J

Let EJ denote the subset of RJ consisting of all points (xα)α∈J such that xα = 0 for all but finitely
many α ∈ J . In other words, if (xα)α∈J ∈ EJ then there can be only finitely many nonzero coordinate
appearing in this J-tuple.

We define a map εα : J → R as follows:

εα (x) =

{
1 if x = α

0 if x 6= α

Then the set {εα : α ∈ J} is a basis for EJ , but not a basis for RJ (left as an exercise for the reader).
We call EJ generalized Euclidean space and topologize it by introducing the following metric:

x ≡ (xα)α∈J , y ≡ (yα)α∈J ; d (x, y) = max {|xα − yα : α ∈ J |}

Everything that we’ve done for complexes in Rn (n ∈ N) can be extended for complexes in EJ .

§2.3.ii Cone

Definition 2.3.1 (Cone). Let K be a complex in EJ and w ∈ EJ such that every ray emanating
from from w intersects K in at most one point. Then we define the cone on K with vertex w to
be the collection of all simplices of the form [w, a0, . . . , ap] ([a0, . . . , ap] is a simplex of K) along
with all the faces of such simplices. We denote this collection by w ∗K.

It is left as an exercise for the reader to verify that w ∗ K is indeed a well-defined complex, and it
contains K as a subcomplex. K is called the base of the cone.

In the following figure, K and L are respectively a 1-dimensional complex in R2 and a 2-dimensional
complex in RR3. w ∈ R2 and v ∈ R3 such that every ray emanating from from w intersects K in at
most one point; and every ray emanating from from v intersects K in at most one point.

1Two 0-chains vα − vα0 and vα′ − vα0 are equivalent, or they belong in the same equivalence class iff vα − vα0 =
vα′ − vα0 + ∂1d for some 1-chain d.

17
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w

v

K

L

The cones w ∗K and v ∗ L are shown below:

w

w ∗K v ∗ L

v

Example 2.3.1
Let Kσ denote the complex consisting of the n-simplex σ = [v0, v1, . . . , vn] and all its faces. Then
Kσ = v0 ∗Ks, where s is the face of σ opposite to v0.

v1

v2

v3

v0

For instance, in the figure above, σ = [v0, v1, v2, v3], s = [v1, v2, v3]; and Kσ = v0∗Ks. Therefore,
every simplex in positive dimension is a cone.

Example 2.3.2
Let K be the complex in R2 consisting of the intervals [n, n+ 1] × 0 for n ∈ Z. Then |K| is the
x-axis. Let w be a point on the y-axis different from the origin. Then w ∗K is illustrated below:

0 1 2 3 4−1−2−3−4

w

Although |K| is a subspace of R2, |w ∗K| is not a subspace of R2. Because according to §2,

18
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Exercise 9 of Munkres’s book, “|K| is a subspace of RN if and only if each point x of |K| lies in
an open set of RN that intersects only finitely many simplices of K.”

Lemma 2.3.1
Let U be a bounded convex open set in Rn; let w ∈ U . If K is a finite complex such that
|K| = U \ U , then w ∗K is a finite complex such that |w ∗K| = U .

Proof. According to Lemma 1.1 of of Munkres’s book, each ray emanating from w intersects |K| =
U \ U in exactly one point.

w

|w ∗K| = U

Therefore, the cone w ∗K is well-defined. U is the union of all line segments joining w to points of
|K|. And hence, U = |w ∗K|. ■

Definition 2.3.2. Let w ∗K be a cone. If σ = [a0, . . . , ap] is an oriented simplex of K, let [w, σ]
denote the oriented simplex [w, a0, . . . , ap] of w ∗K.

This bracket operation [w, σ], where σ is an oriented simplex of K, is well-defined. If cp =∑
niσi is a p-chain of K, we define

[w, cp] =
∑

ni [w, σi] .

This bracket-operation is a group homomorphism from Cp (K) to Cp+1 (w ∗K), i.e. from the
group of p-chains on K to the group of (p+ 1)-chains on the cone w ∗K.

For example, in the following figure, K is the complex consisting of [v0, v1, v5], [v5, v1, v4], [v4, v1, v2],
[v2, v3, v4] and their faces.

w

|K|

v0

v1
v2

v3

v4v5

If σ = [v0, v1, v5], then [w, σ] is the 3-simplex [w, v0, v1, v5] which is colored in gray.

Proposition 2.3.2
Let σ be an elementary p-chain. Then

∂p+1 [w, σ] =

{
σ − w if p = 0

σ − [w, ∂pσ] if p > 0

19
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Proof. The first one is obvious : if σ is an elementary 0-chain, then [w, σ] is an elementary 1-chain,
which yields ∂1 [w, σ] = σ − w.

Now let’s suppose p > 0; and σ = [v0, v1, . . . , vp]. Then we know that

∂pσ = ∂p [v0, v1, . . . , vp] =

p∑
i=0

(−1)i [v0, . . . , v̂i, . . . , vp]

Now [w, σ] = [w, v0, v1, . . . , vp] is an elementary (p+ 1)-chain. Let’s compute ∂p+1 [w, σ].

∂p+1 [w, σ] = ∂p+1 [w, v0, . . . , vp]

= [v0, . . . , vp] +

p∑
i=0

(−1)i+1 [w, v0, . . . , v̂i, . . . , vp]

= σ +

[
w,

p∑
i=0

(−1)i+1 [v0, . . . , v̂i, . . . , vp]

]
= σ − [w, ∂pσ]

■

Proposition 2.3.3
Let cp be a p-chain. Then

∂p+1 [w, cp] =

{
cp − ε (cp) w if p = 0

cp − [w, ∂pcp] if p > 0

Proof. Let c0 =
∑
niσ

0
i be a 0-chain, where σ0i are elementary 0-chains. Then

ε (c0) = ε

(∑
i

niσ
0
i

)
=
∑
i

ni ε
(
σ0i
)
=
∑
i

ni

Now let’s compute ∂1 [w, c0].

∂1 [w, c0] = ∂1

([
w,
∑
i

niσ
0
i

])
= ∂1

(∑
i

ni
[
w, σ0i

])
=
∑
i

ni∂1
([
w, σ0i

])
=
∑
i

ni
(
σ0i − w

)
=
∑
i

niσ
0
i −

∑
i

ni w = c0 − ε (c0) w

Now let cp =
∑
niσ

p
i be a p-chain on the base of the cone, where σpi are elementary p-chains. Then

[w, cp] is a (p+ 1)-chain on the cone.

∂p+1 [w, cp] = ∂p+1

([
w,
∑
i

niσ
p
i

])
= ∂p+1

(∑
i

ni [w, σ
p
i ]

)
=
∑
i

ni ∂p+1 [w, σ
p
i ] =

∑
i

ni (σ
p
i − [w, ∂pσ

p
i ])

=
∑
i

niσ
p
i −

∑
i

ni [w, ∂pσ
p
i ] = cp −

[
w, ∂p

(∑
i

niσ
p
i

)]
= cp − [w, ∂pcp]

■
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Definition 2.3.3 (Acyclic). A complex whose reduced homology groups vanishes in all dimensions
is said to be acyclic.

Theorem 2.3.4 (Reduced Homology Groups of Cone)
If w ∗K is a cone, then

H̃p (w ∗K) = 0 ∀ p .

In other words, w ∗K is acyclic.

Proof. Firstly, notice that the underlying space |w ∗K| of the cone is connected. In fact, |w ∗K| is
path connected. Because if we take a point x from |w ∗K|, there is a unique simplex σ of w ∗K such
that x ∈ Intσ. If σ is not carried by K, then w is a vertex of σ, and hence the line segment wx is in
|w ∗K|. Otherwise, if σ is carried by K, the simplex [w, σ] contains the line segment wx.

Thus, |w ∗K| is path connected, and hence connected. Since |w ∗K| is connected, by Theorem 2.2.1,
H̃0 (w ∗K) = 0.

Now let’s consider the case p > 0. Let zp ∈ Zp (w ∗K) be a p-cycle of w ∗K. We want to show that
zp bounds. Let’s decompose zp as follows:

zp = cp + [w, dp−1] ,

where cp consists of the terms carried by K, and dp−1 is a (p − 1)-chain on K. We claim that
zp = ∂p+1 [w, cp].

zp − ∂p+1 [w, cp] = zp − cp + [w, ∂pcp] = [w, dp−1] + [w, ∂pcp]

= [w, dp−1 + ∂pcp] = [w, ep−1]

where ep−1 = dp−1 + ∂pcp is a (p− 1)-chain on K. Since zp is a p-cycle, ∂pzp = 0.

zp − ∂p+1 [w, cp] = [w, ep−1]

=⇒ ∂p [w, ep−1] = ∂pzp − ∂p∂p+1 [w, cp] = 0

=⇒ 0 = ∂p [w, ep−1] =

{
ep−1 − ε (ep−1) w if p = 1

ep−1 − [w, ∂p−1ep−1] if p > 1

=⇒ ep−1 =

{
ε (ep−1) w if p = 1

[w, ∂p−1ep−1] if p > 1

We know that ep−1 = dp−1 + ∂pcp is a (p − 1)-chain carried by K. But the RHS of this equation
suggests that ep−1 admits contribution from (w ∗K) \ K too. This can be true only when ep−1 is
trivial, i.e. ep−1 = 0.

zp − ∂p+1 [w, cp] = [w, ep−1] = [w, 0] = 0 =⇒ zp = ∂p+1 [w, cp]

Therefore, zp ∈ Bp (w ∗K). As a result, Zp (w ∗K) = Bp (w ∗K). Hence,

H̃p (w ∗K) = Hp (w ∗K) = Zp (w ∗K) /Bp (w ∗K) = 0 .

■

Theorem 2.3.5
Let σ be an n-simplex. The complex Kσ consisting of σ and its faces is acyclic. If n > 0, let Σn−1

denote the complex whose polytope is Bdσ. Orient σ. Then H̃n−1

(
Σn−1

)
is infinite cyclic and

is generated by the chain ∂nσ; furthermore, H̃i

(
Σn−1

)
= 0 for i 6= n− 1.
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Proof. By Example 2.3.1, Kσ is a cone. Then by Theorem 2.3.4, Kσ is acyclic. Let us compare the
chain groups of Kσ and Σn−1; they are equal except in dimension n.

0 Cn (Kσ) Cn−1 (Kσ) · · · C0 (Kσ) Z

0 Cn−1

(
Σn−1

)
· · · C0

(
Σn−1

)
Z

∂n+1 ∂n ∂n−1 ∂1 ϵ

∂′n ∂′n−1 ∂′1 ϵ′

For n > 0, Cn−1 (Kσ) = Cn−1

(
Σn−1

)
. Recall that the (n− 1)-chains on a given complex are maps

from (n− 1)-simplices of the complex to Z. Since
∣∣Σn−1

∣∣ = Bdσ, the (n− 1)-simplices of Kσ coincide
with the (n−1)-simplices of Σn−1. Hence, the (n−1)-chains of the respective complexes also coincide.

Thus, we immediately see that

Hi (Kσ) = Hi

(
Σn−1

)
, for i 6= n− 1 =⇒ 0 = H̃i (Kσ) = H̃i

(
Σn−1

)
, for i 6= n− 1

Let’s now compute the homology group in dimension n− 1. From the diagram above, we can see that
im ∂′n is trivial, because it maps a trivial group to Cn−1

(
Σn−1

)
. Also, ∂m = ∂′m for m ≤ n− 1.

Since Kσ is acyclic, H̃i (Kσ) = 0. Therefore, for n > 1,

0 = H̃n−1 (Kσ) = Hn−1 (Kσ) = Ker ∂n−1/ im ∂n =⇒ Ker ∂n−1 = im ∂n

Using these facts, we can now compute Hn−1

(
Σn−1

)
.

Hn−1

(
Σn−1

)
= Zn−1

(
Σn−1

)
/Bn−1

(
Σn−1

)
= Ker ∂′n−1/ im ∂′n

= Ker ∂′n−1 = Ker ∂n−1 = im ∂n

We know that Cn (Kσ) is free abelian, with basis being the set of elementary n-chains. Here we have
only one elementary n-chain, corresponding to the oriented n-simplex σ. Therefore, Cn (Kσ) ∼= Z with
σ being the generator of Cn (Kσ).

We’ve just seen that Cn (Kσ) is an infinite cyclic group. ∂n : Cn (Kσ) → Cn−1 (Kσ) is a group
homomorphism; and homomorphic image of cyclic group is also cyclic. Therefore, im ∂n is cyclic with
generator ∂nσ.
Cn−1 (Kσ) is free, and hence torsion free. im ∂n is a cyclic subgroup of this torsion free group. No

element of Cn−1 (Kσ) has a finite order since Cn−1 (Kσ) is torsion free. Therefore, the order of ∂nσ is
not finite. As a result, im ∂n is a infinite cyclic group with generator ∂nσ. Therefore, for n > 1,

H̃n−1

(
Σn−1

)
= Hn−1

(
Σn−1

)
= im ∂n ∼= Z ,

and H̃n−1

(
Σn−1

)
is generated by the (n− 1)-chain ∂nσ.

The proof for n = 1 case is exactly similar, with ∂n−1 replaced by ε. ■
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§3.1 Relative Homology
Suppose K0 is a subcomplex of a given complex K. Then Cp (K0) can be seen to be a subgroup of
Cp (K). Any group element in Cp (K0) can be seen to be a group element of Cp (K) in the following
way: If cp is a p-chain on K0, one extends it to be a p-chain on K by letting its value be 0 on each
oriented p-simplex on K that is not in K0. Now, since Cp (K0) is a subgroup of Cp (K), it makes sense
to talk about the quotient group Cp (K) /Cp (K0).

Definition 3.1.1 (Group of Relative Chains). If K0 is a subcomplex of K, the quotient group
Cp (K) /Cp (K0) is called the group of relative chains of K modulo K0. It is generally denoted
by Cp (K,K0).

The group Cp (K,K0) is free, for it has basis all cosets of the form

{σi} = σi + Cp (K0) ,

where σi is an elementary p-chain corresponding to the oriented p-simplex σi of K that is not in K0.
Given the boundary operator ∂p : Cp (K) → Cp−1 (K), its restriction on Cp (K0) is denoted by the

same symbol; ∂p : Cp (K0) → Cp−1 (K0). This homomorphism induces a homomorphism (which we
denote by the same symbol ∂p) of the relative chain groups.

∂p : Cp (K,K0) → Cp−1 (K,K0) ; σi + Cp (K0) 7→ ∂pσi + Cp−1 (K0) .

Cp+1 (K,K0) Cp (K,K0) Cp−1 (K,K0)
∂p+1 ∂p

As before, this boundary operator ∂p satisfies ∂p ◦ ∂p+1 = 0.

Definition 3.1.2 (Relative Homology Group). The group of relative p-cycles of K modulo K0,
denoted by Zp (K,K0), is defined as

Zp (K,K0) = Ker ∂p , where ∂p : Cp (K,K0) → Cp−1 (K,K0) .

Similarly, the group of relative p-boundaries of K modulo K0, denoted by Bp (K,K0), is
defined as

Bp (K,K0) = im ∂p+1 , where ∂p+1 : Cp+1 (K,K0) → Cp (K,K0) .

The relative homology group of K modulo K0 in dimension p, denoted by Hp (K,K0), is
defined as

Hp (K,K0) = Zp (K,K0) /Bp (K,K0) .

Remark. A relative p-chain cp + Cp (K0) ∈ Cp (K,K0) is a relative p-cycle, i.e. cp + Cp (K0) ∈
Zp (K,K0), if and only if ∂pcp is carried by K0. Furthermore, cp + Cp (K0) ∈ Bp (K,K0) if and only
if there exists a (p+ 1)-chain dp+1 on K such that cp − ∂p+1dp+1 is carried by K0.

