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1 Topologoical Spaces

§1.1 Basic Definitions

Definition 1.1. Let X be a set. A topology on X is a collection T of subsets of X having the
following properties:

1. ∅ and X are in T .

2. For any subcollection {Uα}α∈J of T , the union
⋃

α∈J Uα is in T .

3. For any finite subcoluction {U1, . . . , Un} of T , the intersection
⋂n

i=1 Ui is in T .

A topological space (X, T ) is a set X with a given topology T . A subset U ⊂ X with U ∈ T is
said to be an open set.

Example 1.1 (Two extreme examples). Let X be a set. Following are 2 examples of topologies on X :

1. (Discrete topology) The discrete Topology on X, denoted by Tdisc is the topology where all
subsets U ⊂ X are defined to be open. Hence, Tdisc = P(X), the power set of X. One can easily
check that Tdisc is indeed a topology.

2. (Indiscrete topology) The indiscrete topology on X, denoted by Tindis is the topology where only
the subsets X and ∅ are defined to be open sets. In other words, Tindis = {∅, X}.

Definition 1.2 (Finite topological space). If X is a finite set and T is a topology on X, we call
(X, T ) a finite topological space.

Example 1.2. Let X be a 3-element set, X = {1, 2, 3}. Verify that the following are examples of
finite topological spaces:

1. T = {∅, {1, 2, 3}}.

2. T = {∅, {1, 2, 3} , {1, 2} , {2, 3} , {2}}.

3. T = {∅, {1, 2, 3} , {1} , {1, 2}}.

Non-example: The collection T = {∅, {1, 2, 3} , {1} , {2}} is not a topology on X = {1, 2, 3}, since it
is not closed under union.

Definition 1.3. Let T and T ′ be 2 topologies on the same set X. If T ′ ⊇ T , we soy that T ′ is
finer than T , or T is coarser than T ′. If the containment above is proper, we say that T ′ is
strictly finer than T , or T is strictly coarser than T ′.

Example 1.3. In the context of Example 1.2, for the 3-element set X = {1, 2, 3}, consider the following
4 topologies:

1. T = {{1, 2, 3} ,∅, {1, 2} , {2} , {2, 3}}.

2. T1 = {{1, 2, 3} ,∅}.

3. T2 = {{1, 2, 3} ,∅, {2}}

4. T3 = {{1, 2, 3} ,∅, {1, 2}}

Observe that T is strictly finer than all 3 of T1, T2, T3. Also, one has T1 ⊂ T3, and T1 ⊂ T2, i.e. T3 is
strictly finer than T1, and T2 is strict finer than T1.
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1 Topologoical Spaces 5

§1.2 Review of Metric Space

Definition 1.4. A metric on a set X is a function d : X × X → R such that:

1. (Non-negativity) d(x, y) ≥ 0 for any x, y ∈ X, and d(x, y) = 0 if and only if x = y.

2. (Symmetry) d(x, y) = d(y, x), for any x, y ∈ X.

3. (Triangle inequality) d(x, z) ≤ d(x, y) + d(y, z) for any x, y, z ∈ X.

A metric space (X, d) is a set X equipped with a metric d.

Example 1.4. The real line R is a metric space, with distance function dEuc (x, y) = |y − x|. More
generally, in Rn, one can define the Euclidean distance

dEuc (x, y) = ∥y − x∥ =
√

(y1 − x1)2 + · · · + (yn − xn)2, (1.1)

for x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Rn. We call (Rn, dEuc) the Euclidean n-space.

Definition 1.5. Let (X, d) be a metric space. For each point x ∈ X and each ε < 0, let

Bd(x, ε) = {y ∈ X | d(x, y) < ε}. (1.2)

Then the set Bd(x, ε) is called ε-ball around x in (X, d).

Definition 1.6 (Metric topology). Let (X, d) be a metric space. The metric topology Td on X is the
collection of subsets U ⊂ X such that for each x ∈ U , there exists ε > 0 such that Bd(x, ε) ⊂ U .

Lemma 1.1
The collection Td is a topology on X.

Proof. Observe that ∅ is vacuously open in metric topology, i.e. ∅ ∈ Td since there is no element in ∅
to open the argument with. Also, the whole set X ∈ Td, i.e. the whole set X itself is open in the metric
topology. This is so because for any x ∈ X, one can choose Bd(x, 1) = {y ∈ X | d(x, y) < 1} ⊆ X
proving that X is open in the metric topology.

Next, let {Uα}α∈J be a subcollection of Td. Let W =
⋃

α Uα. Consider x ∈ W =
⋃

α Uα. Hence,
there is some α0 ∈ J such that x ∈ Uα0 . Since Uα0 ∈ Td, there exists ε > 0 such that

Bd(x, ε) ⊂ Uα0 ⊂
⋃

α∈J

Uα = W. (1.3)

Hence,
⋃

α∈J Uα ∈ Td.
Now, let {U1, . . . , Un} be a finite subcoluction of Td. Let V = U1 ∩ · · · ∩ Un and consider x ∈ V .

Hence, x ∈ Ui for each i ∈ {1, . . . , n}. Since, each Ui ∈ Td, there exists εi > 0, such that Bd (x, εi) ⊂ Ui,
for each i ∈ {1, . . . , n}. Choose ε = min {ε1, . . . , εn} > 0. Then one has Bd(x, ε) ⊂ Bd (x, εi) ⊂ Ui, for
any i. Therefore,

Bd (x, ε) ⊂
n⋂

i=1
Ui, (1.4)

proving that V =
⋂n

i=1 Ui ∈ Td. ■
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1 Topologoical Spaces 6

§1.3 Basis for a Topology

Definition 1.7 (Basis). Let X be a set. A basis for a topology on X is a collection B of subsets
of X (called basis elements) such that

1. for each x ∈ X, there exists B ∈ B such that x ∈ B ⊂ X;

2. if x ∈ B1 ∩ B2 with B1, B2 ∈ B, then there exists B3 ∈ B such that x ∈ B3 ⊂ B1 ∩ B2.

x

B3
B1 B2

Definition 1.8 (Topology generated by a basis). Let B be a basis for a topology topology on a
given set X. The topology T generated by B is the collection of subsets U ⊂ X such that for
each x ∈ U , there exists B ∈ B with x ∈ B ⊂ U . In other words, a subset U ⊂ X is defined to be
open in this topology if for each x ∈ U , there exists a basis element B ⊂ U with x ∈ B.

Lemma 1.2
The collection T generated by a basis B as defined above is a topology on X.

Proof. ∅ ∈ T since there is no element in ∅ to verify the conditions, and hence ∅ is vacuously open.
By the first condition of basis, for each x ∈ X, there exists B ∈ B such that x ∈ B ⊂ X. Therefore,
from the definition of the topology generated by a basis, X is open, i.e. X ∈ T .

Now, let {Uα}α∈J be a subcollection of T . Also, let
⋃

α∈J Uα = W . We need to show that W ∈ T .
Consider x ∈ W =

⋃
α Uα. Hence, there is some α0 ∈ J such that x ∈ Uα0 . Since Uα0 ∈ T , there exists

B ∈ B for which x ∈ B ⊂ Uα0 holds. In other words,

x ∈ B ⊂ Uα0 ⊂
⋃

α∈J

Uα = W. (1.5)

Therefore, W ∈ T .
Now, let U1, U2 ∈ T . Given x ∈ U1 ∩ U2, x is in both U1 and U2. Since U1, U2 ∈ T , by the definition

of topology generated by a basis, there exist basis elements B1, B2 ∈ B such that x ∈ B1 ⊂ U1 and
x ∈ B2 ⊂ U2. Then we have x ∈ B1 ∩ B2.

6



1 Topologoical Spaces 7

x

B3B1
B2

U1

U2

By the second condition for a basis, there is some B3 ∈ B such that x ∈ B3 ⊂ B1 ∩ B2. Therefore,

x ∈ B3 ⊂ B1 ∩ B2 ⊂ U1 ∩ U2. (1.6)

So U1 ∩ U2 ∈ T . Now we use induction to prove that V =
⋂n

i=1 Ui ∈ T , where each Ui ∈ T . The base
case n = 1 is trivial. Now suppose that this is true for n − 1, i.e.

⋂n−1
i=1 Ui ∈ T . We also have Un ∈ T .

We have just proved that the intersection of two elements of T also belongs to T . Therefore,(
n−1⋂
i=1

Ui

)
∩ Un =

n⋂
i=1

Ui ∈ T . (1.7)

Therefore, T is a topology on X. ■

Lemma 1.3
In any metric space (X, d), the collection of ε-balls

B = {Bd (x, ε) | x ∈ X, ε > 0}

is a basis.

Proof. 1. For each x ∈ X, the 1-ball Bd (x, 1) ∈ B.

2.Given B1 = Bd (x1, ε1) and B2 = Bd (x2, ε2), consider x ∈ B1 ∩ B2. It is evident that

ε1 − d(x, x1) > 0 and ε2 − d(x, x2) > 0. (1.8)

Let ε = min {ε1 − d(x, x1), ε2 − d(x, x2)}. Then ε > 0. Now we claim that x ∈ Bd (x, ε) =: B3 ⊂
B1 ∩ B2. Let y ∈ B3 = Bd (x, ε), so that d (x, y) < ε. Then

d (x, y) < ε ≤ ε1 − d(x, x1).