Example 3.1.1. Let K consist of an n-simplex and its faces; and let K0 be the set of proper faces
of K0. Now, consider the group Cp (K,K0) = Cp (K) /Cp (K0). If p > n, then Cp (K) is trivial, thus
Cp (K,K0) is trivial. If p < n, then Cp (K) coincides with Cp (K0), so Cp (K,K0) is trivial. In other
words, Cp (K,K0) = 0 unless p = n.
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When p = n, Cp (K0) is trivial, because there is no n-simplex in K0. So Cn (K,K0) = Cn (K) ∼= Z.
(Cn (K) is free abelian; in fact, it is infinite cyclic, generated by the elementary n-chain σ corresponding
to the n-simplex. So Cn (K) ∼= Z)

Now, since Cp (K,K0) = 0 for every p 6= 0, we have

0 Cn (K,K0) 0
∂n+1 ∂n

Therefore, Ker ∂n = Cn (K,K0) and im ∂n+1 = 0. As a result,

Hn (K,K0) = Ker ∂n/ im ∂n+1 = Cn (K,K0) ∼= Z

Since Cp (K,K0) = 0 for p 6= n, Hp (K,K0) = 0 for p 6= n. To summarize

Hp (K,K0) ∼=

{
0 if p 6= n

Z if p = n

Example 3.1.2. LetK be a complex and vα0 be a vertex ofK. Firstly, we are interested inH0 (K, vα0).
Since C0 (K, vα0) = C0 (K) /C0 (vα), an element in C0 (K, vα0) can be expressed as∑

α ̸=α0

nαvα

where {vα}α ̸=α0
is the collection containing a vertex from each component of |K| except the one that

contains vα0 . Any relative 0-chain of K modulo vα0 is a relative 0-cycle of K modulo vα0 . Using the
argument presented in Step 2 of Theorem 2.1.1, one easily finds that the group of relative p-boundaries
of K modulo vα0 is trivial. Hence,

H0 (K, vα0) = Z0 (K, vα0) = C0 (K, vα0)

C0 (K, vα0) is free abelian and has {vα}α ̸=α0
as a basis.

From Theorem 2.2.1, we knoe that the collection {vα − vα0}α ̸=α0
forms a basis for the 0-th reduced

homology group H̃0 (K). Each basis element in {vα}α ̸=α0
is in 1-1 correspondence with a basis ele-

ment in {vα − vα0}α ̸=α0
. Therefore, H0 (K, vα0) and H̃0 (K) have the same rank, and hence they are

isomorphic. H0 (K, vα0)
∼= H̃0 (K) .

Let us now see what happens in dimension p > 0. Hp (K, vα0) = Zp (K, vα0) /Bp (K, vα0). Let
bp ∈ Bp (K, vα0). Then bp is a p-chain on K and there exists a (p + 1)-chain dp+1 on K such that
bp − ∂p+1dp+1 is carried by vα0 .

Here p ≥ 1, and bp − ∂p+1dp+1 is a p-chain. There is no nontrivial p-chain that is carried by vα0 .
Therefore, bp − ∂p+1dp+1 = 0. So bp ∈ Bp (K). Hence, Bp (K, vα0) ⊆ Bp (K).

Now, let bp ∈ Bp (K). Then bp is a p-chain on K and there exists a (p + 1)-chain dp+1 on K such
that bp = ∂p+1dp+1. So bp − ∂p+1dp+1 is trivially carried by vα0 . As a result, bp ∈ Bp (K, vα0), and
hence Bp (K, vα0) ⊇ Bp (K). So we get Bp (K, vα0) = Bp (K).

Now let cp ∈ Zp (K, vα0). Then ∂pcp is carried by vα0 . There is no nontrivial (p − 1)-chain of the
form ∂pcp that is carried by vα0 (convince yourself that this holds for p = 1 case too). Hence, ∂pcp = 0,
so cp ∈ Zp (K). Thus, Zp (K, vα0) ⊆ Zp (K). It’s trivial to show that Zp (K, vα0) ⊇ Zp (K). So
Zp (K, vα0) = Zp (K). Thus we have, for p > 0

Hp (K, vα0) = Zp (K, vα0) /Bp (K, vα0) = Zp (K) /Bp (K) = Hp (K)

Example 3.1.3. Let K be the following complex whose underlying space is a square; and let K0 be
the subcomplex of K whose undelying space is the boundary of the square.
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e5

e6

e7

e8

e1 σ1

σ2

e2

e3e4 σ3

σ4
v

K

Now let σ =
4∑
i=1

miσi ∈ Z2 (K,K0). Then ∂2σ is carried by K0.

∂2σ =

4∑
i=1

mi ∂2σi = m1 (e5 + e2 − e1) +m2 (e6 + e3 − e2) +m3 (e7 + e4 − e3) +m4 (e8 + e1 − e4)

= m1e5 +m2e6 +m3e7 +m4e8 + (m4 −m1) e1 + (m1 −m2) e2 + (m2 −m3) e3 + (m3 −m4) e4

Since ∂2σ is carried by K0, we must have m1 = m2 = m3 = m4. Therefore, Z2 (K,K0) ∼= Z. Since
there are no 3-simplices, B2 (K,K0) is trivial. Therefore,

H2 (K,K0) = Z2 (K,K0) /B2 (K,K0) = Z2 (K,K0) ∼= Z

We showed in the course Algebraic Topology I that any 1-chain c of the complex K is homologous to
a 1-chain c3 carried by K0 ∪ e4. Now, if c is a relative 1-cycle of K modulo K0, then ∂1c is carried by
K0. Hence ∂1c3 is also carried by K0. Because

c3 = c+ ∂2 (aσ1 + bσ2 + cσ2) =⇒ ∂1c3 = ∂1c (because ∂1 ◦ ∂2 = 0)

If c3 had nontrivial value on e4, then ∂1c3 would have nontrivial value on the vertex v, which is not
the case since ∂1c3 is carried by K0. Therefore, c3 is carried by K0.

For any c+C1 (K0) ∈ Z1 (K,K0), we found that it is homologous to c3+C1 (K0). Since c3 is carried
by K0, we can conclude that c3 + C1 (K0) is the trivial coset. Therefore, Z1 (K,K0) is trivial. As a
result,

H1 (K,K0) = Z1 (K,K0) /B1 (K,K0) = 0

Theorem 3.1.1 (Excision Theorem)
Let K be a complex and K0 be a subcomplex of K. Let U be an open set contained in K0, such
that |K| \ U is the polytope of a subcomplex L of K. Let L0 be the subcomplex of K whose
polytope is |K0| \ U . Then the inclusion L0 ↪→ L and K0 ↪→ K induces an isomorphism

Hp (L,L0) ∼= Hp (K,K0)

We think of the pair (|L| , |L0|) as having been formed by excising away the open set U from |K| and
|K0|, respectively. See the figure below:

K

K0

L

L0

U
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Proof. An element of Cp (L) can be regarded as an element of Cp (K) naturally by taking its value to
be 0 on all p-simplices lying in K \ L. So one can form a composition map ϕp by taking the natural
inclusion map Cp (L) ↪→ Cp (K) followed by the quotient map π : Cp (K) → Cp (K) /Cp (K0).

Cp (L) Cp (K) Cp (K) /Cp (K0)
ι

φp=π◦ι

π

So, if c ∈ Cp (L), then ι (c) = c and thus ϕp (c) = π (c) = c+Cp (K0). Next we will show that ϕp is
surjective.

Remember that Cp (K) /Cp (K0) has as basis all cosets {σi}, where σi are elementary p-chains on
K carried by K/K0 ⊆ L.

ϕp (σi) = σi + Cp (K0)

Since every basis elements of Cp (K) /Cp (K0) has a preimage, each element of Cp (K) /Cp (K0) must
have a preimage. Therefore, ϕp is surjective.

As a result, by the First Isomorphism Theorem,

Cp (L) /Kerϕp ∼= Cp (K) /Cp (K0)

with the isomorphism
c+Kerϕp 7→ ϕp (c) = c+ Cp (K0) .

Now, our claim is that Kerϕp = Cp (L0). L0 ⊆ K0, so Cp (L0) ⊆ Cp (K0). If c1 ∈ Cp (L0), then

ϕp (c1) = c1 + Cp (K0) = 0 + Cp (K0) =⇒ c1 ∈ Kerϕp

Hence, Cp (L0) ⊆ Kerϕp.
Now suppose c2 ∈ Kerϕp. Then

ϕp (c2) = c2 + Cp (K0) = 0 + Cp (K0)

Thus c2 is a p-chain on K0. Therefore, c2 is a p-chain on K0 ∩ L = L0. So c2 ∈ Cp (L0). As a result,
Cp (L0) ⊇ Kerϕp.

Therefore, Cp (L0) = Kerϕp. As a result,

Cp (L) /Cp (L0) ∼= Cp (K) /Cp (K0) , isomorphism c+ Cp (L0) 7→ c+ Cp (K0) .

We denote this isomorphism by ip : Cp (L,L0) → Cp (K,K0).

Cp+1 (L,L0) Cp (L,L0) Cp−1 (L,L0)

Cp+1 (K,K0) Cp (K,K0) Cp−1 (K,K0)

ip+1

∂
(L,L0)
p+1

ip

∂
(L,L0)
p

ip−1

∂
(K,K0)
p+1 ∂

(K,K0)
p

We are gonna show that the two squares of this diagram commutes. It suffices to show that
ip−1 ◦ ∂(L,L0)

p = ∂
(K,K0)
p ◦ ip.

Take any c+ Cp (L0) ∈ Cp (L,L0). Then we have

∂(L,L0)
p (c+ Cp (L0)) = ∂pc+ Cp−1 (L0)

∴
(
ip−1 ◦ ∂(L,L0)

p

)
(c+ Cp (L0)) = ip−1 (∂pc+ Cp−1 (L0)) = ∂pc+ Cp−1 (K0)

On the other hand,
ip (c+ Cp (L0)) = c+ Cp (K0)
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∴
(
∂(K,K0)
p ◦ ip

)
(c+ Cp (L0)) = ∂(K,K0)

p (c+ Cp (K0)) = ∂pc+ Cp−1 (K0)

Therefore, we have
ip−1 ◦ ∂(L,L0)

p = ∂(K,K0)
p ◦ ip

Now we want to show that the isomorphism ip takes cycles to cycles and boundaries to boundaries.
Let cp ∈ Zp (L,L0) = Ker ∂

(L,L0)
p . Then ∂

(L,L0)
p c is the identity of Cp−1 (L,L0). Isomorphism maps

identity to identity, so ip−1

(
∂
(L,L0)
p c

)
is the identity of Cp−1 (K,K0).

Since ip−1 ◦ ∂(L,L0)
p = ∂

(K,K0)
p ◦ ip, we can conclude that ∂(K,K0)

p (ipc) is the identity of Cp−1 (K,K0).
Therefore, ipc ∈ Ker ∂

(K,K0)
p = Zp (K,K0). So ip takes relative p-cycles of L modulo L0 to relative

p-cycles of K modulo K0.
Now let d ∈ Bp (L,L0) = im ∂

(L,L0)
p+1 . So d = ∂

(L,L0)
p+1 e for some e ∈ Cp+1 (L,L0).

ipd = ip

(
∂
(L,L0)
p+1 e

)
= ∂

(K,K0)
p+1 (ip+1e) =⇒ ipd ∈ im ∂

(K,K0)
p+1 = Bp (K,K0)

So ip takes relative p-boundaries of L modulo L0 to relative p-boundaries of K modulo K0. Therefore,
ip is the requied isomorphism of the respective relative homology groups establishing Hp (L,L0) ∼=
Hp (K,K0). ■

§3.2 Exact Homology Sequence
It’s time to introduce you to relative homology from a formal viewpoint. The related axioms are called
Eilenberg-Steenrod axioms.

Definition 3.2.1. Consider a sequence (finite or infinite) of groups and homomorphisms

· · · A1 A2 A3 · · ·ϕ1 ϕ2

This sequence is said to be exact at A2 if imφ1 = Kerφ2. If it is everywhere exact, it is said
to be an exact sequence. Of course, exactness is not defined at the two ends of the sequence, if
they exist.

Several useful facts about exact sequences are listed below. The proofs of these facts are left as an
exercise for the reader. Note that, the groups under study are all abelian, and hence we denote by 0
the trivial group consisting of only the identity element 0.

1. A1
ϕ−→ A2 → 0 is exact if and only if φ is an epimorphism (surjective).

2. 0 → A1
ϕ−→ A2 is exact if and only if φ is a monomorphism (injective).

3. Suppose the sequence 0 → A1
ϕ−→ A2

ψ−→ A3 → 0 is exact. Such a sequence is called a short
exact sequence. Here φ is a monomorphism and ψ is an epimorphism.
Exactness yields φ (A1) = Kerψ. Since ψ : A2 → A3 is a surjective homomorphism, by the First
Isomorphism Theorem,

A2/Kerψ ∼= A3 =⇒ A2/φ (A1) ∼= A3

Conversely, if ψ : A→ B is an epimorphism with kernel K, then the sequence

0 K A B 0ι ψ

is exact, where ι is inclusion. Indeed ι (K) = K = Kerψ.

4. Suppose the sequence A1
α−→ A2

ϕ−→ A3
β−→ A4 is exact. Then the following are equivalent:

(i) α is an epimorphism.
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(ii) β is a monomorphism.
(iii) φ is the zero homomorphism (φ maps all of A2 to the identity element 0 of A3).

5. Suppose the sequence A1
α−→ A2 → A3 → A4

β−→ A5 is exact. Then the following sequence is also
exact :

0 Cokα A3 Kerβ 0

If f : A→ B is a homomorphism, then the Cokernel of f is defined as Cok f := B/ im f .

Definition 3.2.2. Consider two sequences of groups and homomorphisms having the same index
set :

· · · → A1 → A2 → · · ·

· · · → B1 → B2 → · · ·

A homomorphism of the first sequence into the second is a family of homomorphisms αi : Ai →
Bi such that each square of maps

Ai Ai+1

Bi Bi+1

αi αi+1

connutes. It is an isomorphism if each αi is an isomorphism.

Example 3.2.1 (Chain Complex and Chain Map)
A chain complex C is a family {Cp, ∂p} of abelian groups Cp and group homomorphism ∂p : Cp →
Cp−1, indexed with integers, such that ∂p ◦ ∂p+1 = 0 for all p.

· · · Cp+1 Cp Cp−1 · · ·
∂p+1 ∂p

Let C = {Cp, ∂p} and C′ =
{
C ′
p, ∂

′
p

}
be chain complexes. A chain map φ : C → C′ is a family of

homomorphism φp : Cp → C ′
p such that

∂′p ◦ φp = φp−1 ◦ ∂p , ∀p .

In other words, each of the following squares commutes:

· · · Cp+1 Cp Cp−1 · · ·

· · · C ′
p+1 C ′

p C ′
p−1 · · ·

∂p+1

ϕp+1

∂p

ϕp ϕp−1

∂′p+1 ∂′p

Definition 3.2.3. Consider the following short exact sequence:

0 A1 A2 A3 0
ϕ ψ

This sequence is said to be split if the group φ (A1) is a direct summand in A2. In other words,
A2 is the direct sum of φ (A1) and some other subgroup B of A2. (The direct sum is termed
internal as the structure A2 is known apriori which is written as the direct sum of the summands,
as opposed to the case of external direct sum where the resulting object is not given apriori.)

We express this fact with the following exact sequence:
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0 A1 φ (A1)⊕B A3 0
ϕ ψ

An equivalent formulation using external direct sum is given as follows:

0 A1 A2 A3 0

0 A1 A1 ⊕A3 A3 0

= θ =

ι π

In this case, ⊕ denotes external direct sum; ι is the inclusion and π is the cannonical projection. The
map θ : A2 → A1 ⊕A3 is defined as follows:

For a ∈ A2 , θ (a) ≡ ((θ (a))1 , (θ (a))2) =
(
φ−1 (a) , ψ (a)

)
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§4.1 Exact Homology Sequence Continued

Theorem 4.1.1
Let 0 → A1

ϕ−→ A2
ψ−→ A3 → 0 be exact. Then the following are equivalent:

1. The sequence splits.

2. There is a map p : A2 → A1 such that p ◦ φ = idA1 .

3. There is a map j : A3 → A2 such that ψ ◦ j = idA3 .

0 A1 A2 A3 0
ϕ ψ

p j

Proof. First, we show that (1)⇒(2) and (1)⇒(3). From the definition of split exact sequence using
external direct sum, it follows that it suffices to prove (2) and (3) for the following sequence:

0 A1 A1 ⊕A3 A3 0ι π

To prove (2), one takes p : A1 ⊕ A3 → A1 to be the projection onto the first factor; and to prove (3),
one takes j : A3 → A1 ⊕A3 to be the standard inclusion map.