By the triangle inequality,
d (x1, y) ≤ d(x, x1) + d (x, y) < ε1, (1.9)

which implies that y ∈ B1 = Bd (x1, ε1). So B3 ⊂ B1. Similarly, B3 ⊂ B2. Therefore, B3 =
Bd (x, ε) ⊂ B1 ∩ B2, as required.

■

Proposition 1.4
The metric topology Td defined earlier on the metric space coincides with the topology Td on
(X, d) generated by the basis of ε-balls as in Lemma 1.3.
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1 Topologoical Spaces 8

Proof. Suppose U ∈ Td. Hence, from the definition of metric topology, for each y ∈ U , there exists
δ > 0 such that Bd(y, δ) ⊂ U . Since Bd(y, δ) ∈ B, and y ∈ Bd(y, δ) ⊂ U , U ∈ T , the topology on
(X, d) generated by the basis B. In other words, Td ⊂ T .

Now conversely, suppose U ∈ T . Hence, given y ∈ U , there is a basis element Bd (x, ε) ∈ B such
that y ∈ Bd (x, ε) ⊂ U . Hence, d (x, y) < ε. Define δ = ε − d(x, y) > 0. Then one immediately finds
Bd (y, δ) ⊂ Bd (x, ε). Indeed, if z ∈ Bd (y, δ), then d (y, z) < δ = ε − d(x, y). By the triangle inequality,

d (x, z) ≤ d(x, y) + d (y, z) < ε. (1.10)

Therefore, z ∈ Bd (x, ε), proving that y ∈ Bd (y, δ) ⊂ Bd (x, ε) ⊂ U . So we have proved that given
y ∈ U , there exists δ > 0 such that Bd (y, δ) ⊂ U . In other words, U ∈ Td, so that T ⊂ Td. Hence,
T = Td. ■

Example 1.5. Let X = R2, and B be the collection of all circular regions (interior of circles) in the
plane. This is the collection of all ε-balls

BEuc (x, ε) =
{

y ∈ R2 | d (x, y) < ε
}

with respect to the Euclidean metric dEuc (x, y) = ∥x − y∥ =
√

(x1 − y1)2 + (x2 − y2)2, with x =
(x1, x2), y = (y1, y2) ∈ R2. Indeed,

(
R2, dEuc

)
is a metric space, and by means of Lemma 1.3 and

Proposition 1.4, the collection

B =
{

BEuc (x, ε) | x ∈ R2, ε > 0
}

is a basis for the metric topology with respect to the Euclidean metric on R2.

Example 1.6. Let X = R2, but in contrast to Example 1.5, here choose B′ to be the collection of all
rectangular regions (interior of rectangles) in the plane R2. This is the collection of all sets of the form

(a, b) × (c, d) ∈ R × R,

with a < b and c < d. This is the open rectangular area bounded by the vertical lines x = a and x = b,
and horizontal lines y = c and y = d. Let us verify that such a collection, indeed, satisfies the two
conditions for a basis:

1. For each (x, y) ∈ R2, (x, y) ∈ (x − 1, x + 1) × (y − 1, y + 1), with (x − 1, x + 1) × (y − 1, y + 1) ∈
B′.

(x, y)

(x − 1, x + 1) × (y − 1, y + 1)

2. Consider B1 = (a1, b1) × (c1, d1) and B2 = (a2, b2) × (c2, d2) to be two elements in B′. Take
(x0, y0) ∈ B1 ∩ B2. Since a1 < x0 < b1 and a2 < x0 < b2, one has

a := max {a1, a2} < x0 < min {b1, b2} =: b,

Similarly,
c := max {c1, c2} < y0 < min {d1, d2} =: d.

8



1 Topologoical Spaces 9

(a1, b1) × (c1, d1)

(a2, b2) × (c2, d2)

Then (x0, y0) ∈ (a, b) × (c, d) =: B3 = B1 ∩ B2, the shaded open rectangle in the diagram above.
The diagram above is the case when B1 ∩ B2 ̸= ∅. The condition for this to happen is a < b
and c < d. Otherwise, the intersection is empty, and the second condition for basis is vacuously
satisfied.

Proposition 1.5
Let B be a basis for a topology T on X, i.e. T is the topology on X generated by the basis B.
Then T equals the collection of all unions of elements of B.

Proof. Let us first prove that T is contained in the collection of all unions of elements of B. Let U ∈ T .
For each x ∈ U , there exists Bx ∈ B with x ∈ Bx ⊂ U . Then one easily has U =

⋃
x∈U Bx. Indeed,

since x ∈ Bx ⊂ U , taking union over all x ∈ U gives us⋃
x∈U

{x} ⊂
⋃

x∈U

Bx ⊂ U.

In other word,
U ⊂

⋃
x∈U

Bx ⊂ U. (1.11)

So U =
⋃

x∈U Bx. Therefore, any open set on X in the topology T generated by a basis B is a union
of basis elements from B.

To prove the converse, i.e. any union of basis elements from B belongs to T , note that every basis
element B of B is open, i.e. it belongs to T . This is because for each x ∈ B, there is a basis element,
namely B itself, such that x ∈ B ⊂ B, proving that B ∈ T , the topology generated by the basis B.
From the definition of topology, it follows that arbitrary union of basis elements from B will be in T
as well. ■

Proposition 1.6 (Local criterion of open sets)
Let X be a topological space; let A be a subset of X. Then A is open in X if and only if for each
x ∈ A there is an open set U containing x such that U ⊂ A.

Proof. If A is open, then for each x ∈ A, A is an open set containing x and contained in A. Conversely,
suppose for every x ∈ A, there exists an open set Ux such that x ∈ Ux ⊂ A. Then

A =
⋃

x∈A

{x} ⊂
⋃

x∈A

Ux ⊂ A. (1.12)

So A =
⋃

x∈A Ux, i.e. A is a union of open sets, hence open. ■

Example 1.7. If X is any set, the collection of all one-point subsets of X is a basis for the discrete
topology Tdis on X. For example, if X = {a, b, c}, then

Tdis = {{a, b, c} ,∅, {a} , {b} , {c} , {a, b} , {b, c} , {c, a}} = P(X);

and B = {{a} , {b} , {c}}. Indeed, Tdis can be obtained from B by taking all possible unions. ∅ is
understoor as the union of no basis elements at all.

9



1 Topologoical Spaces 10

Lemma 1.7 (Comparing topologies using bases)
Let B and B′ be bases for the topologies T and T ′ on X, respectively. Then the following are
equivalent:

1. T ′ is finer than T .

2. For each x ∈ X and any basis element B ∈ B containing x, there is a basis element B′ ∈ B′

such that x ∈ B′ ⊂ B.

Proof. (1⇒2) Let x ∈ X and B ∈ B with x ∈ B. We have seen in the proof of Proposition 1.5 that,
B ∈ T . By hypothesis, T ⊂ T ′. Hence, B ∈ T ′. Since T ′ is the topology generated by B′, there exists
B′ ∈ B′ with x ∈ B′ ⊂ B.

(2⇒1) Let U ∈ T . Since T is generated by B, for each x ∈ U , there exists some B ∈ B with
x ∈ B ⊂ U . By hypothesis, there exists a B′ ∈ B′ with x ∈ B′ ⊂ B. Therefore, B′ ∈ U . We, therefore,
have shown that for each x ∈ U , there exists B′ ∈ B′ with x ∈ B′ ⊂ U . Hence, U ∈ T ′, the topology
generated by B′. Therefore, T ⊂ T ′. ■

Corollary 1.8
Two bases B and B′ for topologies on X generate the same topology if and only if

1. for each x ∈ B ∈ B, there is a basis element B′ ∈ B′ such that x ∈ B′ ⊂ B; and furthermore,

2. for each x ∈ B′ ∈ B′, there is a basis element B ∈ B such that x ∈ B ⊂ B′.

Proof. Let B and B′ be bases for the topologies T and T ′ on X, respectively. By Lemma 1.7, T ⊆ T ′

is equivalent to (1). By Lemma 1.7, T ′ ⊆ T is equivalent to (2). ■

Example 1.8. The basis B of open circular regions in the plane R2 and the basis B′ of open
rectanglular regions generate the same topology on R2, namely the metric topology.

x

B′B

B

B′

x

Example 1.9 (Three important topologies on R). Let B be the collection of all open intervals in thr
real line R:

(a, b) =
(

a + b

2 − b − a

2 ,
a + b

2 + b − a

2

)
= BEuc

(
a + b

2 ,
b − a

2

)
.

B = {(a, b) | a, b ∈ R with a < b}. This collection B is a basis on R, and the topology it generates
is precisely the Euclidean metric topology on R by Proposition 1.4. This topology is also called the
standard topology on R.

Now, let B′ denote the collection of all half-open intervals of the form

[a, b) = {x ∈ R | a ≤ x < b} ,

10



1 Topologoical Spaces 11

for a < b. In other words, B′ = {[a, b) | a, b ∈ R with a < b}. The topology on R generated by the
basis B′ is called the lower-limit topology. When R is given the lower-limit topology, the resulting
topological space is denoted by Rℓ.

Now, let K denote the set of all numbers of the form 1
n for positive integers n. Also, let B′′ denote

the collection of all open intervals (a, b) along with all sets of the form (a, b) \ K. The topology on R
generated by B′′ is called the K-topology on R. R, equipped with the K-topology, is denoted by RK .