(2)⇒(1): We show that A2 = φ (A1)⊕Ker p. It will prove that

0 A1 φ (A1)⊕Ker p︸ ︷︷ ︸
A2

A3 0
ϕ ψ

p

is a split exact sequence. First, for x ∈ A2, we write

x = φ (p (x)) + (x− φ (p (x)))

Since, p (x) ∈ A1, φ (p (x)) ∈ φ (A1). On the other hand,

p (x− φ (p (x))) = p (x)− p (φ (p (x))) = p (x)− idA1 (p (x)) = 0

Therefore, x− φ (p (x)) ∈ Ker p. Now we will show that φ (A1) ∩Ker p is trivial.
Let x ∈ φ (A1) ∩Ker p. Then there exists y ∈ A1 such that φ (y) = x, and p (x) = 0.

0 = p (x) = p (φ (y)) = idA1 (y) = y

So y = 0. φ is a homomorphism, so it maps identity to identity. Therefore, x = φ (y) = φ (0) = 0, so
φ (A1) ∩Ker p = {0}. Hence, A2 = φ (A1)⊕Ker p.

(3)⇒(1): We show that A2 = Kerψ ⊕ j (A3). Since Kerψ = imφ, proving A2 = Kerψ ⊕ j (A3)
will imply A2 = φ (A1)⊕ j (A3). It will prove that

0 A1 Kerψ ⊕ j (A3)︸ ︷︷ ︸
A2

A3 0
ϕ ψ

j

is a split exact sequence. For x ∈ A2, we write

x = (x− j (ψ (x))) + j (ψ (x))
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Since ψ (x) ∈ A3, j (ψ (x)) ∈ j (A3). On the other hand,

ψ (x− j (ψ (x))) = ψ (x)− ψ (j (ψ (x))) = ψ (x)− idA3 (ψ (x)) = 0

Therefore, x− j (ψ (x)) ∈ Kerψ. Now we will show that Kerψ ∩ j (A3) is trivial.
Let x ∈ Kerψ ∩ j (A3). Then there exists z ∈ A3 such that j (z) = x, and ψ (x) = 0.

0 = ψ (x) = ψ (j (z)) = idA3 (z) = z

So z = 0. j is a homomorphism, so it maps identity to identity. Therefore, x = j (z) = j (0) = 0. So
Kerψ ∩ j (A3) = {0}. Hence, A2 = Kerψ ⊕ j (A3). ■

Corollary 4.1.2

Let 0 → A1
ϕ−→ A2

ψ−→ A3 → 0 be exact. If A3 is free abelian, the sequence splits.

Proof. We choose a basis {eα}α for A3. We want to show that part (3) of Theorem 4.1.1 holds.

0 A1 A2 A3 0
ϕ ψ

j

We define the map j : A3 → A2 with the help of its action on the basis elements eα of A3. We let j (eα)
be any element of the nonempty set ψ−1 (eα). ψ−1 (eα) is nonempty, because ψ is an epimorphism.
Then ψ (j (eα)) = eα. Therefore, for a given

∑
α nαeα ∈ A3,

ψ

(
j

(∑
α

nαeα

))
=
∑
α

nα ψ (j (eα)) =
∑
α

nαeα

In other words, ψ ◦ j = idA3 . Hence, by Theorem 4.1.1, the sequence 0 → A1
ϕ−→ A2

ψ−→ A3 → 0
splits. ■

§4.2 Simplicial Maps and Simplicial Approximation
Recall that (from Algebraic Topology I), a simplicial map f : |K| → |L| is a continuous map between
the underlying spaces of two simplicial complexes K and L with g : K(0) → L(0) being a map between
the sets of vertices of the complexes such that whenever v0, v1, . . . , vn span a simplex of K, the points
g (v0) , g (v1) , . . . , g (vn) are vertices of a simplex of L. For a given x ∈ |K|, the continuous map
f : |K| → |L| satisfies

x =
n∑
i=0

tivi =⇒ f (x) =
n∑
i=0

tig (vi) .

Definition 4.2.1. Let f : |K| → |L| be a simplicial map. If [v0, v1, . . . , vp] is an oriented p-simplex
of K, then the points f (v0) , f (v1) , . . . , f (vp) span a simplex of L. We define a homomorphism
(f#)p : Cp (K) → Cp (L) by defining it on elementary p-chains corresponding to oriented p-
simplices of K:

(f#)p ([v0, . . . , vp]) =

{
[f (v0) , . . . , f (vp)] if f (v0) , f (v1) , . . . , f (vp) are distinct
0 otherwise

Lemma 4.2.1
The homomosphism f# commutes with the boundary operator, i.e.

∂p (f#)p ([v0, . . . , vp]) = (f#)p−1 (∂p [v0, . . . , vp])
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In other words, each of the squares of the following diagram commutes:

· · · Cp+1 (K) Cp (K) Cp−1 (K) · · ·

· · · Cp+1 (L) Cp (L) Cp−1 (L) · · ·

∂p+1

(f#)p+1

∂p

(f#)p

∂p−1

(f#)p−1

∂p+1 ∂p ∂p−1

Therefore, f# induces a homomorphism (f∗)p : Hp (K) → Hp (L).

We shall omit the proof. The interested readers are encouraged to go over §12 of the textbook Elements
of Algebraic Topology by James Munkres.

Lemma 4.2.2
The chain map f# preserves the augmentation map ε; therefore, it induces a homomorphism f∗
of reduced homology groups.

Definition 4.2.2. Let h : |K| → |L| be a continuous map. We say that h satisfies the star
condition with respect to K and L if for every vertex v of K there exists a vertex w of L such
that

h (St v) ⊆ Stw

Definition 4.2.3 (Simplicial Approximation). Let h : |K| → |L| be a continuous map. If f : |K| →
|L| is a simplicial map such that

h (St v) ⊆ St f (v) ,

we call f a simplicial approximation to h.

Remark. h (St v) ⊆ St f (v) implies that h satisfies the star condition relative to K and L. In other
words, whenever a continuous map h : |K| → |L| satisfies the star condition, one can find its simplicial
approximation; i.e. a simplicial map f : |K| → |L| satisfying h (St v) ⊆ St f (v).

Since any simplicial map f : |K| → |L| induces a homoomrophism (f∗)p : Hp (K) → Hp (L), for any
continuous map h : |K| → |L| satisfying the star condition relative to K and L, there is a well-defined
homomorphism

(h∗)p : Hp (K) → Hp (L)

obtained by setting h∗ = f∗, where f is the simplicial approximation to h.

Now the problem we are confronted with is that any continuous map h : |K| → |L| may not satisfy
the star condition relative to K and L. There is a useful technique called “subdivision” by means
of which one canform a new simplex K ′ out of the complex K with the same underlying space, i.e.
|K| = |K ′|, such that h : |K| → |L| satisfies the star condition relative to K ′ and L.

Definition 4.2.4 (Subdivision). Let K be a geometric complex in EJ . A complex K ′ is said to be
a subdivision of K if

1. Each simplex of K ′ is contained in a simplex of K.

2. Each simplex of K equals the union of finitely many simplices of K ′.

These two conditions imply that the union of the simplices of K ′ equals the union of simplices of K
— that is K and K ′ are equal as sets. The finiteness condition (2) guarantees that |K| and |K ′| are
equal as topological spaces (check!).

32



4 Lecture 4 33

Definition 4.2.5. Let K be a complex; suppose that Lp is a subdivision of the p-skeleton K(p) of
K. Let σ be a (p+ 1)-simplex of K. The set Bdσ is the polytope of a subcomplex of K(p), and
hence of a subcomplex of Lp; we denote the latter subcomplex by Lσ. If wσ, is an interior point
of σ, then the cone wσ ∗ Lσ is a complex whose underlying space is σ. We define Lp+1, to be the
union of Lp and the complexes wσ ∗Lσ as σ ranges over all (p+1)-simplices of K. One can show
that Lp+1 is a complex; it is said to be the subdivision of K(p+1) obtained by starring Lp from
the points wσ.

Definition 4.2.6 (Barycenter). Let σ = v0 · · · vp be an unoriented p-simlex with the given vertices.
The barycenter of σ is defined to be the point

σ̂ =

p∑
i=0

1

p+ 1
vi .

Observe that the barycentric coordinates of σ̂ with respect to v0, . . . , vp are all equal. And the sum of
all these coordinates is (p+ 1) 1

p+1 = 1, as it should be. In other words, the weight of the barycenter
σ̂ on each of the vertices v0, . . . , vp is given by 1

p+1 .

Definition 4.2.7 (Barycentric Subdivision). Let K be a complex. We define a sequence of subdivi-
sions of the skeletons of K as follows: Let L0 = K(0), the 0-skeleton of K. In general, if Lp is a
subdivision of the p-skeleton of K, let Lp+1 be the subdivision of the (p+1)-skeleton obtained by
starring Lp from the barycenters of the (p+ 1)-simplices of K.

The union of the complexes Lp (for p = 0, 1, 2, . . .) can be seen to be a subdivision of K using
standard results. It is called the first barycentric subdivision of K, and denoted by sdK.

Having formed a complex sdK, we can now construct its first barycentric subdivision sd (sdK),
which we denote by sd2K. This complex is called the second barycentric subdivision of K.
Similarly, one defines sdnK, in general.

The following image illuatrates a 2-d complex K and its first and second barycentric subdivision.

v0
v1

v2 v3

σ

v0
v1

v2 v3

σ̂

K sdK sd2K

Theorem 4.2.3 (Finite Simplicial Approximation Theorem)
Let K and L be complexes; and let K be finite. Given a contiuous map h : |K| → |L|, there is
an N ∈ N such that h has a simplicial approximation f : sdN K → L.

We are not stating the proof of Theorem 4.2.3 here. To prove it, one needs to show that h : |K| → |L|
satisfies the star condition relative to sdN K and L.

Let K0 be a subcomplex of K, and L0 be a subcomplex of L. Let f : K → L be a simplicial map
that carries each simplex of K0 to a simplex of L0. We often express it as “f : (K,K0) → (L,L0) is a
simplicial map”. This induces a map (f∗)p : Hp (K,K0) → Hp (L,L0).
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Theorem 4.2.4 (General Simplicial Approximation Theorem)
Let K and L be complexes. Given a contiuous map h : |K| → |L|, there exists a subdivision K ′

of K such that h has a simplicial approximation f : K ′ → L.

§4.3 Homology Boundary Homomorphism
First we need to define a homomrphism (∂∗)p : Hp (K,K0) → Hp−1 (K0) that is induced by the
boundary operator and is called the homology boundary homomorphism. The construction of
∂∗ is as follows:

Given a relative p-chain z ∈ Cp (K,K0), one can find a p-chain d carried by K \K0 satisfying

{z} = d+ Cp (K0)︸ ︷︷ ︸
coset

If, in addition, z is a relative p-cycle of K mod K0, then ∂pd is carried by K0. Now consider the
inclusions (simplicial maps)

i : K0 → K and π : (K,∅) → (K,K0)

Now the induced chain map (i#)p : Cp (K0) → Cp (K) is inclusion; and (π#)p : Cp (K) → Cp (K,K0)
is projection map.

Given a relative p-cycle z ∈ Cp (K,K0), the chain d of Cp (K) carried by K\K0 such that (π#)p (d) =
z. Since z is a relative p-cycle of K mod K0, then ∂pd is carried by K0, i.e. ∂pd ∈ Cp−1 (K0).

(i#)p−1 : Cp−1 (K0) → Cp−1 (K) is the inclusion map, so there exists a (p − 1)-chain c of K0 such
that (i#)p−1 (c) = ∂pd.

Cp−1 (K0) Cp−1 (K)

Cp−2 (K0) Cp−2 (K)

(i#)p−1

∂
K0
p−1

∂Kp−1

(i#)p−2

The above diagram is easily seen to commute, i.e.

(i#)p−2 ◦ ∂
K0
p−1 = ∂Kp−1 ◦ (i#)p−1

c is a (p− 1)-chain on K0, so

(i#)p−2

(
∂K0
p−1c

)
= ∂Kp−1

(
(i#)p−1 c

)
= ∂Kp−1

(
∂Kp d

)
= 0

(i#)p−2 is inclusion, so it’s injective. Hence, ∂K0
p−1c = 0, i.e. the (p− 1)-chain c is a (p− 1)-cycle of K0.

Cp (K) Cp (K,K0) 3 z

c ∈ Cp−1 (K0) Cp−1 (K)

(π#)p

∂Kp

(i#)p−1

Let us now denote by c̃ a (p− 1)-cycle that is not a p-boundary, so that {c̃} ∈ Hp−1 (K0). Here {c̃}
is an equivalence class: c̃ ∼ c̃′ iff there exists p-chain e on K0 such that c̃ = c̃′ + ∂pe.

On the other extreme, let us denote by z̃ a relative p-cycle of K mod K0 that is not a relative
p-boundary of K mod K0, so that {z̃} ∈ Hp (K,K0). {z̃} is an equivalence class: z̃ ∼ z̃′ iff z̃ = z̃′ + κ
with κ being a relative p-boundary of K mod K0.
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We define (∂∗)p : Hp (K,K0) → Hp−1 (K0) by

(∂∗)p ({z̃}) = {c̃}

Now we can state our basic theorem relating the homology of K, K0 and (K,K0).

Definition 4.3.1 (Long Exact Sequence). A long exact sequence is an exact sequence whose
index set is the set of integers. That is, it is a sequence that is infinite in both directions. It may,
however, begin or end with an infinite string of trivial groups.

Theorem 4.3.1 (The exact homology sequence of a pair)
Let K be a complex; let K0 be a subcomplex. Then there is a long exact sequence

· · · Hp (K0) Hp (K) Hp (K,K0) Hp−1 (K0) · · ·
(i∗)p (π∗)p (∂∗)p

where i : K0 → K and π : (K,∅) → (K,K0) are inclusions, and ∂∗ is induced by the boundary
operator. There is a similar exact sequence in reduced homology:

· · · H̃p (K0) H̃p (K) Hp (K,K0) H̃p−1 (K0) · · ·

Let us give an example before proving the theorem.

Example 4.3.1. Let K be the following complex whose underlying space is a square; and let K0 be
the subcomplex of K whose undelying space is the boundary of the square. The 2-simplices σi are
oriented in counterclockwise direction.

e5

e6

e7

e8

e1 σ1

σ2

e2

e3e4 σ3

σ4
v

K

We’ve seen in Example 3.1.3 that H2 (K,K0) ∼= Z. The group H2 (K,K0) is generated by the 2-chain
γ =

∑4
i=1 σi, where the elementary 2-chains corresponding to the oriented 2-simplices are denoted by

the same symbol σi.
Check that H1 (K0) ∼= Z and it is generated by e5 + e6 + e7 + e8. In the course of computation

of H1 (K0), one finds that e5 + e6 + e7 + e8 = ∂2γ. Therefore, in this particular homomorphism,
the boundary homomorphism (∂∗)2 : H2 (K,K0) → H1 (K0) happens to be ∂∗ : Z → Z, which is an
isomorphism.

· · · H2 (K) H2 (K,K0)

H1 (K0) H1 (K) · · ·

(∂∗)2

We can prove the fact that (∂∗)2 : H2 (K,K0) → H1 (K0) is an isomorphism by considering the exact
homology sequence of the pair (K,K0). Let us focus on the following portion of the exact homology
sequence in question:
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H2 (K) H2 (K,K0) H1 (K0) H1 (K)
(∂∗)2

We know that both H2 (K) and H1 (K) vanish. Therefore, we have the following exact sequence

0 H2 (K,K0) H1 (K0) 0
(∂∗)2

Now Ker (∂∗)2 = 0, so (∂∗)2 is injective. Also, im (∂∗)2 = H1 (K0), so (∂∗)2 is surjective. Therefore,
(∂∗)2 is a bijective homomorphism, i.e. an isomorphism.

§4.4 The Zig-Zag Lemma
Now we shall prove Theorem 4.3.1. We shall reformulate this result as a theorem about chain complexes
and prove it in that form.

Definition 4.4.1. Let C, D and E be chain complexes. Let 0 denote the trivial chain complex
whose groups vanish in every dimension. Let φ : C → D and ψ : D → E be chain maps. We say
the sequence

0 C D E 0
ϕ ψ

is exact, or that it is a short exact sequence of chain complexes, if in each dimension p, the
sequence

0 Cp Dp Ep 0
ϕp ψp

is an exact sequence of groups.