Lemma 1.9
The topologies Rℓ and RK are strictly finer than the standard topology on R.

Proof. Let T , T ′ and T ′′ be the topologies of R, Rℓ and RK , respectively. Given a basis element
(a, b) ∈ B generating T , and x ∈ (a, b), one finds [x, b) ∈ B′ generating T ′ such that x ∈ [x, b) ⊂ (a, b).
This proves that T ′ is finer than T using Lemma 1.7.

On the other hand, choose [x, y) ∈ B′ generating T ′. There exists no open interval (a, b) ∈ B such
that x ∈ (a, b) ⊂ [x, y) is satisfied. Hence, T ′ is strictly finer than T .

Now, givena basis element (a, b) ∈ B generating T , and x ∈ (a, b), one finds (a, b) ∈ B′′ generating
T ′′ such that x ∈ (a, b) ⊂ (a, b). This proves that T ′′ is finer than T using Lemma 1.7.

On the other hand, observe that B = (−2, 2) \ K ∈ B′′ generating T ′′, and 0 ∈ B. But there exists
no open interval (a, b) ∈ B such that 0 ∈ (a, b) ⊂ B. Hence, T ′′ is strictly finer than T . ■

§1.4 Subbasis

Definition 1.9 (Subbasis). A subbasis for a topology on X is a collection S of subsets of X, with
union equal to X. One can form the collection B consisting of all finite intersections of elements
of S :

B = S1 ∩ · · · ∩ Sn,

with S1, . . . , Sn ∈ S , for n ≥ 1. By the topology T generated by S , we mean the topology
generated by the associated basis B. One clearly has S ⊂ B ⊂ T .

Lemma 1.10
Let S be a subbasis on X. The associated collection B is a basis for a topology.

Proof. There are 2 conditions of a basis to be fulfilled:

1. Since the union of all elements of S is X by the definition of a subbasis, each x ∈ X lies in some
S ∈ S . Since S itself is a basis element, the first condition for basis is fulfilled.

2. Suppose B1 = S1 ∩ · · · ∩ Sm and B2 = S′
1 ∩ · · · ∩ S′

n, where Si, S′
i ∈ S . Then the intersection

B1 ∩ B2 = (S1 ∩ · · · ∩ Sm) ∩
(
S′

1 ∩ · · · ∩ S′
n

)
(1.13)

is also a finite intersection of elements of S , and hence B1 ∩ B2 ∈ B, fulfilling the second
condition of basis.

■

Suppose (X, T ) is a topological space. We are given C ⊂ T , a subcollection of open subsets of X.
How do we recognize if C is a basis for the topology T on X? The following lemma answers this
question.

11



1 Topologoical Spaces 12

Lemma 1.11 (Recognition principle)
Let (X, T ) be a topological space. Suppose C ⊂ T is a subcollection of open subsets of X, such
that for each open U ∈ T and each x ∈ U , there exists C ∈ C with x ∈ C ⊂ U . Then C is a basis
for the topology T on X.

Proof. Let us first check that C is a basis for some topology on X.

1. Observe that X ∈ T . Hence, by hypothesis, for each x ∈ X, there exists C ∈ C with x ∈ C ⊂ X.

2. Suppose C1, C2 ∈ C with x ∈ C1 ∩ C2. Since C ⊂ T , C1 and C2 are both open and so is
their intersection C1 ∩ C2, i.e. C1 ∩ C2 ∈ T . By hypothesis, there exists C3 ∈ C such that
x ∈ C3 ⊂ C1 ∩ C2. Thus the second condition for basis is also fulfilled.

Let us denote the topology on X generated by C with T ′. We are left to show that T ′ = T . Let
U ∈ T and x ∈ U . By hypothesis, there exists C ∈ C with x ∈ C ⊂ U . Then, by definition of topology
generated by a basis, U ∈ T ′. So T ⊂ T ′.

Now, let U ∈ T ′. By Proposition 1.5, U is a union of elements of C . Since C ⊂ T , each element of
C is in T . As T is a topology, it must be closed under arbitrary union. Hence, U ∈ T . Therefore,
T ′ ⊂ T . ■

§1.5 The Product Topology on X × Y

Definition 1.10 (Product topology). Let X and Y be topological spaces. The product topology
on X × Y is the topology generated by the basis

B = {U × V | U open in X, and V open in Y } . (1.14)

Lemma 1.12
The collection B as above is a basis for a topology on X × Y .

Proof. Two conditions for basis need to be checked:

1. Observe that X × Y ∈ B.

2. Let B1 = U1 × V1 and B2 = U2 × V2 be two basis elements. Observe that

(U1 × V1) ∩ (U2 × V2) = (U1 ∩ U2) × (V1 ∩ V2) . (1.15)

From the above set theoretic identity, one verifies that B1 ∩ B2 = B3, where B3 = U3 × V3 with
U3 = U1 ∩ U2 being open in X and V3 = V1 ∩ V2 being open in Y . This proves that the second
condition for basis is verified.

■

Lemma 1.12 gives us a basis for the product topology on X × Y in terms of open sets of X and Y .
If we have information about the bases that generate the topologies on X and Y , then the following
theorem gives us a basis generating the product topology on X × Y .

Theorem 1.13
If B is a basis for the topology of X, C is a basis for the topology of Y , then the collection

D = {B × C | B ∈ B and C ∈ C }

is a basis for the product topology of X.

12



1 Topologoical Spaces 13

Proof. We apply Recognition principle. We know from the definition of the product topology on X × Y
that it is generated by the basis

Bprod {U × V | U ⊂ X and V ⊂ Y are open } . (1.16)

Now, given an open set W ⊂ X × Y and (x, y) ∈ W , there exists a basis element U × V ∈ Bprod with
(x, y) ∈ U × V ⊂ W . Now, since U ⊂ X and V ⊂ Y are open, there are basis elements B ∈ B and
C ∈ C with x ∈ B ⊂ U and y ∈ C ⊂ V . Therefore,

(x, y) ∈ B × C ⊂ U × V ⊂ W. (1.17)

We, thus, have found that for an open set W ⊂ X × Y and any (x, y) ∈ W , there exists B × C ∈ D
such that (x, y) ∈ B × C ⊂ W . So D is a basis for the product topology on X × Y , by Recognition
principle. ■

Definition 1.11. Let π1 : X × Y → X denote the projection onto the first component define by
π1 (x, y) = x; and let π2 : X × Y → Y be the projection onto the second component defined by
π2 (x, y) = y.

Observe that the preimage of U ⊂ X under π1 : X × Y → X is π−1
1 (U) U × Y ; and the preimage of

V ⊂ Y under π2 : X × Y → Y is π−1
2 (V ) = X × V . Note the identity,

(U × Y ) ∩ (X × V ) = U × V. (1.18)

Since each basis element B for the product topology on X × Y is of the form U × V with U ⊂ X and
V ⊂ Y being open, the basis element B = U × V can be written as the intersection of π−1

1 (U) and
π−1

2 (V ). It follows that a basis element for the product topology can be written as intersection of
subsets from the following collection S :

S = {U × Y | U ⊂ X open} ∪ {X × V | V ⊂ Y open} =
{

π−1
1 (U) | U ⊂ X open

}
∪
{

π−1
2 (V ) | V ⊂ Y open

}
.

Theorem 1.14
The collection S as above is a subbasis for the product topology on X × Y .

Proof. It is immediate that the collection S is a subbasis for a topology on X × Y as the union of all
elements of S is equal to X × Y . All that needs to be proved now is that the topology generated by
this subbasis is equal to the product topology on X × Y . Let T denote the product topology on X × Y
and T ′ denote topology generated by S . T ′ contains arbitrary unions of finite intersections of elements
of S . Since each element of S belongs to T as well, so do arbitrary unions of finite intersections of
elements of S as T is a topology. Hence T ′ ⊂ T .

Conversely, since U × V is a generic basis element from B generating product topology on X × Y
with U open in X and V open in Y , an arbitrary element W from T can be written as union of sets of
the form U × V . But

U × V = π−1
1 (U) ∩ π−1

2 (V ) ,

with π−1
1 (U), π−1

2 (V ) ∈ S and hence π−1
1 (U) ∩ π−1

2 (V ) ∈ T ′, the topology generated by the subbasis
S so that an arbitrary union of sets of the form π−1

1 (U) ∩ π−1
2 (V ) will also belong to T ′ leading to

the fact that the arbitrary element W ∈ T also belongs to T ′. Hence, T ⊂ T ′. Therefore, T = T ′. ■

§1.6 Subspace Topology

13



1 Topologoical Spaces 14

Definition 1.12 (Subspace topology). Let (X, T ) be a topological space. Ass, let A ⊂ X be a
subset. The collection

TA = {A ∩ U | U ∈ T } (1.19)

of subsets of A is called the subspace topology on A. with this topology, (A, TA) is called a
subspace of (X, T ).

Lemma 1.15
The collection TA as defined above is a topology on A.

Proof. Let us first note that ∅ can be written as ∅ = A ∩ ∅ with ∅ ∈ T as T is a topology. Hence
by definition (1.19), ∅ ∈ TA. Also, notice that A = A ∩ X with X ∈ T again by the fact that T is a
topology on X and A ⊆ X. Hence, by definition (1.19), A ∈ TA.

It remains to show that TA is closed under arbitrary union and finite intersection. Let {A ∩ Uα}α∈J

be a subcollection of elements from TA as defined in (1.19) associated with the subcollection {Uα}α∈J

of open subsets from T indexed by J . Now, observe that⋃
α∈J

(A ∩ Uα) = A ∩
(⋃

α∈J

Uα

)
(1.20)

by distributive law in set theory. Hence, using the fact that
⋃

α∈J Uα ∈ T holds, one deduces the fact
that

⋃
α∈J (A ∩ Uα) ∈ TA. In other words, TA is closed under arbitrary union of elements from it.

Now, let us choose a finite subcollection {A ∩ U1, . . . , A ∩ Un} of elements from TA with {U1, . . . , Un} ⊂
T , being a finite subcollection of open subsets of X drawn from T . Again, one observes that

n⋂
i=1

(A ∩ Ui) = A ∩
(

n⋂
i=1

Ui

)
, (1.21)

with
⋂n

i=1 Ui ∈ T as T a topology. Now, using definition (1.19), one concludes
⋂n

i=1 (A ∩ Ui) ∈ TA. In
other words, TA is closed under finite intersection of elements from it. ■

Remark 1.1. When (A, TA) is a subspace of (X, T ), and V ⊂ A ⊂ X. one cant simply say that “V is
open”, as there may arise a potential ambiguity. One says “V is open in A” to indicate that V ∈ TA

while phrases “V is open in X” to imply that V ∈ T . The former indicate that V = A ∩ U for some
U ∈ T .

Lemma 1.16
If B is a basis for topology T on X, and A ⊂ X, then the collection

BA = {A ∩ B | B ∈ B}

is a basis for the subspace topology TA on A.

Proof. We apply Recognition principle for the collection BA in the context of the topological space
(A, TA). Since each basis element B ∈ B is open in X, i.e. B ∈ T , each subset A ∩ B ∈ BA is open in
A, i.e. A ∩ B ∈ TA. Additionally, given x ∈ A ∩ U ∈ TA, with U ∈ T , one has x ∈ U ∈ T so that ther
exists B ∈ B with x ∈ B ⊂ U as B is a basis for topology T on X. Also, since x ∈ A ∩ U , x ∈ A so
that x ∈ B ∩ A ⊂ U ∩ A. Therefore, we have shown that given A ∩ U ∈ TA and x ∈ A ∩ U , there exists
A ∩ B ∈ BA such that x ∈ A ∩ B ⊂ A ∩ U . Therefore, the collection BA meets the criteria as required
by the Recognition principle to become a basis for the subspace topology JA on A. ■

Example 1.10. Give R the standard Euclidean metric topology generated by the open intervals
(a, b), and let A = [0, 1). According to Lemma 1.16 above, the subspace topology TA on A has a basis
consisting of intersections [0, 1) ∩ (a, b). Observe that the basis consists of all intervals of the form [0, b)
and (a, b) with 0 < a < b ≤ 1.

14



1 Topologoical Spaces 15

Theorem 1.17
If A is a subspace of X and B is a subspace of Y , then the product topology on A × B is the same
as the subspace topology on A × B as a subset of X × Y .

Proof. The subspace topology TA on A is given by the collection

TA = {A ∩ U | U ∈ T },

with A ⊂ X, a subset and T is the given topology on X. Similarly, the subspace toplogy TB on a
subset B ⊂ Y is given by the collection

TB = {B ∩ V | V ∈ T ′},

Where T ′ is the given topology on Y . Hence, by the definition of product topology, the product
topology on A × B is generated by the basis

BA×B =
{
(A ∩ U) × (B ∩ V ) | U ∈ T , V ∈ T ′} . (1.22)

On the other hand, from the result provided in Lemma 1.16. the collection

B′
A×B =

{
(A × B) ∩ (U × V ) | U ∈ T , V ∈ T ′} (1.23)

is a basis for the subspace topology TA×B on A × B as a subset of X × Y . Note that here we use the
fact that open subsets U × V of X × Y , with U open in X and V open in Y , constitute a basis for the
product topology on X × Y . In view of the following set theoretic equality,

(A ∩ U) × (B ∩ V ) = (A × B) ∩ (U × V ) (1.24)

one concludes that the 2 bases given, by (1.22) and (1.23) are actually the same, i.e. BA×B = B′
A×B.

Hence, the 2 topologies they generate are the same. ■

Definition 1.13. By an open subspace of X, we mean an open subset A ⊂ X with the subspace
topology.

Lemma 1.18
Let A be an open subspace of X. Then a subset V ⊂ A is open if and only if it is open in X.

Proof. Suppose V ⊂ A is open with respect to subspace topology on A, hence, V = A ∩ U , for some U
open in X. Since A is also open in X, V = A ∩ U must also be open in X. Now, let V ⊂ A and V be
open in X. Write V = A ∩ V with V open in X. From the definition of subspace topology, V is open
in A with respect to subspace topology, as required. ■

15



2 Closed Sets and Limit Points

§2.1 Closed Sets

Definition 2.1. A subset K of a topological space x is said to be closed if and only if X \ K is
open.

Example 2.1. The interval [a, b] = {x ∈ R | a ≤ x ≤ b} is closed in R with respect to the standard
topology, as R \ [a, b] = (−∞, a) ∪ (b, ∞) is open in R.

Example 2.2. In the discrete topology Tdis on a set X, every subset is closed. In the indiscrete
topology Tindis on X, only the subsets ∅ and X are closed.

Theorem 2.1
Let X be a topological space.

(i) ∅ and X are closed subsets of X.

(ii) The intersection of any collection of closed subsets of X is closed.

(iii) The union of any finite collection of closed subsets of X is closed.

Proof. (i) Let us denote the topology on X by T . From the definition of topology, one knows that
∅, X ∈ T . Hence, X \ X = ∅ is closed. Also, X \ ∅ = X is closed.

(ii) Let {Kα}α∈J be any collection of closed subsets of X. Hence, {X \ Kα}α∈J is a collection of open
subsets of X indexed by the same set J . From the definition of topology,⋃

α∈J

(X \ Kα) ∈ T .

By De Morgan’s law, one obtains,

⋃
α∈J

(X \ Kα) = X \
(⋂

α∈J

Kα

)
∈ T , i.e., X \

(⋂
α∈J

Kα

)
is open in X,

which in turn implies that ⋂
α∈J

Kα is closed in X.

(iii) Let {Ki}n
i=1 be a finite collection of closed subsets of X. Then {X \ K1, . . . , X \ Kn} is a finite

collection of open subsets of X. By the definition of topology, one has,
n⋂

i=1
(X \ Ki) ∈ T .

By De Morgan’s law, one has,
n⋂

i=1
(X \ Ki) = X \

(
n⋃

i=1
Ki

)
∈ T , i.e., X \

(
n⋃

i=1
Ki

)
is open in X,

which in turn implies that
n⋃

i=1
Ki is closed in X.

■

16



2 Closed Sets and Limit Points 17

When (A, TA) is a subspace of (X, T ), and K ⊂ A ⊂ X, we can interpret the phrase "K is closed" in 2
possible ways:

(i) K ∈ T , or

(ii) K ∩ A ∈ TA.

In the latter case, we say that K is a closed subset of A or K is closed in the subspace topology on A.

Theorem 2.2
Let A be a subspace of X. A subset K ⊂ A is closed in A if and only if there exists a closed
subset L ⊂ X with K = A ∩ L.

Proof. Let K ⊂ A be closed in A. Then V = A \ K is open in A, i.e., V = A ∩ U for some U ∈ T .
Hence, by definition of subspace topology, there exists U ⊂ X open such that V = A ∩ U .

Let L = X \ U . Then L is closed in X, and

A ∩ L = A ∩ (X \ U) = (A ∩ X) \ (A ∩ U) = A \ V = A \ (A \ K) = K.

Conversely, suppose L ⊂ X is closed and K = A ∩ L. Then U = X \ L is open in X so that
V = A ∩ U is open in A in subspace topology. Now,

A \ K = A \ (A ∩ L) = (A \ A) ∪ (A \ L) = A ∩ (X \ L) = A ∩ U = V,

leading to the fact that A \ K is open in A in subspace topology. Hence, K ⊂ A is closed in A as
required. ■

Lemma 2.3
Let A ⊂ X be closed in X. Then a subset K ⊂ A is closed in A if and only if it is closed in X.

Proof. Suppose K ⊂ A is closed in A, in the subspace topology. Then by Theorem 2.2, there exists a
closed subset L in X such that K = A ∩ L. As both A and L are closed in X, so is their intersection
K = A ∩ L.

Conversely, suppose K ⊂ A is closed in X. One writes K = A ∩ K. Since K is closed in X, by
Theorem 2.2 one concludes that K ⊂ A is closed in A in subspace topology, as required. ■

§2.2 Closure and Interior

Definition 2.2. Let X be a topological space and A ⊂ X a subset. The closure A (or Cl A) of A
is defined to be the intersection of all the closed sets containing A. The interior Int(A) of A is
the union of all the open subsets of X that are contained in A.

Remark 2.1. If x ∈ Int(A), then x belongs to the union of all open sets contained in A. Hence, by
the definition of union, there exists an open set U contained in A such that x ∈ U ⊂ A.

Lemma 2.4 (Properties of closure and interior)
The followings hold:

(i) A is a closed subset of X, and Int(A) is an open subset of X.