For example, if K is a complex and K0 is a subcomplex of K and C is the chain complex C =
{Cp (K) , ∂p}, the sequence

0 C (K0) C (K) C (K,K0) 0

is exact. Because Cp (K,K0) = Cp (K) /Cp (K0) by definition.

Lemma 4.4.1 (The Zig-Zag Lemma)
Suppose one is given chain complexes C =

{
Cp, ∂

C
p

}
, D =

{
Dp, ∂

D
p

}
and E =

{
Ep, ∂

E
p

}
; and chain

maps φ and ψ such that the sequence

0 C D E 0
ϕ ψ

is exact. Then there is a long exact homology sequence

· · · · · ·

Hp (C) Hp (D) Hp (E)

Hp−1 (C) Hp−1 (D) · · ·

(ϕp)∗

(ψp)∗

(∂∗)p

(ϕp−1)∗

where (∂∗)p is induced by the boundary operator in D.

Proof. The proof is of a type now commonly known as “diagram-chasing”. We shall use the following
commutative diagram:
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0 Cp+1

dp+1

Dp+1

ep+1

Ep+1 0

0 Cp Dp Ep 0

0 Cp−1 Dp−1 Ep−1 0

0 Cp−2 Dp−2 Ep−2 0

ϕp+1

∂Cp+1

cp

ψp+1

∂Dp+1

dp

∂Ep+1

epϕp

∂Cp

cp−1

ψp

∂Dp ∂Ep

ϕp−1

∂Cp−1

ψp−1

∂Dp−1 ∂Ep−1

ϕp−2 ψp−2

Step 1. First we define (∂∗)p. Given a cycle ep ∈ Ep, an element of Ker ∂Ep , choose dp ∈ Dp such that
ψp (dp) = ep. This can always be done, because ψ is surjective. Now, the element ∂Dp dp of Dp−1 lies
in Kerψp−1, because

ψp−1

(
∂Dp dp

)
= ∂Ep (ψp (dp)) = ∂Ep (ep) = 0 .

Now since Kerψp−1 = imφp−1, there exists cp−1 ∈ Cp−1 such that φp−1 (cp−1) = ∂Dp dp. This element
cp−1 is unique, since φp−1 is injective.

φp−2

(
∂Cp−1cp−1

)
= ∂Dp−1 (φp−1 (cp−1)) = ∂Dp−1

(
∂Dp dp

)
= 0

Since φp−2 is injective, ∂Cp−1cp−1 = 0. Then we define

(∂∗)p ({ep}) = {cp−1}

where { } denotes the homology class.

Step 2. Now we show that (∂∗)p is a well-defined homomorphism. Let ep, e′p ∈ Ker ∂Ep . Choose
dp, d

′
p ∈ Dp such that ψp (dp) = ep and ψp

(
d′p
)
= e′p. Then choose cp−1, c

′
p−1 ∈ Cp−1 such that

φp−1 (cp−1) = ∂Dp dp and φp−1

(
c′p−1

)
= ∂Dp d

′
p. In this way, we have

(∂∗)p ({ep}) = {cp−1} , and (∂∗)p
({
e′p
})

=
{
c′p−1

}
To show that (∂∗)p is well defined, we suppose ep and e′p are homologous, i.e. they belong to the same
homology class. We need to show that cp−1 and c′p−1 are also homologous.

Suppose ep − e′p = ∂Ep+1ep+1. Choose dp+1 ∈ Dp+1 such that ψp+1 (dp+1) = ep+1. This is doable
since ψp+1 is surjective. Then

ψp
(
dp − d′p − ∂Dp+1dp+1

)
= ep − e′p − ψp

(
∂Dp+1dp+1

)
= ep − e′p − ∂Ep+1 (ψp+1 (dp+1))

= ep − e′p − ∂Ep+1ep+1 = 0

So dp − d′p − ∂Dp+1dp+1 ∈ Kerψp = imφp. Hence, dp − d′p − ∂Dp+1dp+1 = φp (cp) for some cp ∈ Cp.

φp−1

(
∂Cp cp

)
= ∂Dp (φp (cp)) = ∂Dp

(
dp − d′p − ∂Dp+1dp+1

)
= φp−1 (cp−1)− φp−1

(
c′p−1

)
= φp−1

(
cp−1 − c′p−1

)
Since φp−1 is injective, we have cp−1 − c′p−1 = ∂Cp cp. So cp−1 and c′p−1 are homologous. Therefore,
(∂∗)p is a well-defined map.

Now we want to show that (∂∗)p is a homomorphism. Note that

ψp
(
dp + d′p

)
= ep + e′p and φp−1

(
cp−1 + c′p−1

)
= ∂Dp dp + ∂Dp d

′
p = ∂Dp

(
dp + d′p

)
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Using the definition of (∂∗)p, one finds that

(∂∗)p
({
ep + e′p

})
=
{
cp−1 + c′p−1

}
= {cp−1}+

{
c′p−1

}
= (∂∗)p ({ep}) + (∂∗)p

({
e′p
})

So (∂∗)p is a homomorphism.

Step 3. Now we are gonna prove exactness at Hp (D). In other words, we prove im (φp)∗ = Ker (ψp)∗.
Let γ ∈ Hp (D). Since the sequence

0 C D E 0
ϕ ψ

is exact, we have Kerψ = imφ, i.e. ψ ◦ φ = 0. Therefore, ψp ◦ φp = 0 for every p. By the functorial
property of induced homomorphism of homology groups, (see §18 of Elements of Algebraic
Topology by James R. Munkres for more details)

(ψp)∗ ◦ (φp)∗ = (ψp ◦ φp)∗ = 0

Thus, if γ ∈ im (φp)∗, we have (ψp)∗ (γ) = 0. In other words, im (φp)∗ ⊆ Ker (ψp)∗.
Now let γ = {dp}, and suppose (ψp)∗ (γ) = 0.

0 = (ψp)∗ ({dp}) = {ψp (dp)}

So {ψp (dp)} is the 0 homology class. In other words, ψp (dp) is homologous to 0. So ψp (dp) = ∂Ep+1ep+1

for some ep+1 ∈ Ep+1. Since ψp+1 is surjective, there exists some dp+1 ∈ Dp+1 such that ψp+1 (dp+1) =
ep+1. Then we have

ψp
(
dp − ∂Dp+1dp+1

)
= ψp (dp)− ψp

(
∂Dp+1dp+1

)
= ∂Ep+1ep+1 − ∂Ep+1 (ψp+1dp+1)

= ∂Ep+1ep+1 − ∂Ep+1ep+1 = 0

Therefore, dp − ∂Dp+1dp+1 ∈ Kerψp = imφp. In other words, dp − ∂Dp+1dp+1 = φp (cp) for some cp ∈ Cp.
Now,

φp−1

(
∂Cp cp

)
= ∂Dp (φp (cp)) = ∂Dp

(
dp − ∂Dp+1dp+1

)
= ∂Dp dp = 0

Since φp+1 is injective, we have ∂Cp cp = 0, which means cp is a cycle. Furthermore, using the fact that
dp − ∂Dp+1dp+1 is homologous to dp, we get

(φp)∗ {cp} = {φp (cp)} =
{
dp − ∂Dp+1dp+1

}
= {dp} = γ

So γ ∈ im (φp)∗. Hence, Ker (ψp)∗ ⊆ im (φp)∗. Therefore, im (φp)∗ = Ker (ψp)∗, which proves exactness
at Hp (D).

Step 4. Now we shall prove exactness at Hp (E). Let α = {ep} ∈ Hp (E) = Ker ∂Ep / im ∂p+1E. In
particular, ep ∈ Ep. And ψp is surjective. So we can choose dp ∈ Dp such that ψp (dp) = ep. Then
choose cp−1 ∈ Cp−1 such that φp−1 (cp−1) = ∂Dp dp. By the definition of (∂∗)p,

(∂∗)p α = (∂∗)p {ep} = {cp−1}

Let α ∈ im (ψp)∗, we need to show that α ∈ Ker (∂∗)p. Since α ∈ im (ψp)∗, α = (ψp)∗ γ for some
γ = {dp} ∈ Hp (D), where dp is a cycle. In other words,

{ep} = α = (ψp)∗ {dp} = {ψp (dp)}

Now, φp−1 (cp−1) = ∂Dp dp = 0, and φp−1 is injective, so cp−1 = 0. Therefore, (∂∗)p α = {cp−1} = 0.
Hence, im (ψp)∗ ⊆ Ker (∂∗)p.

Now let α ∈ Ker (∂∗)p, and we need to show that α ∈ im (ψp)∗.

0 = (∂∗)p α = {cp−1}

38



4 Lecture 4 39

So cp−1 is homologous to 0, i.e. cp−1 = ∂Cp cp for some cp ∈ Cp. Now we claim that dp − φp (cp) is a
cycle.

∂Dp (dp − φp (cp)) = ∂Dp dp − ∂Dp (φp (cp)) = ∂Dp dp − φp−1

(
∂Cp cp

)
= φp−1 (cp−1)− φp−1 (cp−1) = 0

So dp − φp (cp) is a cycle. Now,

(ψp)∗ {dp − φp (cp)} = {ψp (dp)− ψp (φp (cp))} = {ψp (dp)} = {ep} = α

Therefore, α ∈ im (ψp)∗, so Ker (∂∗)p ⊆ (ψp)∗. Hence, Ker (∂∗)p = (ψp)∗.

Step 5. Finally we prove exactness at Hp−1 (C). Let β = {cp−1} ∈ Hp−1 (C). Suppose β ∈ im (∂∗)p.
Then {cp−1} = (∂∗)p {ep} for some {ep} ∈ Hp (E).

By the definition of (∂∗)p, ψp (dp) = ep for some dp ∈ Dp, and φp−1 (cp−1) = ∂Dp dp.

(φp−1)∗ β = (φp−1)∗ {cp−1} =
{
∂Dp dp

}
= 0

Therefore, β ∈ Ker (φp−1)∗. So im (∂∗)p ⊆ Ker (φp−1)∗.
Now let β ∈ Ker (φp−1)∗. Then we have

0 = (φp−1)∗ β = (φp−1)∗ {cp−1} = {φp−1 (cp−1)}

So φp−1 (cp−1) = ∂Dp dp for some dp ∈ Dp. We define ep = ψp (dp). Then

∂Ep ep = ∂Ep (ψp (dp)) = ψp−1

(
∂Dp dp

)
= ψp−1 (φp−1 (cp−1)) = 0

because ψp−1 ◦ φp−1 = 0. Therefore, ep is a cycle. Using the definition of (∂∗)p, we get

(∂∗)p {ep} = {cp−1} = β

So β ∈ im (∂∗)p. In other words, Ker (φp−1)∗ ⊆ im (∂∗)p. Therefore, Ker (φp−1)∗ = im (∂∗)p, and thus
the sequence is exact at Hp−1 (C). ■
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Suppose C = {Cp, ∂p} and C′ =

{
C ′
p, ∂

′
p

}
are chain complexes and φ : C → C′ is a chain map. Then

this chain map induces a homomorphism at the level of homology groups:

(φ∗)p : Hp (C) → Hp

(
C′)

Also, a chain complex C is a family {Cp, ∂p} of abelian groups Cp and homomorphisms ∂p : Cp → Cp+1,
indexed with integers, such that ∂p ◦ ∂p+1 = 0 for each p.

If Cp = 0 for every p < 0, then C is said to be a non-negative chain complex. If Cp is free
abelian for each p, then C is called a free chain complex. The group Hp (C) = Ker ∂p/ im ∂p+1 is
called the p-th homology group of C.

If C is a non-negative chain complex, an augmentation for C is an epimorphism ε : C0 → Z such
that ε ◦ ∂1 = 0.

· · · C1 C0 Z∂1 ε

Then im ∂1 ⊆ Ker ε. The augmented chain complex {C, ε} is obtained from C by adjoining the
group Z in dimension −1, and using ε as the boundary operator in dimension 0. The homology groups
of the augmented chain complex are called reduced homology groups of the original chain complex.
They are denoted by either Hi ({C, ε}) or H̃i (C). Then one has

Hp (C) =

{
H̃p (C) for every p 6= 0

H̃0 (C)⊕ Z for p = 0

If φ : C → C′ and ψ : C′ → C′′ are chain maps, then ψ ◦ φ : C → C′′ is also a chain map. T he induced
homomorphism of ψ ◦ φ reads (ψ ◦ φ)∗ = ψ∗ ◦ φ∗. In other words,

(ψp ◦ φp)∗ = (ψ∗)p ◦ (φ∗)p

If {C, ε} and {C′, ε′} are augmented chain complexes, the chain map φ : C → C′ is said to be augmen-
tation preserving if ε′ ◦φ0 = ε. If we extened φ to the (−1)-dimensional groups by letting φ−1 equal
the identity map of Z, then φ is called a chain map of augmented chain complexes.

· · · C1 C0 Z

· · · C ′
1 C ′

0 Z

∂1

ϕ1

ϵ

ϕ0 ϕ−1=id

∂′1 ϵ′

Here, commutativity of the rightmost square implies that ε′ ◦ φ0 = ε ◦ id = ε.
It follows that an augmentation preserving chain map φ induces a homomorphism

(φ∗)p : H̃p (C) → H̃p

(
C′)

of reduced homology groups.

40



5 Lecture 5 41

§5.1 Application of Exact Homology Sequences

Theorem 5.1.1
Suppose one is given the following commutative diagram

0 C D E 0

0 C′ D′ E ′ 0

ϕ

α

ψ

β γ

ϕ′ ψ′

where the horizontal sequences are exact sequences of chain complexes; and α, β, γ are chain
maps. Then the following diagram commutes as well:

· · · Hp (C) Hp (D) Hp (E) Hp−1 (C) · · ·

· · · Hp (C′) Hp (D′) Hp (E ′) Hp−1 (C′) · · ·

(ϕp)∗

(αp)∗

(ψp)∗

(βp)∗

(∂∗)p

(γp)∗ (αp−1)∗

(ϕ′p)∗ (ψ′
p)∗ (∂′∗)p

Proof. We know that the chain complexes C,D, E are pairs
(
Cp, ∂

C
p

)
,
(
Dp, ∂

D
p

)
,
(
Ep, ∂

E
p

)
with Cp, Dp, Ep

being abelian groups. Since φ, ψ, α, β, γ are all chain maps, the commutative diagram above yields
the following commutative diagram:

0 Cp Dp Ep 0

0 C ′
p D′ E′

p 0

ϕp

αp

ψp

βp γp

ϕ′p ψ′
p

In other words, βp ◦φp = φ′p ◦αp, and γp ◦ψp = ψ′
p ◦βp. From the compositional properties of induced

homomorphism, it follows that

(βp)∗ ◦ (φp)∗ = (βp ◦ φp)∗ =
(
φ′p ◦ αp

)
∗ =

(
φ′p
)
∗ ◦ (αp)∗

Similarly, we have
(γp)∗ ◦ (ψp)∗ =

(
ψ′
p

)
∗ ◦ (βp)∗

These two altogether gives us the following commutative diagram:

Hp (C) Hp (D) Hp (E)

Hp (C′) Hp (D′) Hp (E ′)

(ϕp)∗

(αp)∗

(ψp)∗

(βp)∗ (γp)∗

(ϕ′p)∗ (ψp)∗

So, the first two squares of our desired commutative diagram are shown to commute.
Now let us examin the definition of (∂∗)p and (∂′∗)p in the light of what we studied in the previous

chapter.

0 Cp

dp

Dp

ep

Ep 0

0 Cp−1

cp−1

Dp−1

∂Dp dp

Ep−1 0

ϕp

∂Cp

ψp

∂Dp ∂Ep

ϕp−1 ψp−1
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Given {ep} ∈ Hp (E), we choose dp ∈ Dp such that ψp (dp) = ep (because ψp is surjective). Now, ∂Dp dp
lies in Kerψp−1 = imφp−1, because

ψp−1

(
∂Dp dp

)
= ∂Ep (ψpdp) = ∂Ep (ep) = 0

So, there exists cp−1 ∈ Cp−1 such that φp−1 (cp−1) = ∂Dp dp. cp−1 is a cycle, as proved in previous
chapter. By the definition of (∂∗)p, one has

(∂∗)p {ep} = {cp−1}

Now let e′p = γp (ep). This means (γp)∗ {ep} = {γp (ep)} =
{
e′p
}

. We need to show that((
∂′∗
)
p
◦ (γp)∗

)
{ep} =

(
(αp−1)∗ ◦ (∂∗)p

)
{ep} ,

which is equivalent to showing (
∂′∗
)
p

{
e′p
}
= (αp−1)∗ {cp−1} .

If we go back to the first commutative diagram of this proof, commutativity of the right hand square
gives us

ψ′
p (βp (dp)) = γp (ψp (dp)) = γp (ep) = e′p

So βp (dp) is a suitable pullback of e′p in D′
p. Now, commutativity of the left hand square in the same

diagram (for p− 1) gives us

φ′p−1 (αp−1 (cp−1)) = βp−1 (φp−1 (cp−1)) = βp−1

(
∂Dp dp

)
= ∂D

′
p (βp (dp))

The last equality follows from the following commutative diagram:

Dp D′
p

Dp−1 D′
p−1

βp

∂Dp ∂D
′

p

βp−1

Therefore, we get that αp−1 (cp−1) is a suitable pullback of ∂D′
p (βp (dp)) in C ′

p−1.

0 C ′
p

βp(dp)

D′
p

e′p

E′
p 0

0 C ′
p−1

αp−1(cp−1)

D′
p−1

∂D
′

p (βp(dp))

E′
p−1 0

ϕ′p

∂C
′

p

ψ′
p

∂D
′

p ∂E
′

p

ϕ′p−1 ψ′
p−1

And αp−1 (cp−1) is a cycle since chain maps take cycles to cycles. Therefore, we get(
∂′∗
)
p

{
e′p
}
= {αp−1 (cp−1)} = (αp)∗ {cp−1}

Therefore, we are done! ■

Lemma 5.1.2 (Steenrod Five Lemma)
Suppose one is given the following commutative diagram of abelian groups and homomorphisms:

A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

g1

f1

g2

f2

g3

f3

g4

f4 f5

h1 h2 h3 h4
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where the horizontal sequences are exact. If f1, f2, f4, f5 are isomorphisms, then so is f3.

Proof. First, we shall prove that f3 is injective. It suffices to show that Ker f3 is trivial. Let a3 ∈
Kerf3 ⊆ A3. Then f3 (a3) = 0 gives us

h3 (f3 (a3)) = h3 (0) = 0

Commutativity of the diagram gives us h3 ◦ f3 = f4 ◦ g3. So f4 (g3 (a3)) = 0. Since f4 is injective, we
have g3 (a3) = 0. In other words, a3 ∈ Ker g3 = im g2. So a3 = g2 (a2) for some a2 ∈ A2.

0 = f3 (a3) = f3 (g2 (a2)) = h2 (f2 (a2))

Thus f2 (a2) ∈ Kerh2 = imh1. So f2 (a2) = h1 (b1) for some b1 ∈ B1. Since f1 is surjective, b1 = f1 (a1)
for some a1 ∈ A1.

f2 (a2) = h1 (b1) = h1 (f1 (a1)) = f2 (g1 (a1))

Injectivity of f1 gives us g1 (a1) = a2. Since im g1 = Ker g2, we have g2 ◦ g1 = 0.

a3 = g2 (a2) = g2 (g1 (a1)) = 0

Therefore, Ker f3 contains only the identity element, i.e. f3 is injective.
Now let us prove that f3 is surjective. Let b3 ∈ B3. We need to show that there exists some a ∈ A3

such that f3 (a) = b3.
h3 (b3) ∈ B4, and f4 : A4 → B4 is surjective. So h3 (b3) = f4 (a4) for some a4 ∈ A4. Now, h4 ◦h3 = 0

as imh3 = Kerh4.
0 = h4 (h3 (b3)) = h4 (f4 (a4)) = f5 (g4 (a4))

Using the injectivity of f5, we get g4 (a4) = 0. So a4 ∈ Ker g4 = im g3. This gives us a4 = g3 (a3) for
some a3 ∈ A3. Now we claim that b3 − f3 (a3) ∈ Kerh3.

h3 (b3 − f3 (a3)) = h3 (b3)− h3 (f3 (a3)) = f4 (a4)− f4 (g3 (a3))

= f4 (a4)− f4 (a4) = 0

Therefore, b3−f3 (a3) ∈ Kerh3 = imh2. So b3−f3 (a3) = h2 (b2) for some b2 ∈ B2. Since f2 : A2 → B2

is surjective, there exists a2 ∈ B2 such that f2 (a2) = b2.
Now take a = g2 (a2) + a3. Both g2 (a2) and a3 are in A3, so a ∈ A3.

f3 (a) = f3 (g2 (a2) + a3) = f3 (g2 (a2)) + f3 (a3)

= h2 (f2 (a2)) + f3 (a3) = h2 (b2) + f3 (a3)

= b3 − f3 (a3) + f3 (a3) = b3

So f3 is surjective. Henceforth, f3 is a bijective homomorphism, i.e. an isomorphism. ■

Lemma 5.1.3
Let h : (K,K0) → (L,L0) be a simplicial map (h : K → L is a simplicial map that takes each
simplex of the subcomplex K0 of K to a simplex of the subcomplex L of L0).

(a) The induced homology homomorphisms (h∗)p : Hp (K,K0) → Hp (L,L0) give a homomor-
phism of the exact homology sequences of (K,K0) with that of (L,L0).

(b) If
(
h̃∗

)
i
: Hi (K) → Hi (L) and

(
h̃0∗

)
i
: Hi (K0) → Hi (L0) are isomorphism for i = p and

i = p− 1, then
(h∗)p : Hp (K,K0) → Hp (L,L0)

is an isomorphism.

(c) Both these results hold if absolute homology is replaced throughout by reduced homology.
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Proof. First we prove (a). Recall from the previous chapter that the simplicial map h : (K,K0) →
(L,L0) induces the map at the chain level:

(h#)p : Cp (K,K0) → Cp (L,L0)

One similarly obtains the following induced maps at the level of chains(
h̃#

)
p
: Cp (K) → Cp (L) and

(
h̃0#

)
p
: Cp (K0) → Cp (L0)

As a matter of fact, there are the following exact sequences of chain complexes:

0 C (K0) C (K) C (K,K0) 0
iK# πK

#

0 C (L0) C (L) C (L,L0) 0
iL# πL

#

where the chain complex C (K), for example, is given by the family C (K) =
{
Cp (K) , ∂Kp

}
. Then we

have the following commutative diagram for every p.

0 Cp (K0) Cp (K) Cp (K,K0) 0

0 Cp (L0) Cp (L) Cp (L,L0) 0

(iK#)p

(
h̃0#

)
p

(πK
# )p

(
h̃#

)
p

(h#)p

(iL#)p (πL
#)p

Each of the maps h̃0# : C (K0) → C (L0), h̃# : C (K) → C (L) and h# : C (K,K0) → C (L,L0) are chain
maps between the respective chain complexes.

C (K,K0) ≡
{
Cp (K,K0) , ∂

(K,K0)
p

}
, C (K0) ≡

{
Cp (K0) , ∂

K0
p

}
One can easily check that (h#)p : Cp (K,K0) → Cp (L,L0) commutes with the relative boundary
operator, i.e. ∂(L,L0)

p ◦ (h#)p = (h#)p−1 ◦ ∂
(K,K0)
p . In other words, the following diagram commutes:

Cp (K,K0) Cp (L,L0)

Cp−1 (K,K0) Cp−1 (L,L0)

(h#)p

∂
(K,K0)
p ∂

(L,L0)
p

(h#)p−1

Hence, using our knowledge from previous chapter, there is an induced homomorphim

(h∗)p : Hp (K,K0) → Hp (L,L0) .

Similarly, there are other induced homorphisms(
h̃∗

)
p
: Hp (K) → Hp (L) and

(
h̃0∗

)
p
: Hp (K0) → Hp (L0) .

By means of Theorem 4.3.1, since

0 C (K0) C (K) C (K,K0) 0
iK# πK

#

is exact sequence of chain complexes, there is a long exact homology sequence:

· · · Hp (K0) Hp (K) Hp (K,K0) Hp−1 (K0) · · ·
(iK∗ )p (πK

∗ )p (∂K∗ )p
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Similarly, there is a long exact sequence for L and L0:

· · · Hp (L0) Hp (L) Hp (L,L0) Hp−1 (L0) · · ·
(iL∗ )p (πL

∗ )p (∂L∗ )p

These two long exact sequences and the homomorphism given by the family{
. . . ,

(
h̃0∗

)
p
,
(
h̃∗

)
p
, (h∗)p ,

(
h̃0∗

)
p−1

, . . .

}
between the two exact homology sequences give the following commutative diagram:

· · · Hp (K0) Hp (K) Hp (K,K0) Hp−1 (K0) · · ·

· · · Hp (L0) Hp (L) Hp (L,L0) Hp−1 (L0) · · ·

(iK∗ )p

(
h̃0∗

)
p

(πK
∗ )p

(
h̃∗

)
p

(∂K∗ )p

(h∗)p

(
h̃0∗

)
p−1

(iL∗ )p (πL
∗ )p (∂L∗ )p

Commutativity of the diagram follows from Theorem 5.1.1.
Now we are gonna show that this holds for reduced homology. We have the following non-negative

chain complexes C (K) ≡
{
Cp (K) , ∂Kp

}
, C (K0) ≡

{
Cp (K0) , ∂

K0
p

}
; and the chain map iK# : C (K0) →

C (K). Using the definition of ε, one can show that iK# preserves augmentation. In other words, the
following diagram commutes:

C0 (K0) C0 (K)

Z Z

(iK#)0

ϵ ϵ

id

Therefore, iK# can be seen to be a chain map between the augmented chain complexes {C (K0) , ε} and
{C (K) , ε}. Now since C−1 (K) = C−1 (K0) = Z, we have C−1 (K,K0) = 0. So the following diagram
commutes:

C0 (K) C0 (K,K0)

Z 0

(πK
# )0

ϵ 0

0

(The 0-map is denoted by 0 which maps everything to 0.) So one can conclude that πK# is a chain map
between the augmented chain complexes {C (K) , ε} and

{
C (K,K0) , 0

}
. For notational convenience,

we denote the chain map between augmented chain complexes with the same symbol used to denote
the chain map between the respective chain complexes. For example:

πK# : C (K) → C (K,K0) and πK# : {C (K) , ε} →
{
C (K,K0) , 0

}
,

so that one has the following commutative diagram of augmented chain complexes:

0
{
Cp (K0) , ∂

K0
p , ε

} {
Cp (K) , ∂Kp , ε

} {
Cp (K,K0) , ∂

(K,K0)
p , 0

}
0

0
{
Cp (L0) , ∂

L0
p , ε

} {
Cp (L) , ∂

L
p , ε
} {

Cp (L,L0) , ∂
(L,L0)
p , 0

}
0

(iK#)p

(
h̃0#

)
p

(πK
# )p

(
h̃#

)
p

(h#)p

(iL#)p (πL
#)p
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Now we repeat the same arguments presented in the beginning of the proof for absolute homology
groups. There are induced homomorphisms between the respective homology groups of the augmented
chain complexes. For instance,(

iK∗
)
p
: Hp ({C (K0) , ε}) → Hp ({C (K) , ε})

is the induced homomorphisms between the reduced homology groups of the respective chain com-
plexes: (

iK∗
)
p
: H̃p (K0) → H̃p (K)

Using the same arguments presented in the beginning of the proof for absolute homology groups, one
obtains the following commutative diagram:

· · · H̃p (K0) H̃p (K) H̃p (K,K0) H̃p−1 (K0) · · ·

· · · H̃p (L0) H̃p (L) H̃p (L,L0) H̃p−1 (L0) · · ·

(iK∗ )p

(
h̃0∗

)
p

(πK
∗ )p

(
h̃∗

)
p

(∂K∗ )p

(h∗)p

(
h̃0∗

)
p−1

(iL∗ )p (πL
∗ )p (∂L∗ )p

Commutativity of the diagram follows similarly from Theorem 5.1.1.

Now we shall prove (b). Consider the following commutative diagram.

Hp (K0) Hp (K) Hp (K,K0) Hp−1 (K0) Hp−1 (K)

Hp (L0) Hp (L) Hp (L,L0) Hp−1 (L0) Hp−1 (L)

(iK∗ )p

(
h̃0∗

)
p

(πK
∗ )p

(
h̃∗

)
p

(∂K∗ )p

(h∗)p

(iK∗ )p−1

(
h̃0∗

)
p−1

(
h̃∗

)
p−1

(iL∗ )p (πL
∗ )p (∂L∗ )p

(iL∗ )p−1

We are given that the first two and the last two vertical maps are isomorphisms. Therefore, by
Steenrod Five Lemma, (h∗)p : Hp (K,K0) → Hp (L,L0) is an isomorphism.

Similarly, for augmented chain complexes:

H̃p (K0) H̃p (K) H̃p (K,K0) H̃p−1 (K0) H̃p−1 (K)

H̃p (L0) H̃p (L) H̃p (L,L0) H̃p−1 (L0) H̃p−1 (L)

(iK∗ )p

(
h̃0∗

)
p

(πK
∗ )p

(
h̃∗

)
p

(∂K∗ )p

(h∗)p

(iK∗ )p−1

(
h̃0∗

)
p−1

(
h̃∗

)
p−1

(iL∗ )p (πL
∗ )p (∂L∗ )p

(iL∗ )p−1

Using Steenrod Five Lemma again, oone finds that (h∗)p : H̃p (K,K0) → H̃p (L,L0) is an isomorphism
whenever (

h̃∗

)
i
: H̃i (K) → H̃i (L) and

(
h̃0∗

)
i
: H̃i (K0) → H̃i (L0)

are isomorphisms between the respective reduced homology groups for i = p, p− 1. ■

§5.2 Mayer-Vietoris Sequences

Theorem 5.2.1
Let K be a complex; let K0 and K1 be subcomplexes such that K = K0 ∪K1. Let A = K0 ∩K1.
Then there is an exact sequence

· · · Hp (A) Hp (K0)⊕Hp (K1) Hp (K) Hp−1 (A) · · · ,
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called the Mayer-Vietoris sequence of (K0,K1). There is a similar exact sequence in reduced
homology if A is nonempty.

Proof. The proof consists of constructing a short exact sequence of chain complexes

0 C (A) C (K0)⊕ C (K1) C (K) 0
ϕ ψ

and applying The Zig-Zag Lemma.
First of all, we need to define the chain complex C (K0)⊕ C (K1). Its chain group in dimension p is

defined as Cp (K0)⊕ Cp (K1); and its boundary operator ∂′p is defined as

∂′p (dp, ep) =
(
∂K0
p dp, ∂

K1
p ep

)
with ∂K0

p and ∂K1
p being boundary operators in C (K0) and C (K1), respectively. Clearly, this satisfies

∂′p ◦ ∂′p+1 = 0.
Secondly, we need to define the chain maps φ and ψ. Consider the inclusion mappings in the

following commutative diagram:

K0

A = K0 ∩K1 K = K0 ∪K1

K1

ki

j

m

l

i, j, k, l induce four chain maps i#, j#, k#, l#:

(i#)p : Cp (A) → Cp (K0) , (j#)p : Cp (A) → Cp (K1)

(k#)p : Cp (K0) → Cp (K) , (l#)p : Cp (K1) → Cp (K)

Cp (K0)

Cp (A) Cp (K)

Cp (K1)

(k#)p(i#)p

(j#)p

(m#)p

(l#)p

We define φ and ψ as follows: Let cp ∈ Cp (A). Then we define φp : Cp (A) → Cp (K0)⊕ Cp (K1) as

φp (cp) =
(
(i#)p cp,− (j#)p cp

)
.

Now let (dp, ep) ∈ Cp (K0)⊕Cp (K1), where dp ∈ Cp (K0) and ep ∈ Cp (K1). We define ψp : Cp (K0)⊕
Cp (K1) → Cp (K) as:

ψp (dp, ep) = (k#)p dp + (l#)p ep .