(ii) A ⊂ A, and Int(A) ⊂ A.

Proof. (i) Since the intersection of closed sets is closed, A is closed. Similarly, since the union of
open sets is open, Int(A) is open.

17



2 Closed Sets and Limit Points 18

(ii) Since A is contained in any closed set containing A, A ⊂ A. In a similar manner, since Int(A) is
a union of open sets contained in A, Int(A) ⊂ A.

■

Example 2.3. Let X = R with the standard topology and A = [a, b] where a, b ∈ R and a < b. Here,
A = [a, b] and Int(A) = (a, b).

Definition 2.3 (Dense sets). A subset A ⊂ X is dense if A = X.

Lemma 2.5
Let X be a topological space and A ⊂ X. Then

X \ Cl A = Int (X \ A) .

Furthermore,
X \ Int A = Cl (X \ A) .

Proof. Since Cl A is the intersection of all closed sets containing A,

X \ Cl A = X \

 ⋂
K closed,

A⊂K

K


=

⋃
K closed,

A⊂K

(X \ K)

=
⋃

U open,
X\A⊃U

U

= Int (X \ A) ;

since K being closed is equivalent to X \K =: U being open, and A ⊂ K is equivalent to X \A ⊃ X \K.
The second statement immediately follows from the previous one, since

X \ Cl (X \ A) = Int (X \ (X \ A)) = Int A. (2.1)

Hence, X \ Int A = Cl (X \ A). ■

Example 2.4. Let X = R with the standard topology and let A = Q, the set of rational numbers.
Given x ∈ R and ε > 0, (x − ε, x + ε) is not contained in Q, so IntQ = ∅. Similarly, given x ∈ R \ Q
and ε > 0, (x − ε, x + ε) is not contained in R \ Q, so Int(R \ Q) = ∅. Then

R \ ClQ = Int(R \ Q) = ∅, (2.2)

proving that ClQ = R.

§2.2.i Closure in subspaces
We use ClX A to denote the closure of A in the topology on X.

Theorem 2.6
Let X be a topological space. And Y ⊂ X is a subspace with A ⊂ Y a subset. Then the closure
of A in Y denoted by ClY (A), is ClY (A) = Y ∩ ClX(A).

18



2 Closed Sets and Limit Points 19

Proof. Let us denote the closure of A in Y by B, i.e., B = ClY (A). First, we see that B ⊂ Y ∩ ClX(A)
holds. Indeed, ClX(A) is closed in X by Lemma 2.4. Hence, by Theorem 2.2, one has Y ∩ ClX(A) to
be closed in Y . Since A ⊂ Y is given and since A ⊂ ClX(A) by Lemma 2.4, one has A ⊂ Y ∩ A ⊂ Y .
Since ClY (A) of A in Y is the smallest closed set containing A, by A ⊂ Y ∩ ClX(A), one has
ClY (A) ⊂ Y ∩ ClX(A).

To prove Y ∩ ClX(A) ⊂ B = ClY (A), note that B is closed in Y . Hence, by Theorem 2.2, B = Y ∩ C,
for some C closed in X. Then A ⊂ ClY (A) ⊂ C implies that C is closed in X and contains A, i.e.,
A ⊂ C ⊂ X. Hence, by Lemma 2.4, ClX(A) ⊂ C and Y ∩ ClX(A) ⊂ Y ∩ C = B = ClY (A). ■

Example 2.5. Let X = R, Y = Q and A = Q ∩ [0, π) in the context of Theorem 2.6 with respect to
standard topology. From Example 2.3 and 2.4, we know that ClX(A) = [0, π], the closure of A in X,
while the closure of A in Y by Theorem 2.6 is

ClY (A) = Q ∩ [0, π] = Q ∩ [0, π) = A.

So ClY (A) = A is closed in Y = Q, but A is not closed in X.

Definition 2.4 (Neighborhood). Let X be a topological space, U ⊂ X a subset and x ∈ X. We say
that U is a neighbourhood of x if x ∈ U and U is open in X.

Theorem 2.7
Let A be a subset of a topological space X. A point x ∈ X lies in the closure A if and only if
every open set U in X that contains x intersects A. Equivalently, x ∈ A if and only if A intersects
U for each neighbourhood U of x.

Proof. Let us take the complement X \ A and interior IntA of A ⊂ X. We have x ∈ Int(X \ A) if
and only if there exists an open set U of X with x ∈ U ⊂ X \ A. Since X \ Cl A = Int (X \ A), the
negation of x ∈ Int(X \ A) is x ∈ A. (We shall use A and Cl A interchangeably.)

While the negation of U ⊂ X \ A is U ∩ A ̸= ∅. Hence the negation of “there exists an open set U
of X with x ∈ U ⊂ X \ A” is therefore “for each open set U of X with x ∈ U , one has U ∩ A ̸= ∅”.
Therefore, one has

x ∈ A ⇐⇒ x /∈ Int (X \ A) ⇐⇒ for every open U ∋ x, U ∩ A ̸= ∅.

■

Theorem 2.8 (Closure in terms of basis)
Let B be a basis for a topology on X. And let A ⊂ X. A point x ∈ X lies in A if and only if A
intersects each basis element B ∈ B with x ∈ B.

Proof. Suppose, x ∈ A. Then by Theorem 2.7, for every neighbourhood U of x, one has U ∩ A ̸= ∅.
Since every basis element B ∈ B with x ∈ B is a neighbourhood of x, B ∩ A ̸= ∅.

Conversely, suppose each basis element containing x intersects A. Now, choose an open set U of X
such that x ∈ U . Since B is a basis of X, there exists B ∈ B with x ∈ B ⊂ U . By hypothesis, A∩B ≠ ∅.
Since B ⊂ U , one must have U ∩ A ̸= ∅. One, therefore, shows that for every neighbourhood U of x,
U ∩ A ̸= ∅ holds. Then, by Theorem 2.7, x ∈ Ā as required. ■

Example 2.6. Let B =
{

1
n | n ∈ Z+

}
⊂ R. Then 0 ∈ B. We verify the criteria presented in

Theorem 2.8. Consider any basis element (a, b) for the standard topology on R with 0 ∈ (a, b). One can
find ε > 0 such that (−ε, ε) ⊂ (a, b). Now, choose n ∈ Z+ such that 1

n < ε. For the preferred choice
of n ∈ Z+, one therefore ensures that 1

n ∈ (−ε, ε) ⊂ (a, b), so that one has B ∩ (a, b) ̸= ∅. Hence, by
Theorem 2.8, 0 ∈ B.

19



2 Closed Sets and Limit Points 20

In fact, B = {0} ∪ B. This is indeed a closed subset of R, since

R \ B = (−∞, 0) ∪

 ⋃
n∈Z+

( 1
n + 1 ,

1
n

) ∪ (1, ∞),

being a union of open intervals, is open.

§2.3 Limit Points

Definition 2.5 (Limit Points). Let A be a subset of a topological space X. A point x ∈ X is a
limit point of A if each neighbourhood U of x contains a point of A other than x itself. Phrased
differently, x is a limit point of A if x belongs to the closure of A \ {x}. In other words, for every
neighbourhood U of x,

U ∩ (A \ {x}) ̸= ∅.

Example 2.7. In the case of Example 2.6, 0 ∈ R is a limit point of B. In this case, there are no other
limit points of B.

Theorem 2.9
Let A be a subset of a topological space X, with closure A and set of limit points A′. Then
A = A ∪ A′.

Proof. Let us prove that A ∪ A′ ⊂ A. We know from Lemma 2.4 that A ⊂ A. If x ∈ A′, i.e., if x is a
limit point, then for every neighbourhood U of x, one has U ∩ (A \ {x}) ̸= ∅. By Theorem 2.7, x ∈ A.
Now, A ⊂ A and A′ ⊂ A together imply A ∪ A′ ⊂ A.

Now, prove that A ⊂ A ∪ A′. Let x ∈ A. If x ∈ A, then of course x ∈ A ∪ A′, and we are done.
Otherwise, x /∈ A, so that A \ {x} = A. Since x ∈ A, by Theorem 2.7, every neighbourhood U of x
intersects A, i.e., U ∩ A ̸= ∅. Since A \ {x} = A, this implies

U ∩ (A \ {x}) ̸= ∅.

So x ∈ A′. Thus, A ⊂ A ∪ A′. ■

Corollary 2.10
A subset of a topological space is closed if and only if it contains all its limit points.

Proof. A ⊂ X is closed if and only if A = A = A ∪ A′. This holds if and only if A′ ⊂ A, i.e., all the
limit points of A are contained in A itself. ■

Definition 2.6 (Convergence). Let (x1, x2, . . .) = (xn)∞
n=1 be a sequence of points in a topological

space X, where xn ∈ X for all n ∈ N. We say that (xn)∞
n=1 converges to a point y ∈ X if for each

neighborhood U of y, there exists an N ∈ N such that xn ∈ U for all n > N . In this situation, we
call y a limit of the sequence (xn)∞

n=1 and write this fact as xn → y as y → ∞.

Example 2.8. Consider the topology on the three-point set {a, b, c} as indicated below:

T = {∅, {a}, {b, c}, {a, b, c}}.

If we choose the constant sequence xn = b for each n ∈ N, then xn → a, xn → b, xn → c. In other
words, limit of a sequence is not unique.