To show that φ is a chain map, we need to verify that the following diagram commutes:

Cp+1 (A) Cp (A)

Cp+1 (K0)⊕ Cp+1 (K1) Cp (K0)⊕ Cp (K1)

∂Ap+1

ϕp+1 ϕp

∂′p+1
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Since both i# and j# are chain maps, both of the following diagrams commute:

Cp+1 (A) Cp+1 (K0)

Cp (A) Cp (K0)

(i#)p+1

∂Ap+1 ∂
K0
p+1

(i#)p

Cp+1 (A) Cp+1 (K1)

Cp (A) Cp (K1)

(j#)p+1

∂Ap+1 ∂
K1
p+1

(j#)p

Therefore, for a given cp+1 ∈ Cp+1 (A),

φp
(
∂Ap+1cp+1

)
=
(
(i#)p ∂

A
p+1cp+1,− (j#)p ∂

A
p+1cp+1

)
=
(
∂K0
p+1

(
(i#)p+1 cp+1

)
,−∂K1

p+1

(
(j#)p+1 cp+1

))
= ∂′p+1

(
(i#)p+1 cp+1,− (j#)p+1 cp+1

)
= ∂′p+1 (φp+1 (cp+1))

Hence, φp ◦ ∂Ap+1 = ∂′p+1 ◦ φp+1; so φ is a chain map.
Now we are gonna check that ψ is also a chain map by showing that the following diagram commutes.

Cp+1 (K0)⊕ Cp+1 (K1) Cp (K0)⊕ Cp (K1)

Cp+1 (K) Cp (K)

∂′p+1

ψp+1 ψp

∂Kp+1

Since both (k#)p and (l#)p are chain maps, both of the following diagrams commute:

Cp+1 (K0) Cp+1 (K)

Cp (K0) Cp (K)

(k#)p+1

∂
K0
p+1

∂Kp+1

(k#)p

Cp+1 (K1) Cp+1 (K)

Cp (K1) Cp (K)

(l#)p+1

∂
K1
p+1

∂Kp+1

(l#)p

Now let (dp+1, ep+1) ∈ Cp+1 (K0)⊕ Cp+1 (K1), where dp+1 ∈ Cp+1 (K0) and ep+1 ∈ Cp+1 (K1).

ψp
(
∂′p+1 (dp+1, ep+1)

)
= ψp

(
∂K0
p+1dp+1, ∂

K1
p+1ep+1

)
= (k#)p

(
∂K0
p+1dp+1

)
+ (l#)p

(
∂K1
p+1ep+1

)
= ∂Kp+1

(
(k#)p+1 dp+1

)
+ ∂Kp+1

(
(l#)p+1 ep+1

)
= ∂Kp+1

[(
(k#)p+1 dp+1

)
+ (l#)p+1 ep+1

]
= ∂Kp+1 (ψp+1 (dp+1, ep+1))

Hence, ψp ◦ ∂′p+1 = ∂Kp+1 ◦ ψp+1; so ψ is a chain map.
Let us now check the exactness of the sequence

0 Cp (A) Cp (K0)⊕ Cp (K1) Cp (K) 0
ϕp ψp

Since (i#)p and (j#)p are just inclusion of p-chains, from the definition of φ,

φp (cp) =
(
(i#)p cp,− (j#)p cp

)
,

one finds that φp is injective for every p.
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Let us now check that ψp is surjective for every p. Given d ∈ Cp (K), we write d as an integral
linear combination of elementary p-chains corresponding to oriented p-simplices. Let d0 consist of
those terms carried by K0. Then d− d0 is carried by K1 since K = K0 ∪K1. Then we get

ψp (d0, d− d0) = (k#)p (d0) + (l#)p (d− d0) = d0 + d− d0 = d

Thus ψp is surjective for every p.
Now we shall check exactness at Cp (K0)⊕Cp (K1). For that we need to show that imφp = Kerψp.

Let cp ∈ Cp (A).

ψp (φp (cp)) = ψp

(
(i#)p cp,− (j#)p cp

)
= (k#)p

(
(i#)p cp

)
− (l#)p

(
(j#)p cp

)
= (m#)p (cp)− (m#)p (cp) = 0

So imφp ⊆ Kerψp. Conversely, suppose ψp (dp, ep) = 0 for dp ∈ Cp (K0) and ep ∈ Cp (K1).

0 = ψp (dp, ep) = (k#)p dp + (l#)p ep = dp + ep ,

because (k#)p and (l#)p are inclusions. So we have dp = −ep. But dp is carried by K0 and ep is
carried by K1. So they must be both carried by K0 ∩K1 = A. In other words, dp = −ep ∈ Cp (A).
Therefore, dp = (i#)p dp and dp = (j#)p dp.

(dp, ep) = (dp,−dp) =
(
(i#)p dp,− (j#)p dp

)
= φp (dp) ∈ imφp

Thus Kerψp ⊆ imφp. Henceforth, imφp = Kerψp, and the sequence

0 Cp (A) Cp (K0)⊕ Cp (K1) Cp (K) 0
ϕp ψp

is exact.
Now we shall compute the homology groups of the chain complex C (K0) ⊕ C (K1) in dimension p.

One can easily verify that Ker ∂′p = Ker ∂K0
p ⊕Ker ∂K1

p , and im ∂′p+1 = im ∂K0
p+1 ⊕ im ∂K1

p+1. Therefore,

Hp (C (K0)⊕ C (K1)) = Ker ∂′p/ im ∂′p+1 =
Ker ∂K0

p ⊕Ker ∂K1
p

im ∂K0
p+1 ⊕ im ∂K1

p+1

Recall from the abelian groups essentials that we studied in Algebraic Topology I that

G1 ⊕G2

H1 ⊕H2

∼=
G1

H1
⊕ G2

H2
, if Hi is a subgroup of Gi for i = 1, 2 .

im ∂Ki
p+1 is a subgroup of Ker ∂Ki

p for i = 0, 1. Therefore, we have

Hp (C (K0)⊕ C (K1)) =
Ker ∂K0

p ⊕Ker ∂K1
p

im ∂K0
p+1 ⊕ im ∂K1

p+1

∼=
Ker ∂K0

p

im ∂K0
p+1

⊕
Ker ∂K1

p

im ∂K1
p+1

= Hp (K0)⊕Hp (K1)

To apply The Zig-Zag Lemma, let C = C (K0 ∩K1) = C (A), D = C (K0) ⊕ C (K1), and E =
C (K0 ∪K1) = C (K). Then Hp (C) = Hp (A), Hp (D) ∼= Hp (K0) ⊕Hp (K1), Hp (E) = Hp (K). After
applying The Zig-Zag Lemma, we get the following exact homology sequence:

· · · Hp+1 (K)

Hp (A) Hp (K0)⊕Hp (K1) Hp (K)

Hp−1 (A) · · ·
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To obtain the Mayer-Vietoris sequence in reduced homology, let εA, ε0, ε1, ε denote the augmentation
maps for C (A) , C (K0) , C (K1) , C (K) respectively.

We want to show that

φ : {C (A) , εA} → {C (K0)⊕ C (K1) , ε0 ⊕ ε1} and ψ : {C (K0)⊕ C (K1) , ε0 ⊕ ε1} → {C (K) , ε}

are chain maps between the respective augmented chain complexes. Let’s define φ−1 : Z → Z⊕ Z by
φ−1 (n) = (n,−n) and ψ−1 : Z⊕ Z → Z by φ−1 (m,n) = m+ n. We need to show that the following
diagram commutes:

0 C0 (A) C0 (K0)⊕ C0 (K1) C0 (K) 0

0 Z Z⊕ Z Z 0

ϕ0

ϵA

ψ0

ϵ0⊕ϵ1 ϵ

ϕ−1 ψ−1

First we want to prove that the square on the left of the diagram commutes, i.e. (ε0 ⊕ ε1)◦φ0 = φ−1◦εA.
Both the chain maps i# and j# are easily seen to be augmentation preserving. In other words, the

following diagrams commute:

C0 (A) C0 (K0)

Z Z

(i#)0

ϵA ϵ0

id

C0 (A) C0 (K1)

Z Z

(j#)0

ϵA ϵ1

id

Now, for a given 0-chain c0 ∈ C0 (A), we have

((ε0 ⊕ ε1) ◦ φ0) (c0) = (ε0 ⊕ ε1)
(
(i#)0 c0,− (j#)0 c0

)
=
(
ε0
(
(i#)0 c0

)
, ε1
(
(j#)0 c0

))
= (εAc0,−εAc0) = φ−1 (εAc0) = (φ−1 ◦ εA) (c0)

So we have proved (ε0 ⊕ ε1) ◦ φ0 = φ−1 ◦ εA. Now we want to prove that ε ◦ ψ0 = ψ−1 ◦ (ε0 ⊕ ε1).
Similar as before, k# and l# are easily seen to be augmentation preserving. In other words, the

following diagrams commute:

C0 (K0) C0 (K)

Z Z

(k#)0

ϵ0 ϵ

id

C0 (K1) C0 (K)

Z Z

(l#)0

ϵ1 ϵ

id

Let (c0, c1) ∈ C0 (K0)⊕ C0 (K1) with c0 ∈ C0 (K0) and c1 ∈ C0 (K1).

(ε ◦ ψ0) (c0, c1) = ε
(
(k#)0 c0 + (l#)0 c1

)
= ε

(
(k#)0 c0

)
+ ε
(
(l#)0 c1

)
= ε0c0 + ε1c1 = ψ−1 (ε0c0, ε1c1)

= (ψ−1 ◦ (ε0 ⊕ ε1)) (c0, c1)

Therefore, ε ◦ψ0 = ψ−1 ◦ (ε0 ⊕ ε1). Hence, φ and ψ are chain maps between the respective augmented
chain complexes. Furthermore,

0 Z Z⊕ Z Z 0
ϕ−1 ψ−1

is a short exact sequence: clearly, φ−1 is injective and ψ−1 is surjective. Also,

Kerψ−1 = {(m,n) ∈ Z⊕ Z : m+ n = 0}
= {(n,−n) : n ∈ Z} = imφ−1

Therefore, one has the following short exact sequence of augmented chain complexes:
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0 {C (A) , εA} {C (K0)⊕ C (K1) , ε0 ⊕ ε1} {C (K) , ε} 0
ϕ ψ

Then applying The Zig-Zag Lemma, one obtains the Mayer-Vietoris sequence in reduced homology:

· · · H̃p+1 (K)

H̃p (A) H̃p (K0)⊕ H̃p (K1) H̃p (K)

H̃p−1 (A) · · ·

■

Fact. Let 0 A B 0
ϕ be an exact sequence of abelian groups. Then exactness at

A gives us that Kerφ = 0, which means φ is an injective homomorphism. Exactness at B yields
imφ = B, so φ is surjective. Therefore, φ is a bijective homomrphism, i.e. an isomorphism.

Definition 5.2.1 (Suspension). Let K be a complex; let w0 ∗ K and w1 ∗ K be two cones on K
whose polytopes intersect in |K| alone. Then

S (K) = (w0 ∗K) ∪ (w1 ∗K)

is a complex; it is called a suspension of K. Given K, the complex S (K) is defined uniquely
up to a simplicial isomorphism.
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Theorem 5.2.2
If K is a complex, then for all p, there is an isomorphism

H̃p (S (K)) → H̃p−1 (K) .

Proof. Let K0 = w0 ∗K and K1 = w1 ∗K. Then K0 ∪K1 = S (K), and K0 ∩K1 = K is nonempty.
Therefore, Mayer-Vietoris sequence in reduced homology yields the following exact sequence:

H̃p (K0)⊕ H̃p (K1) → H̃p (S (K)) → H̃p−1 (K) → H̃p−1 (K0)⊕ H̃p−1 (K1)

We know from Theorem 2.3.4 that a cone is acyclic. In other words, H̃p (K0) = 0 and H̃p (K1) = 0 for
every p. Therefore, the exact sequence stated above becomes

0 → H̃p (S (K)) → H̃p−1 (K) → 0

Then using this fact, H̃p (S (K)) → H̃p−1 (K) is an isomorphism for every p. ■
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§6.1 Eilenberg-Steenrod Axioms

Definition 6.1.1 (Admissible Class). Let A be a class of pairs (X,A) of topological spaces, with A
being a subspace of X, such that

1. If (X,A) belong to the class A, then so do (X,X), (X,∅), (A,A) and (A,∅).

2. If (X,A) belong to the class A, then so does (X × I, A× I), where I is the unit interval
[0, 1].a

3. There is a one-point space P such that (P,∅) is in A.

We shall call A an admissible class of spaces for a homology theory.
aIt’s immediate that given topological space X and its subspace A, then X × I and A× I are topological spaces

in product topology; and A× I is a subspace of X × I.

Definition 6.1.2. If A is admissible, then a homology theory on A consists of three functions:

1. A function Hp defined for each pair in the admissible class A; (X,A) 7→ Hp (X,A) where
Hp (X,A) is an abelian group. Hp is defined for each integer p.

2. A function that, for each integer p, assigns to each continuous map h : (X,A) → (Y,B) a a
group homomorphism

(h∗)p : Hp (X,A) → Hp (Y,B)

3. A function that, for each integer p, assigns to each pair (X,A) in A, a homomorphism

(∂∗)p : Hp (X,A) → Hp−1 (A) ,

where A denotes the pair (A,∅).

These functions are to satisfy the following axioms, known as the Eilenberg-Steenrod axioms,
where all pairs of spaces are in A.

ah is a continuous function from X to Y such that h (A) ⊆ B. By the continuity of h : (X,A) → (Y,B) we mean
the continuity of h : X → Y .

Axiom 1. If i is the identity, then (i∗)p is the identity for all p.
Axiom 2. Given continuous maps h : (X,A) → (Y,B) and k : (Y,B) → (Z,C), k◦h : (X,A) → (Z,C)
is also continuous. Then

((k ◦ h)∗)p = (k∗)p ◦ (h∗)p
for every p.
Axiom 3. If f : (X,A) → (Y,B) is continuous, then the following diagram commutes:

Hp (X,A) Hp (Y,B)

Hp−1 (A) Hp−1 (B)

(
∂
(X,A)
∗

)
p

(f∗)p

(
∂
(Y,B)
∗

)
p

((
f
∣∣∣
A

)
∗

)
p−1
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In other words,
(
∂
(Y,B)
∗

)
p
◦ (f∗)p =

((
f
∣∣
A

)
∗

)
p−1

◦
(
∂
(X,A)
∗

)
p

for every p.

Axiom 4 (Exactness Axiom). The sequence

· · · Hp+1 (X,A)

Hp (A) Hp (X) Hp (X,A)

Hp−1 (A) Hp−1 (X) · · ·

(∂∗)p+1

(i∗)p

(π∗)p

(∂∗)p

(i∗)p−1

is exact, where i : (A,∅) ↪→ (X,∅) and π : (X,∅) ↪→ (X,A) are inclusions.

(The relation between pairs (X,A) and (X ′, A′) in A given by (X ′, A′) ⊆ (X,A) means X ′ ⊆ X and
A′ ⊆ A. The map i : (X ′, A′) ↪→ (X,A) defined by i (x) = x in the case when (X ′, A′) ⊆ (X,A) is
called the inclusion map.)

Definition 6.1.3 (Homotopic Maps). Two maps h, k : (X,A) → (Y,B) are said to be homotopic
(written h ' p) is there is a map F : (X × I, A× I) → (Y,B) such that

F (x, 0) = h (x) and F (x, 1) = k (x)

for every x ∈ X.

Axiom 5 (Homotopy Axiom). If h and k are homotopic, then (k∗)p = (h∗)p for every p.

Axiom 6 (Excision Axiom). Given (X,A) in the class A, let U ⊆ X be an open subset of X such
that U ⊆ IntA. If (X \ U,A \ U) is in A, then the inclusion i : (X \ U,A \ U) → (X,A) induces an
isomorphism (i∗)p : Hp (X \ U,A \ U)

∼=−→ Hp (X,A).

X

A

U

Axiom 7 (Dimension Axiom). If P is a one-point space, then Hp (P ) = 0 for p 6= 0, and H0 (P ) ∼= Z.

(In general, it can be any abelian group G, called the coefficient group. For more details, see page
17 of Foundations of Algebraic Topology by Eilenberg and Steenrod.)