For example, there are two neighborhoods of a, namely {a, b} and {a, b, c}. Both of them contain
b = xn. So a is a limit of the constant sequence xn = b. Similarly, b and c are also limits of the
sequence.
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2 Closed Sets and Limit Points 21

§2.4 Hausdorff Spaces
To obtain unique limits for convergent sequences, we must assume that the topology is sufficiently fine
to separate the individual points. Such additional hypotheses are called separation axioms. The most
common separation axiom is known as the Hausdorff property.

Definition 2.7 (Hausdorff space). A topological space X is called a Hausdorff space if given any
two distinct points x, y ∈ X, there exist open sets U, V with x ∈ U , y ∈ V , and U ∩ V = ∅.

Example 2.9. The 3-point set X = {a, b, c} with the topology T provided in Example 2.8 is not
Hausdorff. Take b, c ∈ X. None of the neighborhoods of b is disjoint from any other neighborhoods of
c. So X with this topology is not Hausdorff.

Example 2.10. Take X = {a, b} and consider the discrete topology on X:

Tdis = {∅, {a} , {b} , {a, b}} .

X with the topology Tdis is a Hausdorff space. The points a and b can be separated, with their
respective neighborhoods {a} and {b}.

Lemma 2.11
Every metric space (X, d) is Hausdorff.

Proof. Let x, y ∈ X with x ̸= y so that d (x, y) > 0. We choose ε = 1
2d (x, y), and U = Bd (x, ε) and

V = Bd (y, ε).

x

Bd(x, ε)

y

Bd(y, ε)

U and V are neighborhoods of x and y, respectively. It’s easy to see that they are disjoint. Suppose
z ∈ U ∩ V . Then z ∈ U implies d (x, z) < ε. z ∈ V gives us d (y, z) < ε. By the triangle inequality,

2ε = d (x, y) ≤ d (x, z) + d (z, y) < ε + ε = 2ε. (2.3)

This is clearly a contradiction! Therefore, U ∩ V = ∅, and hence X is a Hausdorff space. ■

Theorem 2.12 (Uniqueness of limit in Hausdorff space)
If X is a Hausdorff space, then a sequence (xn)∞

n=1 of points in X converges to at most one point
in X.

Proof. Suppose that (xn)∞
n=1 converges to x and x′ in X, where x ̸= x′. Since X is Hausdorff, there

exist neighborhoods U of x and V of x′ such that U ∩ V = ∅. Since (xn) converges to x, there exists
an N such that for all n ≥ N , xn ∈ U . Similarly, since (xn) converges to x′, there exists an N ′ such
that for all n ≥ N ′, xn ∈ V . Let M = max{N, N ′}. Then for all n ≥ M , it follows that xn ∈ U ∩ V ,
which is a contradiction since U ∩ V = ∅. Hence, we must have x = x′. ■

Definition 2.8. If X is a Hausdorff space, and a sequence (xn)∞
n=1 of points in x converges to
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y ∈ X, we say that y is the limit of (xn)∞
n=1, and write

y = lim
n→∞

xn.

Proposition 2.13
Every singleton set (a one-point set) in a Hausdorff space X is closed.

Proof. Let x ∈ X. We want to prove that {x} is closed, i.e. X \ {x} is open.
Let y ∈ X \ {x}. Since S is Hausdorff, we can find disjoint open sets Uy and Vy such that x ∈ Uy

and y ∈ Vy. No such Vy contains x. Therefore

X \ {x} =
⋃

y∈S\{x}
Vy

So X \ {x} is union of open sets, hence open. So {x} is closed. ■

Corollary 2.14
Every finite set is closed in a Hausdorff space.

Proof. Every finite set can be expressed as union of finitely many singletons. Union of finitely many
closed sets is closed. Hence, finite sets are closed. ■

Definition 2.9 (T1 axiom). The condition that finite point sets be closed is called the T1 axiom.
Topological spaces obeying T1 axiom are called T1 spaces.

Corollary 2.14 tells us that every Hausdorff space is a T1 space. However, the converse of Corollary 2.14
is not true. In other words, a T1 space is not a Hausdorff space, in general. Here is a counterexample:
let N, the set of natural numbers, be equipped with the finite complement topology. Let us denote
the finite complement topology on N by Tf , i.e.,

Tf = {U | U ⊂ N with N \ U is finite or the whole of N}.

Choose 2 neighbourhoods U and V of m and n in N, respectively, in finite complement topology such
that m ̸= n. Then, observe that U ∩ V ̸= ∅.

Indeed, since U ∈ Tf , N \ U is a finite set as U is by definition nonempty. Also, since V ∈ Tf , N \ V
is a finite set as V is also by definition nonempty. Now, (N \ U) ∪ (N \ V ) is also a finite set as the
union of two finite sets.

(N \ U) ∪ (N \ V ) = N \ (U ∩ V ).

N \ (U ∪ V ) is a finite set, so U ∩ V is an infinite set. In particular, U ∩ V is nonempty. This proves
that N equipped with finite complement topology is not Hausdorff.

Theorem 2.15
Let A be a subset of a T1 space X. A point x ∈ X is a limit point of A if and only if each
neighborhood U of x intersects A at infinitely many points.

Proof. Suppose that U ∩ A consists of infinitely many points. Hence it certainly contains other points
than x itself, so that U ∩ (A \ {x}) ̸= ∅, proving that x is a limit point of A.

Conversely, suppose U ∩ A is finite. Then

U ∩ (A \ {x}) = {x1, . . . , xn}
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2 Closed Sets and Limit Points 23

is closed as X is a T1 space and hence every finite set is closed in X.
Therefore, V = U \ {x1, . . . , xn} = U ∩ (X \ {x1, . . . , xn}) is open in X. Since x ∈ U (as U is a

neighborhood of x in X) and x /∈ {x1, . . . , xn}, one must have

x ∈ U ∩ (X \ {x1, . . . , xn}) = V.

Now, V is, by definition, a subset of U that doesn’t contain any of the elements in {x1, . . . , xn}.

V ∩ (A \ {x}) ⊂ U ∩ (A \ {x}) = {x1, . . . , xn}.

Since V doesn’t contain any of the elements in {x1, . . . , xn}, one must have

V ∩ (A \ {x}) = ∅,

with V open in X, implying that x is not a limit point of A. Hence, we have proved that U ∩ A is
finite implies that x is not a limit point of A. A contrapositive of the above statement is what we
require to hold. ■

Proposition 2.16
The product of two Hausdorff spaces X and Y is Hausdorff.

Proof. Given two distinct points (x1, y1) , (x2, y2) in X × Y , without loss of generality we may assume
that x1 ̸= x2. Since X is Hausdorff, there exist disjoint open sets U1, U2 in X such that x1 ∈ U1 and
x2 ∈ U2. Then U1 × Y and U2 × Y are disjoint neighborhoods of (x1, y1) and (x2, y2), so X × Y is
Hausdorff. ■
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3 Continuity

§3.1 Definitions

Definition 3.1 (Continuous Maps). Let f : X → Y be a map of topological spaces. f is said to be
continuous if for each open subset V of Y , the set f−1(V ) is an open subset of X.

Proposition 3.1
f : X → Y is continuous if and only if for every closed subset C of Y , the set f−1(C) will be
closed in X.

Proof. (⇒) Suppose f is continuous. C is closed, so Y \ C is open in Y . Therefore, by the continuity
of f , f−1 (Y \ C) = X \ f−1(C) is open in X, so f−1(C) is closed.

(⇐) Suppose f−1(C) is closed in X for any closed C ⊂ Y . Take any open set U in Y . Choose
C = Y \ U . Then by the assumption f−1 (Y \ U) = X \ f−1(U) is closed in X. This gives us f−1(U)
is open. So f is continuous. ■

Lemma 3.2
Let X, Y , and Z be topological spaces. If f : X → Y and g : Y → Z are continuous functions,
then the composite g ◦ f : X → Z is continuous.

Proof. Let W ⊂ Z be open. Then g−1(W ) ⊂ Y is open as g is a continuous function. Also,
f−1(g−1(W )) ⊂ X is open as f is a continuous function. But from elementary set theory, one has

(g ◦ f)−1(W ) = f−1(g−1(W )).

Hence, one has (g ◦ f)−1(W ) ⊂ X is open, proving that g ◦ f : X → Z is a continuous function. ■

Lemma 3.3
Let X and Y be topological spaces, and B is a basis for the topology on Y . Then a function
f : X → Y is continuous if and only if for each basis element B ∈ B, the preimage f−1(B) is open
in X.

Proof. Each basis element B ∈ B is open in Y . Hence, continuity of f : X → Y implies that f−1(B) is
open in X. Conversely, suppose that f−1(B) is open in X for each basis element B ∈ B. Now, pick
an open set V ⊂ Y . Since B is a basis for the topology in Y , V can be expressed as a union of basis
elements, i.e.,

V =
⋃

α∈J

Bα

for {Bα}α∈J being a collection of basis elements of Y indexed by J . One therefore has

f−1(V ) = f−1
(⋃

α∈J

Bα

)
=
⋃

α∈J

f−1(Bα).

Since each Bα ∈ B, f−1(Bα) is open in X by hypothesis. Therefore, f−1(V ) is also open in X, proving
that f : X → Y is continuous. ■
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Lemma 3.4
Let X and Y be topological spaces, and suppose that S is a subbasis for the topology on Y . Then
a function f : X → Y is continuous if and only if for each sub-basis element S ∈ S, the preimage
f−1(S) is open in X.