Axiom 8 (Axiom of Compact Support). If αp ∈ Hp (X,A), there is an admissible pair (X0, A0) with
X0 and A0 compact, such that αp belongs to the image of the homomorphism Hp (X0, A0) → Hp (X,A)
induced by the inclusion i : (X0, A0) → (X,A).

§6.2 The Axioms for Simplicial Theory
We haven’t defined homology groups for topological spaces, in general. We did so only for simplicial
complexes. Given a polyhedron X, there are many different simplcial complexes whose polytopes
equal X. The homology groups of these simplcial complexes are isomorphic to one another in a
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natural way. But they are, nevertheless, distinct groups. Similarly, if h : X → Y is a continuous map,
where X = |K| and Y = |L| for simplicial complexes K and L, we have defined an induced group
homormorphsim (h∗)p : Hp (K) → Hp (L).

Of course, if we also have X = |M | and Y = |N | for simplicial complexes M and N that are distinct
from K and L, respectively, we also have an induced homomorphism Hp (M) → Hp (N) that we also
denote by (h∗)p. We have come across this notational ambiguity earlier.

The way out of this difficulty is as follows: Given a polyhedron X, we can consider the class of all
simplicial complexes that have X as their polytopes, and we can identify the homology groups of these
simplicial complexes in a natural way. The resulting homology groups can be called the homology
groups of the polyhedron X.

More generally, we can perform the same construction for any topological space that is homeomor-
phic to a polyhedron.

Definition 6.2.1 (Triangulation). Let A be a subspace of a topological space X. A triangulation
of the pair (X,A) is a simplicial complex K, a subcomplex K0 of K, and a homeomorphism

h : (|K| , |K0|) → (X,A) .

If such a triangulation exists, we say that (X,A) is a triangulable pair. If A is empty, we simply
say that X is a triangulable space.

Now let (X,A) be a triangulable pair. We define the simplicial homology group Hp (X,A) of the pair
(X,A) in the following way:

Consider the collection of all triangulations of (X,A). They are of the form

hα : (|Kα| , |Cα|) → (X,A) ,

where Cα is a subcomplex of Kα. We can’t call the collection of all triangulations of a pair a set in
the same spirit as the collection of all sets fails to be a set.

We avoid such problems by assuming that each Kα lies in some fixed generalized Euclidean space
EJ . We can do this by taking J to have the cardinality of X itself.

For a fixed p, consider the groups Hp (Kα, Cα). We form Hp (Kα, Cα) × {α}. It’s evident that
Hp (Kα, Cα) × {α} and Hp (Kβ , Cβ) × {β} are disjoint whenever α and β are distinct. Now we
introduce an equivalence relation in the disjoint union⊔

α

Hp (Kα, Cα)× {α} .

Let (xp, α) ∈ Hp (Kα, Cα)×{α} and (yp, β) ∈ Hp (Kβ , Cβ)×{β}. We define the relation ∼ as follows:

(xp, α) ∼ (yp, β) ⇐⇒
((
h−1
β ◦ hα

)
∗

)
p
(xp) = yp .

And we let Hp (X,A) denote the set of equivalence classes. Now, each equivalence class contains
exactly one element from each group Hp (Kα, Cα)× {α}. That is, the map

Hp (Kα, Cα)× {α} → Hp (X,A)

that carries each element to its equivalence class in Hp (X,A) is bijective. We make Hp (X,A) a group
by requiring this map to be an isomorphism, i.e., bijective group homomorphism. The group operation
in Hp (X,A) reads

[xp] + [yp] = [xp + yp] .

One can easily check that this is, indeed, a well-defined operation; and this operation makes Hp (X,A)
a group.

Now we need to define homomorphism induced by a continuous map. A continuous map h : (X,A) →
(Y,B) induces a homomorphism in homology as follows: take any pair of triangulations

hα : (|Kα| , |Cα|) → (X,A) and kβ : (|Lβ | , |Dβ |) → (Y,B)
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Here hα and kβ are homeomorphisms. The map h induces a map

h′ : (|Kα| , |Cα|) → (|Lβ | , |Dβ |)

Here h′ = k−1
β ◦ h ◦ hα, which induces a homomorphism at the level of homology groups:(

h′∗
)
p
: Hp (Kα, Cα) → Hp (Lβ , Dβ)

This yields a well-defined group homomrophism by passing to equivalence classes:

(h∗)p : Hp (X,A) → Hp (Y,B)

[(xp, α)] 7→
[((

h′∗
)
p
xp, β

)]
Now we need to show how we get the boundary homomorphism

(
∂X∗
)
p
: Hp (X,A) → Hp−1 (A) induced

from the simplcial homology boundary homomorphism
(
∂Kα
∗
)
p
: Hp (Kα, Cα) → Hp−1 (Cα).

(
∂X∗
)
p

is
obtained as follows: (

∂X∗
)
p
=
((
hα
∣∣
Cα

)
∗

)
p−1

◦
(
∂Kα
∗
)
p
◦
((
h−1
α

)
∗
)
p
,

where hα
∣∣
Cα

is the restriction of hα : (|Kα| , |Cα|) → (X,A) to the subcomplex Cα, and
((
hα
∣∣
Cα

)
∗

)
p−1

is the induced homomrophism in dimension p− 1:((
hα
∣∣
Cα

)
∗

)
p−1

: Hp−1 (Cα) → Hp−1 (A)

Also, hα is a homeomorphism, so its inverse exists and the inverse h−1
α : (X,A) → (|Kα| , |Cα|) is

continuous, which induces the following group homomorphism:((
h−1
α

)
∗
)
p
: Hp (X,A) → Hp (Kα, Cα)

Therefore, one can indeed compose the three maps
((
h−1
α

)
∗
)
p
,
(
∂Kα
∗
)
p

and
((
hα
∣∣
Cα

)
∗

)
p−1

to obtain

(
∂X∗
)
p
=
((
hα
∣∣
Cα

)
∗

)
p−1

◦
(
∂Kα
∗
)
p
◦
((
h−1
α

)
∗
)
p
: Hp (X,A) → Hp−1 (A)

We thus have all the components for a homology theory. First we need to convince ourselves that the
class of triangulable pairs forms an admissible class of spaces for a homology theory. It can easily be
verified that if (X,A) is triangulable, then so are (X,X), (X,∅), (A,A) and (A,∅). For instance,
(X,A) is triangulable implies the existence of a homeomorphism

hα : (|Kα| , |Cα|) → (X,A) ,

with Kα being a simplicial complex and Cα being a subcomplex of Kα. We know from the definition
of a map between pair of spaces that hα : |Kα| → X is a homeomorphism with h (|Cα|) ⊆ A. One,
therefore, has the following homeomorphisms:

lα : (|Kα| , |Kα|) → (X,X) , mα : (|Kα| ,∅) → (X,∅) ,

nα : (|Cα| , |Cα|) → (A,A) , pα : (|Cα| ,∅) → (A,∅) ,

which establishes the fact that (X,X), (X,∅), (A,A) and (A,∅) are triangulable pairs. Any one point
space is a 0-simplex, and hence trivially triangulable.

Lemma 6.2.1
If K is a complex, then |K| × I is the polytope of a complex M , such that each set σ × I is the
polytope of a subcomplex of M , and σ× 0 and σ× 1 are simplices of M , for each simplex σ of K.
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Interested readers are encouraged to go through §19 of Elements of Algebraic Topology by James
Munkres for a proof of Lemma 6.2.1.

By means of this lemma, one finds that if (X,A) is triangulable, then so is (X × I, A× I). Given
the homeomorphism hα : (|Kα| , |Cα|) → (X,A), one can find a homeomorphism

tα : (|Kα| × I, |Cα| × I) → (X × I, A× I) .

All you need to see is that if hα : |Kα| → X is a homeomorphism with hα (Cα) ⊆ A, then tα :
|Kα| × I → X × I is a homeomorphism with tα (|Cα| × I) ⊆ A× I.

Besides, givens a subcomplex Cα of Kα, |Cα| × I is the polytope of a subcomplex of a complex
whose polytope is |Kα| × I, as guaranteed by Lemma 6.2.1.

Theorem 6.2.2
Simplicial homology theory on the class of triangulable pairs satisfies the Eilenberg-Steenrod
axioms.

Proof. Axiom 1. If i : (X,A) → (X,A) is the identity, then (i∗)p is the identity for every p.
Consider a triangulation of (X,A),

hα : (|Kα| , |Cα|)
∼=−→ (X,A)

Then h−1
α ◦ i ◦ hα = i′ : (|Kα| , |Cα|) → (|Kα| , |Cα|). i is an identity map. So we have

i′ = h−1
α ◦ i ◦ hα = h−1

α ◦ hα = id(|Kα|,|Cα|)

So i′ is the identity map of (|Kα| , |Cα|). By Theorem 18.3 of Elements of Algebraic Topology, (i′∗)p :
Hp (|Kα| , |Cα|) → Hp (|Kα| , |Cα|) is the identity.

A generic element of Hp (X,A) is the equivalence class of (xp, α), where xp ∈ Hp (Kα, Cα). (i′∗)p is
the identity, so (i′∗)p xp = xp

(i∗)p [(xp, α)] =
[((

i′∗
)
p
xp, α

)]
= [(xp, α)]

So (i∗)p : Hp (X,A) → Hp (X,A) is the identity.

Axiom 2. ((k ◦ h)∗)p = (k∗)p ◦ (h∗)p.
Suppose h : (X,A) → (Y,B) and k : (Y,B) → (Z,C) are continuous, then the composition k ◦ h :
(X,A) → (Z,C) is also continuous. Consider triangulations of the spaces (X,A) , (Y,B) , (Z,C).

tα : (|Kα| , |Cα|)
∼=−→ (X,A) , tβ : (|Lβ | , |Dβ |)

∼=−→ (Y,B) , tγ : (|Mγ | , |Eγ |)
∼=−→ (Z,C)

Let k ◦ h = l. Then

h′ = t−1
β ◦ h ◦ tα , k′ = t−1

γ ◦ k ◦ tβ , l′ = t−1
γ ◦ l ◦ tα = k′ ◦ h′

k′, h′, l′ are continuous maps between pairs of simplicial complexes. So by Theorem 18.3 of Elements
of Algebraic Topology, (l′∗)p = (k′∗)p ◦ (h′∗)p.

Let’s take [(xp, α)] ∈ Hp (X,A), with xp ∈ Hp (Kα, Cα).

(l∗)p [(xp, α)] =
[((

l′∗
)
p
xp, γ

)]
=
[(((

k′∗
)
p
◦
(
h′∗
)
p

)
xp, γ

)]
= (k∗)p

[((
h′∗
)
p
xp, β

)]
=
(
(k∗)p ◦ (h∗)p

)
[(xp, α)]

Therefore, (l∗)p = (k∗)p ◦ (h∗)p. And l = k ◦ h, hence ((k ◦ h)∗)p = (k∗)p ◦ (h∗)p.

Axiom 3. If f : (X,A) → (Y,B) is continuous, then the following diagram commutes:
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Hp (X,A) Hp (Y,B)

Hp−1 (A) Hp−1 (B)

(
∂
(X,A)
∗

)
p

(f∗)p

(
∂
(Y,B)
∗

)
p

((
f
∣∣∣
A

)
∗

)
p−1

In other words,
(
∂
(Y,B)
∗

)
p
◦ (f∗)p =

((
f
∣∣
A

)
∗

)
p−1

◦
(
∂
(X,A)
∗

)
p
.

Consider triangulations of (X,A) and (Y,B):

hα : (|Kα| , |Cα|)
∼=−→ (X,A) , kβ : (|Lβ | , |Dβ |)

∼=−→ (Y,B)

Then k−1
β ◦ f ◦ hα = f ′ : (|Kα| , |Cα|) → (|Lβ | , |Dβ |). f ′ is a continuous map from |Kα| to |Lβ |. So it

has a simplicial approximation f ′′ : K ′
α → Lβ , where K ′

α is a subdivision of Kα.
f ′ : |K ′

α| → |Lβ | maps |Cα| into |Dβ |. So its simplicial approximation f ′′ also maps |Cα| into
|Dβ | (by Lemma 14.4(a)). In other words, Cα has a subdivision C ′

α that gets mapped to Dβ by f ′′.
Therefore, f ′′ : (K ′

α, C
′
α) → (Lβ , Dβ) is a simplicial map.

Let f ′
∣∣
Cα

= g′ and f ′′
∣∣
Cα′

= g′′. By the definition of homomorphism induced by a continuous map
between simplicial complexes, (g′∗)p = (g′′∗)p ◦ (λ′∗)p, where λ′ : C (Cα) → C (C ′

α) is the restriction of
subdivision operator λ : C (Kα) → C (K ′

α) (existence of subdivision operator is ensured by Theorem
17.2). (

f ′∗
)
p
=
(
f ′′∗
)
p
◦
(
λ̃∗

)
p

where λ̃p : Cp (Kα, Cα) → Cp (K
′
α, C

′
α) is the chain map induced by the subdivision operator (existence

of λp is guaranteed by Theorem 17.3).
First we want to show that the following diagram commutes:

Hp (Kα, Cα) Hp (Lβ , Dβ)

Hp−1 (Cα) Hp−1 (Dβ)

(∂K∗ )p

(f ′∗)p

(∂L∗ )p

((
f ′
∣∣∣
Cα

)
∗

)
p−1

Let’s take {dp + Cp (Cα)} ∈ Hp (Kα, Cα).

{dp + Cp (Cα)}
(λ̃∗)p7−−−→

{
λ̃p (dp + Cp (Cα))

}
=
{
λp (dp) + Cp

(
C ′
α

)}
{
λp (dp) + Cp

(
C ′
α

)} (f ′′∗ )p7−−−→
{(
f ′′#
)
p
(λp (dp)) + Cp (Lβ)

}
{(
f ′′#
)
p
(λp (dp)) + Cp (Lβ)

} (∂L∗ )p7−−−−→
{
∂Lp
(
f ′′#
)
p
(λp (dp))

}
∴
((
∂L∗
)
p
◦
(
f ′∗
)
p

)
{dp + Cp (Cα)} =

{
∂Lp
(
f ′′#
)
p
(λp (dp))

}
f ′′ is a simplicial map, so f ′′# is a chain map. Therefore, ∂Lp ◦

(
f ′′#

)
p
=
(
f ′′#

)
p−1

◦∂K′
p , where ∂K′

p is the

boundary operator in K ′
α. Furthermore, λ is also a chain map, so ∂K′

p ◦ λp = λp−1 ◦ ∂Kp . Therefore,{
∂Lp
(
f ′′#
)
p
(λp (dp))

}
=
{(
f ′′#
)
p−1

(
λp−1

(
∂Kp dp

))}
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∂Kp dp is carried by Cα as proved in lecture while defining homology boundary homomorphism. So
∂Kp dp ∈ Cp−1 (Cα). λ′p−1 is the restriction of λp−1 on Cp−1 (Cα), so

λp−1

(
∂Kp dp

)
= λ′p−1

(
∂Kp dp

)
∈ Cp−1

(
C ′
α

)
g′′ is the restriction of f ′′ on C ′

α. So g′′# is the restriction of f ′′# on C (C ′
α). Hence,(

f ′′#
)
p−1

(
λ′p−1

(
∂Kp dp

))
=
(
g′′#
)
p−1

(
λ′p−1

(
∂Kp dp

))
∴
{(
f ′′#
)
p−1

(
λp−1

(
∂Kp dp

))}
=
{(
g′′#
)
p−1

(
λ′p−1

(
∂Kp dp

))}
=
(
g′′∗
)
p−1

{
λ′p−1

(
∂Kp dp

)}
{
λ′p−1

(
∂Kp dp

)}
=
(
λ′∗
)
p−1

{
∂Kp dp

}
=⇒

{(
f ′′#
)
p−1

(
λp−1

(
∂Kp dp

))}
=
((
g′′∗
)
p−1

◦
(
λ′∗
)
p−1

){
∂Kp dp

}
=
(
g′∗
)
p−1

{
∂Kp dp

}
And

(
∂K∗
)
p
{dp + Cp (Cα)} =

{
∂Kp dp

}
. Therefore,(

∂L∗
)
p
◦
(
f ′∗
)
p
=
(
g′∗
)
p−1

◦
(
∂K∗
)
p
=
((
f ′
∣∣
Cα

)
∗

)
p−1

◦
(
∂K∗
)
p

Now we proceed on to proving the general statement. f = kβ ◦f ′◦h−1
α , and f

∣∣
A
= kβ

∣∣
Dβ

◦f ′
∣∣
Cα

◦hα
∣∣−1

Cα
.(

∂
(Y,B)
∗

)
p
◦ (f∗)p =

((
kβ
∣∣
Dβ

)
∗

)
p−1

◦
(
∂L∗
)
p
◦
((
k−1
β

)
∗

)
p
◦
(
(kβ)∗

)
p
◦
(
f ′∗
)
p
◦
((
h−1
α

)
∗
)
p((

k−1
β

)
∗

)
p
◦
(
(kβ)∗

)
p
=
((
k−1
β ◦ kβ

)
∗

)
p
=
((

id(|Lβ|,|Dβ|)
)
∗

)
p
= idHp(Lβ ,Dβ)