Proof. We form the basis B from the subbasis S by taking all possible finite intersections of elements
from S that generate the topology of Y . Now, each subbasis element S ∈ S is a basis element belonging
to B by construction, and hence by Lemma 3.3, f−1(S) is open in X if f : X → Y is a continuous
function.

Conversely, by construction, each basis element B ∈ B is a finite intersection B = S1 ∩ · · · ∩ Sn, for
S1, . . . , Sn ∈ S. Then,

f−1(B) = f−1(S1 ∩ · · · ∩ Sn) = f−1(S1) ∩ · · · ∩ f−1(Sn).

Now, by hypothesis, each element of the finite collection {f−1(S1), . . . , f−1(Sn)} is open in X as
S1, . . . , Sn belong to S. Hence,

f−1(S1) ∩ · · · ∩ f−1(Sn)

is open in X. We have thus shown that for any basis element B ∈ B generating the topology of Y ,
f−1(B) is open in X. Hence, by Lemma 3.3, f : X → Y is a continuous function. ■

Example 3.1 (Equivalence of topological and calculus definition of continuity). The calculus definition
of continuity states that

Given a function f : D → R (with D ⊂ R called the domain of f) is said to be continuous
at x0 ∈ D if for every ε > 0, there exists δ > 0 such that for each x ∈ D, |x − x0| < δ
implies |f(x) − f(x0)| < ε. If f : D → R is continuous at all points of its domain D, then
f is called everywhere continuous or simply continuous.

Then we have the following result

f : R → R is everywhere continuous if and only if f−1(U) is open whenever U is open.
(Here, both the domain and codomain R of f is taken to be in standard topology.)

(⇒) Suppose f : R → R is everywhere continuous as defined in single variable calculus. Also, suppose
U is open in R. We have to show that f−1(U) is open in R. Let us pick an arbitrary element
x0 ∈ f−1(U) = {x ∈ R | f(x) ∈ U}. Now, this tells us that f(x0) ∈ U . Since U is open set in R with
respect to standard topology which is generated by the basis of all open intervals in R. Hence, there
exists ε > 0 such that Bε(f(x0)) ⊂ U which is the same as (f(x0) − ε, f(x0) + ε) ⊂ U . Now, find
δ > 0 using the continuity of f : R → R at x0 ∈ R. Since the calculus definition of continuity holds by
hypothesis, there indeed there exists δ > 0 such that |x − x0| < δ implies |f(x) − f(x0)| < ε.

Now, the claim is that Bε(x0, δ) ⊂ f−1(U). Suppose that x ∈ Bε(x0, δ) = (x0 − δ, x0 + δ) then
|x − x0| < δ. But from calculus definition of continuity, this leads to

|f(x) − f(x0)| < ε =⇒ f(x) ∈ (f(x0) − ε, f(x0) + ε) = Bε(f(x0)) ⊂ U,

so that one obtains f(x) ∈ U , i.e. x ∈ f−1(U). This proves the claim that Bε(x0, δ) ⊂ f−1(U) with
δ > 0 guaranteed to exist by the calculus definition of continuity. This proves that f−1(U) is an open
set in R.

(⇐) Suppose f−1(U) is open when U is open in R. Suppose we are also given x0 ∈ R and ε > 0. Now,
let U = BEuc(f(x0), ε) = (f(x0) − ε, f(x0) + ε), which is open in R. By hypothesis, f−1(U) is open in
R.

Now, f(x0) ∈ U , so x0 ∈ f−1(U). But f−1(U) is open in R. Hence, there exists δ > 0 such that
BEuc(x0, δ) ⊂ f−1(U). Now, we are going to show that this δ > 0 corresponds to the ε > 0 in the
calculus definition of continuity at x0.
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For this, suppose |x − x0| < δ. This implies

x ∈ (x0 − δ, x0 + δ) = BEuc(x0, δ) ⊂ f−1(U),

i.e., x ∈ f−1(U). Thus,

f(x) ∈ U = BEuc(f(x0), ε) = (f(x0) − ε, f(x0) + ε),

which implies |f(x) − f(x0)| < ε.

Example 3.2. Let R and Rf be the real numbers with the standard topology and the finite complement
topology, respectively. The identity function id : Rf → R, given by id(x) = x, is not continuous
since id−1((a, b)) = (a, b) is not open in the finite complement topology, although (a, b) is open in the
standard metric topology. Indeed, (a, b) doesn’t belong to the finite complement topology on R as
R \ (a, b) is not finite.

However, the identity function id−1 : R → Rf is continuous, since R \ F , with F being a finite subset
of R (a generic open set from the set of real numbers in the finite complement topology), is open in R
in the standard topology.

Definition 3.2 (Continuity at a point). We say that f : X → Y is continuous at x ∈ X if for each
neighbourhood V of f(x), there exists a neighbourhood U of x with f(U) ⊂ V .

Theorem 3.5
Let X and Y be topological spaces, and f : X → Y a function. Then f is continuous if and only if
for each x ∈ X and each neighbourhood V of f(x), there exists a neighbourhood U of x such that
f(U) ⊂ V . In other words, f : X → Y is contimous if and only if it is continuous at each x ∈ X.

Proof. Suppose f : X → Y is continuous. Given x ∈ X, f(x) ∈ Y . Suppose also that V is a
neighbourhood of f(x) in Y . Then by the continuity of f : X → Y , f−1(V ) is a neighbourhood of x in
X with f(f−1(V )) ⊂ V . If we write the neighbourhood f−1(V ) of x in X by U , we have f(U) ⊂ V .

Conversely, suppose V ⊂ Y is open. We need to show that f−1(V ) is open in X. Choose x ∈ f−1(V ).
Since f(f−1(V )) ⊂ V , one has f(x) ∈ V . Hence, V is a neighbourhood of f(x) in Y . Now, by
hypothesis, there exists a neighbourhood Ux of x in X such that f(Ux) ⊂ V . But f(Ux) ⊂ V implies
Ux ⊂ f−1(V ). Hence, one has x ∈ Ux ⊂ f−1(V ).

For every x ∈ f−1(V ), there is an open set Ux such that x ∈ Ux ⊂ f−1(V ). Therefore, by
Proposition 1.6, f−1(V ) is open, as required. ■

Theorem 3.6
Let X and Y be topological spaces. And f : X → Y a function. The following are equivalent:

1. f is continuous.

2. For every subset A ⊂ X, one has f(A) ⊂ f(A).

3. For every closed set K ⊂ Y , the preimage f−1(K) is closed in X.

Proof. We have already established the equivalece of 1 and 3 in Proposition 3.1. We shall now prove
that 1 implies 2, and 2 implies 3.

(1 ⇒ 2): Suppose f : X → Y is continuous and A ⊂ X be a subset. Let f(x) ∈ f(A) with x ∈ A.
We want to show that f(x) ∈ f(A). Let V be a neighbourhood of f(x) in Y . By continuity of f ,
f−1(V ) is open in X. Also, since V is a neighbourhood of f(x), one must have x ∈ f−1(V ). Hence,
f−1(V ) is a neighbourhood of x in X. Now, since x ∈ A, A ∩ f−1(V ) ̸= ∅ by Theorem 2.7. Choose
y ∈ A ∩ f−1(V ). Then

f(y) ∈ f(A ∩ f−1(V )) ⊂ f(A) ∩ f(f−1(V )) ⊂ f(A) ∩ V,
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implies that f (A) ∩ V is nonempty. Therefore, we have shown that an arbitrary neighbourhood V
of f(x) in Y intersects f(A). Then by Theorem 2.7, one concludes that f(x) ∈ f(A), proving that
f(A) ⊂ f(A).

(2 ⇒ 3): Let K ⊂ Y be closed. Also, let us denote f−1(K) by A so that A ⊂ X. We will show that
A = A. This will then prove that A = f−1(K) is closed in X. We know from elementary set theory
that f(f−1(K)) ⊂ K, i.e., f(A) ⊂ K. Since K is closed, by Lemma 2.4, one obtains f(A) ⊂ K. But by
hypothesis, f(A) ⊂ f(A) ⊂ K. Hence, f(A) ⊂ K. Since preimage preserves inclusion from elementary
set theory, f−1(f(A)) ⊂ f−1(K). But we also know from set theory that A ⊂ f−1(f(A)) so that one
has A ⊂ f−1(K) = A. And A ⊂ A by Lemma 2.4, so that one concludes A = A, as required. ■

§3.2 Homeomorphism

Definition 3.3 (Homeomorphism). A bijective function f : X → Y between two topological
spaces X and Y with the property that both f and f−1 : Y → X are continuous, is called a
homeomorphism. If there exists a homeomorphism f : X → Y , we say that X and Y are
homeomorphic, written as X ∼= Y .

Definition 3.4 (Imbedding). Suppose that f : X → Y is an injective continuous map, where X
and Y are given topological spaces. Let also that Z = f(X), the image set of f , considered as a
subspace of Y . Then the function f : X → Z obtained by taking the codomain of f to be the
range of f . This is immediate that f is bijective. If f happens to be a homeomorphism between X
and Z, we say that the map f : X → Y is a topological imbedding, or simply an imbedding,
of X in Y .