∴
(
∂
(Y,B)
∗

)
p
◦ (f∗)p =

((
kβ
∣∣
Dβ

)
∗

)
p−1

◦
(
∂L∗
)
p
◦
(
f ′∗
)
p
◦
((
h−1
α

)
∗
)
p((

f
∣∣
A

)
∗

)
p−1

◦
(
∂
(X,A)
∗

)
p
=
((
kβ
∣∣
Dβ

)
∗

)
p−1

◦
((
f ′
∣∣
Cα

)
∗

)
p−1

◦
((
hα
∣∣−1

Cα

)
∗

)
p−1

◦
((
hα
∣∣
Cα

)
∗

)
p−1

◦
(
∂K∗
)
p
◦
((
h−1
α

)
∗
)
p

Similar as above,
((
hα
∣∣−1

Cα

)
∗

)
p−1

◦
((
hα
∣∣
Cα

)
∗

)
p−1

= idHp−1(Cα). Therefore,

((
f
∣∣
A

)
∗

)
p−1

◦
(
∂
(X,A)
∗

)
p
=
((
kβ
∣∣
Dβ

)
∗

)
p−1

◦
((
f ′
∣∣
Cα

)
∗

)
p−1

◦
(
∂K∗
)
p
◦
((
h−1
α

)
∗
)
p

We proved that
(
∂L∗
)
p
◦ (f ′∗)p =

((
f ′
∣∣
Cα

)
∗

)
p−1

◦
(
∂K∗
)
p
. Combining this with the expressions of(

∂
(Y,B)
∗

)
p
◦ (f∗)p and

((
f
∣∣
A

)
∗

)
p−1

◦
(
∂
(X,A)
∗

)
p
, we get that(

∂
(Y,B)
∗

)
p
◦ (f∗)p =

((
f
∣∣
A

)
∗

)
p−1

◦
(
∂
(X,A)
∗

)
p

So the diagram commutes.

Axiom 4. The sequence

· · · Hp+1 (X,A)

Hp (A) Hp (X) Hp (X,A)

Hp−1 (A) Hp−1 (X) · · ·

(∂∗)p+1

(i∗)p

(π∗)p

(∂∗)p

(i∗)p−1
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is exact, where i : (A,∅) → (X,∅) and π : (X,∅) → (X,A) are inclusions.
Consider a triangulation of (X,A):

hα : (|Kα| , |Cα|)
∼=−→ (X,A)

The restriction of hα gives rise to triangulation of X and A:

h′α : (|Kα| ,∅)
∼=−→ (X,∅) and h′′α : (|Cα| ,∅)

∼=−→ (A,∅)

By Zig-Zag lemma, the following sequence is exact:

· · · Hp+1 (Kα, Cα) Hp (Cα) Hp (Kα) Hp (Kα, Cα) Hp−1 (Cα) · · ·
(∂K∗ )p+1 (i′∗)p (π′

∗)p (∂K∗ )p

where i′ = (h′α)
−1 ◦ i ◦ h′′α : (|Cα| ,∅) → (|Kα| ,∅) and π′ = h−1

α ◦ π ◦ h′α : (|Kα| ,∅) → (|Kα| , |Cα|) are
inclusions.

Claim — In the following commutative diagram,

A B C

D E F

f1 f2

g1

i1

g2

i2 i3

if the lower sequence is exact at E, and the vertical maps are isomorphisms, then the upper
sequence is exact at B.

Proof. im g1 = Ker g2 gives us g2 ◦ g1 = 0. Then

f2 ◦ f1 = i3 ◦ g2 ◦ g1 ◦ i−1
1 = 0

So im f1 ⊆ Ker f2. Now let b ∈ Ker f2. Then f2 (b) = 0. So

g2
(
i−1
2 (b)

)
= i−1

3 (f2 (b)) = i−1
3 (0) = 0

So i−1
2 (b) ∈ Ker g2 = im g1. In other words, i−1

2 (b) = g1 (d) for some d ∈ D.

f1 (i1 (d)) = i2 (g1 (d)) = i2
(
i−1
2 (b)

)
= b

So b ∈ im f1. Therefore, im f1 = Ker f2. □

Now consider the following diagram:

Hp+1 (X,A) Hp (A) Hp (X) Hp (X,A) Hp−1 (A)

Hp+1 (Kα, Cα) Hp (Cα) Hp (Kα) Hp (Kα, Cα) Hp−1 (Cα)

(∂∗)p+1 (i∗)p (π∗)p (∂∗)p

(∂K∗ )p+1

((hα)∗)p+1

(i′∗)p

((h′′α)∗)p

(π′
∗)p

((h′α)∗)p

(∂K∗ )p

((hα)∗)p ((h′′α)∗)p−1

In this diagram, the lower sequence is exact, we need to show that the upper sequence is exact. This
diagram is easily seen to be commutative, using Axiom 2 and definition of (∂∗)p. Furthermore, ((hα)∗)p
is an isomorphism. Because

((hα)∗)p ◦
((
h−1
α

)
∗
)
p
=
((
hα ◦ h−1

α

)
∗
)
p
=
((

id(X,A)
)
∗

)
p
= idHp(X,A)

And similarly,((
h−1
α

)
∗
)
p
◦ ((hα)∗)p =

((
h−1
α ◦ hα

)
∗
)
p
=
((

id(|Kα|,|Cα|)
)
∗

)
p
= idHp(Kα,Cα)
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Therefore, ((hα)∗)p is an isomorphism. Similarly, ((h′α)∗)p and ((h′′α)∗)p are also isomorphisms. There-
fore, using the claim, we can conclude that the upper sequence is exact.

Axiom 5. If h, k : (X,A) → (Y,B) are homotopic, then (h∗)p = (k∗)p for every p.
Consider trinagulations of (X,A) and (Y,B).

tα : (|Kα| , |Cα|)
∼=−→ (X,A) , tβ : (|Lβ | , |Dβ |)

∼=−→ (Y,B)

Then h′ = t−1
β ◦ h ◦ tα , k′ = t−1

β ◦ k ◦ tα are continuous maps from (|Kα| , |Cα|) to (|Lβ | , |Dβ |).
Let F be a homotopy between h and k. In other words, F : (X × I, A× I) → (Y,B) is continuous

with the property that
F (x, 0) = h (x) and F (x, 1) = k (x)

We claim that h′ ' k′. Consider the map F ′ : (|Kα| × I, |Cα| × I) → (|Lβ | , |Dβ |) defined by

F ′ (x, t) = t−1
β (F (tα (x) , t))

Then we have
F ′ (x, 0) = t−1

β (F (tα (x) , 0)) = t−1
β (h (tα (x))) = h′ (x)

F ′ (x, 1) = t−1
β (F (tα (x) , 1)) = t−1

β (k (tα (x))) = k′ (x)

So h′ ' k′. Therefore, by Theorem 19.3, (h′∗)p = (k′∗)p. By axiom 2,

(h∗)p = (tβ)∗ ◦
(
h′∗
)
p
◦
((
t−1
α

)
∗
)
p

and (k∗)p = (tβ)∗ ◦
(
k′∗
)
p
◦
((
t−1
α

)
∗
)
p

Therefore, (h∗)p = (k∗)p.

Axiom 6. Given (X,A) in the class A, let U ⊆ X be an open subset of X such that U ⊆ IntA.
If (X \ U,A \ U) is in A, then the inclusion i : (X \ U,A \ U) → (X,A) induces an isomorphism
(i∗)p : Hp (X \ U,A \ U) → Hp (X,A).
The problem lies in the observation that even though both (X,A) and (X \ U,A \ U) may be trian-
gulable, the triangulations may be entirely unrelated to one another! If they are related, then the
excision axiom follows readily from Theorem 3.1.1.

X

A

U

Let U ⊆ A ⊆ X. Suppose there is a triangulation

h : (|K| , |K0|) → (X,A)

of the pair (X,A) that induces a triangulation of the subspace X \U . This means that X \U = h (|L|)
for some subcomplex L of K. Let L0 = L ∩K0. Then one can easily check that A \ U = h (|L0|).

Now we have the setup to apply Theorem 3.1.1.

L

L0

h−1 (U)

61



6 Lecture 6 62

We have a triangulation of (X,A)

h : (|K| , |K0|) → (X,A)

that induces a triangulation of (X \ U,A \ U), which we denote by the same notation:

h : (|L| , |L0|) → (X \ U,A \ U)

These two maps are homeomorphisms, therefore we have two isomorphisms at the level of homology
groups, which we again denote by the same notation:

(h∗)p : Hp (K,K0)
∼=−→ Hp (X,A) and (h∗)p : Hp (L,L0)

∼=−→ Hp (X \ U,A \ U)

The polytope of L is |K| \ h−1 (U), because h (|L|) = X \ U = h (|K|) \ U . Similarly, the polytope of
L0 is |K0|h−1 (U), where h−1 (U) is an open set contained in |K0|, because

U ⊆ A =⇒ h−1 (U) ⊆ h−1 (A) = |K0|

Therefore, by Theorem 3.1.1, the inclusions L0 ↪→ L, K0 ↪→ K induce the isomorphism

Hp (L,L0) ∼= Hp (K,K0)

We have just seen that Hp (K,K0)∼=Hp (X,A) and Hp (L,L0)∼=Hp (X \ U,A \ U). Therefore,

Hp (X,A) ∼= Hp (X \ U,A \ U) .

Now we prove this result in a general settiing. Let U ⊆ IntA. Let

h : (|K| , |K0|) → (X,A) and k : (|M | , |M0|) → (X \ U,A \ U)

be triangulations of the pairs (X,A) and X \U,A \U , respectively. Let X1 = X \A and A1 = X1∩A.
We claim that the pair (X1, A1) is triangulable both by h and k. See the figure below where the maps
j0 and j1 denote inclusions:

h k

(K,K0) (M,M0)

j1j0
A

X1 = X \A = h(C)

X X1

A1

X \ U

A \ U

Note that |K| \ |K0| is the union of all open simplices Intσ such that σ ∈ K and σ 6∈ K0. Then its
closure |K| \ |K0| denoted by C is the polytope of the subcomplex of K consisting of all simplices σ
of K that are not in K0, and their faces.

h (C) = h
(
|K| \ |K0|

)
= h (|K|) \ h (|K0|) = X \A = X1
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Therefore, X1 is triangulable by h. Besides, A is also triangulable by h, since h (|K0|) = A. Therefore,
X1 ∩A is also triangulable by the same homeomorphism h. In particular, since h is injective,

h (C ∩ |K0|) = h (C) ∩ h (|K0|) = X1 ∩A = A1

Therefore, h : (C,C ∩ |K0|) → (X1, A1) is a homeomorphism.
Similarly, for the other pair (|M | , |M0|), the closure of |M | \ |M0| is the polytope of a subcomplex

of M . Let us denote |M | \ |M0| by D. Then

k (D) = k
(
|M | \ |M0|

)
= k (|M |) \ k (|M0|) = (X \ U) \ (A \ U) = X \A = X1

So X1 is triangulable by k. Now notice that, since U ⊆ IntA,

A1 = X1 ∩ (A \ U) = k (D) ∩ k (|M0|) = k (D ∩ |M0|)

Hence, A1 is triangulable by k. In other words, k : (D,D ∩ |M0|) → (X1, A1) is a homeomorphism.
Therefore, the pair (X1, A1) is triangulable by both h and k.

We have two inclusions in this case:

j0 : (X1, A1) ↪→ (X,A) and j1 : (X1, A1) ↪→ (X \ U,A \ U)

h is a triangulation of (X,A), which induces a triangulation of (X1, A1). X1 is the closure of X \A, so
X1 is closed in X. Hence, X1 = X \V for some open set V . Also, A1 = X1∩A = (X \ V )∩A = A\V .
Therefore, by the special case we proved earlier, j0 induces an isomorphism:

((j0)∗)p : Hp (X1, A1) = Hp (X \ V,A \ V )
∼=−→ Hp (X,A) .

X1 = X \ V ⊆ X \ U , so U ⊆ V . Therefore, X \ V = (X \ U) \ (V \ U). X1 is closed in X \ U , so
V \ U is open in X \ U . Also,

A1 = X1 ∩ (A \ U) = ((X \ U) \ (V \ U)) ∩ (A \ U) = (A \ U) \ (V \ U)

Therefore, by the special case we proved earlier, j1 induces an isomorphism:

((j1)∗)p : Hp (X1, A1) = Hp ((X \ U) \ (V \ U) , (A \ U) \ (V \ U))
∼=−→ Hp (X \ U,A \ U) .

Together they imply
Hp (X,A) ∼= Hp (X \ U,A \ U)

Axiom 7. If P is a one-point space, then Hp (P ) = 0 for p 6= 0, and H0 (P ) ∼= Z.
Let P = {p}. Then P is homeomorphic to the complex Kα containing only one vertex v0. Consider a
triangulation

hα : Kα
∼=−→ P

At the end of Axiom 4, we proved that homeomorphism induces isomorphism betweem homology
groups. Therefore,

((hα)∗)p : Hp (Kα) → Hp (P ) is an isomorphism.

Kα does not contain any p-dimensional simplices for p > 0. So Hp (Kα) = 0 for p 6= 0. And
H0 (Kα) ∼= Z since Kα is connected. Therefore, Hp (P ) = 0 for p 6= 0; and H0 (P ) ∼= H0 (Kα) ∼= Z.

Axiom 8. If αp ∈ Hp (X,A), there is an admissible pair (X0, A0) with X0 and A0 compact, such
that αp belongs to the image of the homomorphism Hp (X0, A0) → Hp (X,A) induced by the inclusion
i : (X0, A0) → (X,A).
Consider a triangulation of (X,A):

tα : (|Kα| , |Cα|)
∼=−→ (X,A)
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Take an element [(z, α)] ∈ Hp (X,A), where z ∈ Hp (Kα, Cα). Now, z = {cp + Cp (Cα)} for some
cp ∈ Cp (K); and ∂pcp is carried by Cα. We know that cp can be written uniquely as a finite linear
combination of elementary p-chains. Therefore, cp is carried by a finite subcomplex Lα of Kα. So cp
can be considered as a cycle of (Lα, Dα), where Dα = Lα ∩ Cα.
Lα is a finite complex, so by Lemma 2.5, |Lα| is compact. Similarly, |Dα| is also compact. As a

result, X0 = tα (|Lα|) and A0 = tα (|Dα|) are also compact.
If we let tα̃ : (|Lα| , |Dα|) → (X0, A0) be the restriction of tα, then tα̃ is a triangulation of (X0, A0).

Let j : (X0, A0) → (X,A) be the inclusion map. Then j′ = t−1
α ◦ j ◦ tα̃ : (Lα, Dα) → (Kα, Cα) is the

inclusion map.
cp is carried by Lα, and ∂pcp is carried by Lα∩Cα = Dα. So the homology class of cp in Hp (Lα, Dα)

is {cp + Cp (Dα)}.

{cp + Cp (Dα)}
(j′∗)p7−−−→ {cp + Cp (Cα)}

Now let w = {cp + Cp (Dα)} ∈ Hp (Lα, Dα). Since tα̃ is a triangulation of (X0, A0), [(w, α̃)] ∈
Hp (X0, A0).

(j∗)p [(w, α̃)] =
[((

j′∗
)
p
w,α

)]
= [(z, α)]

Therefore, [(z, α)] lies in the image of the homomorphism induced by the inclusion j : (X0, A0) →
(X,A); and (X0, A0) is a compact admissible pair. ■
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