Example 3.3. Let f : R → R be given by f(x) = 3x + 1.

y = 3x + 1 =⇒ x = 1
3 (y − 1) .

The inverse function f−1 : R → R is given by

f−1 (y) = 1
3 (y − 1) .

Both f and f−1 continuous, and hence f is a homeomorphism.

Example 3.4. Let S1 denote the unit circle in R2; that is S1 = {(x, y) ∈ R2 | x2 + y2 = 1}, considered
as a subspace1 of the space R2. Let f : [0, 1) → S1 be the

f(t) = (cos 2πt, sin 2πt)

It is left as an exercise for the reader to show that f is a continuous bijective function. But the function
f−1 is not continuous.

0 1
1
4

f

S1

f
([

0, 1
4

))

p V

1Subset of R2 equipped with subspace topology.
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U =
[
0, 1

4

)
is an open set in [0, 1) according to the subspace topology. We want to show that f(U)

is not open in S1. That would prove the discontinuity of f−1.
Let p be the point f(0). And p ∈ f(U). We need to find an open set of S1 in subspace topology

containing p = f(0) and contained in f(U) to show that f(U) is open in S1, i.e we have to find an
open set in V of R2 such that f(0) = p ∈ V ∩ S1 ⊂ f(U). But it is impossible as is evident from the
figure above. No matter what V we choose, some part of V ∩ S1 would lie outside f(U).

Theorem 3.7 (Rules for constructing continuous functions)
Let X, Y , and Z be topological spaces.

(a) (Constant function) If f.X → Y maps all of X into the single point y0 of Y , then f is
continuous.

(b) (Inclusion) If A is a subspace of X, the inclusion function ι : A → X is continuous.

(c) (Restricting the domain) If f : X → Y is continuous, and if A is a subspace of X, then the
restricted function f

∣∣
A

: A → Y is continuous.

(d) (Restricting or expanding the range) Let f · X → Y be continuous. If Z is a subspace of
Y containing the image set f(X), then the function g : X → Z obtained by restricting
the range of f is continuous. If Z is a space having Y as a subspace, then the function
h : X → Z obtained by expanding the range of f is contınuous.

(e) (Local formulation of continuity) The map f : X → Y is continuous if X can be written as
the union of open sets Uα such that f

∣∣
Uα

is continuous for each α.

Proof. (a) Let f (x) = y0 for every x ∈ X. Let V ⊂ Y be open. Then we have

f−1 (V ) =
{

X if y0 ∈ V,

∅ if y0 ̸∈ V.
(3.1)

In either case, f−1(V ) is open. So f is continuous.

(b) ι : A → X is defined as ι(a) = a for a ∈ A ⊂ X. Then for U open in X,

ι−1(U) = {x ∈ A | ι(x) ∈ U} = {x ∈ A | x ∈ U} = A ∩ U, (3.2)

which is open in the subspace topology on A. So ι is continuous.

(c) Let ι : A → X be the inclusion map. The function f
∣∣
A

is the composition of f and ι, i.e.

f ◦ ι = f
∣∣
A

: A → Y, (3.3)

so f
∣∣
A

is continuous as a composition of two continuous maps.

(d) Let f : X → Y be continuous. Also, suppose that f(X) ⊂ Z ⊂ Y .
We now show that the function g : X → Z obtained by restricting the codomain is continuous. Let
B ⊂ Z be open. Then by the definition of subspace topology,

B = Z ∩ U (3.4)

for some open U ⊂ Y . Now, from f(X) ⊂ Z, one has

f−1(f(X)) ⊂ f−1(Z) (3.5)

But X ⊂ f−1(f(X)) from elementary set theory leading to

X ⊂ f−1(Z). (3.6)
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Similarly, from Z ⊂ Y , one has
f−1(Z) ⊂ f−1(Y ) = X. (3.7)

(3.6) and (3.7) together imply that
X = f−1(Z). (3.8)

Now, notice that by construction of the function g, one has f(x) = g(x) for every x ∈ X. And,

g−1(B) = {x ∈ X | g(x) ∈ B} = {x ∈ X | f(x) ∈ B} = f−1(B). (3.9)

So that from (3.4), one obtains f−1(B) = f−1(Z ∩ U) = f−1(Z) ∩ f−1(U).

f−1 (B) = f−1(Z) ∩ f−1(U) = X ∩ f−1(U) = f−1(U), (3.10)

since f−1(U) ⊂ X. One, therefore, obtains that

g−1(B) = f−1(U). (3.11)

Since f : X → Y is continuous and U ⊂ Y is open, f−1(U) must be open in X. And, hence,
g−1(B) is open in X. This way, we see that for every open B ⊂ Z, one finds g−1(B) open in X,
which proves that g : X → Z is continuous.

(e) By hypothesis, one can write X =
⋃

α∈J Uα such that f
∣∣
Uα

: Uα → Y is continuous for each α ∈ J .
Let V ⊂ Y be open. Then(

f
∣∣
Uα

)−1
(V ) =

{
x ∈ Uα | f

∣∣
Uα

(x) ∈ V
}

= {x ∈ Uα | f(x) ∈ V } = Uα ∩ f−1 (V ) . (3.12)

Since f
∣∣
Uα

is continuous, f−1(V ) ∩ Uα must be open in Uα. Now, f−1(V ) ∩ Uα ⊂ Uα open and
Uα ⊂ X open together imply that f−1(V ) ∩ Uα ⊂ X open, by Lemma 1.18. Now,

⋃
α∈J

(f−1(V ) ∩ Uα) = f−1(V ) ∩
(⋃

α∈J

Uα

)
= f−1(V ) ∩ X = f−1(V ). (3.13)

Hence, f−1(V ), being a union of open sets of X, is also open in X, proving that f : X → Y is
continuous.

■

Lemma 3.8 (Pasting Lemma)
Let X = A ∪ B, where A and B are closed in X. Let f : A → Y and g : B → Y be continuous. If
f(x) = g(x) for every x ∈ A ∩ B, then f and g combine to give a continuous function h : X → Y
defined by

h(x) =
{

f(x) if x ∈ A,

g(x) if x ∈ B.

Proof. Let C be a closed subset of Y . Now,

h−1(C) = {x ∈ X | h(x) ∈ C}
= {x ∈ A ∪ B | h(x) ∈ C}
= {x ∈ A | h(x) ∈ C} ∪ {x ∈ B | h(x) ∈ C}
= {x ∈ A | f(x) ∈ C} ∪ {x ∈ B | g(x) ∈ C}
= f−1(C) ∪ g−1(C).

So we have
h−1(C) = f−1(C) ∪ g−1(C). (3.14)

Since f is continuous, f−1(C) is closed in A, hence closed in X. Similarly, g−1(C) is closed in X. So
h−1(C) is the union of two closed sets in X, hence it is closed in X. Therefore, h is continuous. ■
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Example 3.5. Let us define the function h : R → R by setting

h(x) =
{

x for x ≤ 0,

x/2 for x > 0.
(3.15)

Here, each of the pieces, namely x and x/2, are both continuous functions on x ≤ 0, and x > 0,
respectively. These two pieces agree with each other on the overlapping part of their domains, which
is the one-point set {0}. The domains of the two pieces (−∞, 0] and [0, ∞) are closed subsets of R.
Hence, the function h : R → R defined piecewise by (3.15) is continuous by Pasting Lemma.

Now, the equation

j(x) =
{

x − 2 for x ≤ 0
x + 2 for x ≥ 0

(3.16)

do not define a function as the two pieces here do not agree on the overlapping part of their respective
domains, namely on the one-point set {0}. Hence, the pasting lemma doesn’t apply here.

x

h(x)

x

j(x)

x

k(x)

The equations given by

k(x) =
{

x − 2 for x < 0
x + 2 for x ≥ 0

(3.17)

indeed give a function from R to itself. For the two pieces involved here there is no nontrivial intersection
of their respective domains. But the domains of the two pieces are not both closed subsets of R. Hence
the pasting lemma doesn’t apply. Indeed, the function k : R → R is not continuous, although the two
pieces involved are both continuous on their respective domains. In this case, although (1, 3) is open in
R, k−1((1, 3)) = [0, 1) is not open, proving that k : R → R is not continuous.

Example 3.6. Let (X, TX) and (Y, TY ) be topological spaces defined as follows:

X = {R, G, B}, TX = {∅, X, {R}, {B}, {R, G}, {R, B}}.

Y = {1, 2, 3}, TY = {∅, {1}, {1, 2}, Y }.

Let f : (X, TX) → (Y, TY ) and g : (Y, TY ) → (X, TX) be defined by

f(R) = 1, f(G) = 2, f(B) = 3

g(1) = R, g(2) = G, g(3) = B

Observe that f : (X, TX) → (Y, TY ) is continuous:

f−1({0}) = ∅, f−1({1}) = {R}, f−1({1, 2}) = {R, G}, f−1(Y ) = X

Now, find that g : (Y, TY ) → (X, TX) is also not continuous as g−1({B}) = {3} /∈ TY .
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4 Product Topology Revisited

§4.1 Maps Into Products
Let X and Y be topological spaces; we give X × Y the product topology. Recall that π1 : X × Y → X
defined by π1(x, y) = x is called the projection onto the first component. Also, π2 : X × Y → Y defined
by π2(x, y) = y is called the projection onto the second component.

Lemma 4.1
π1 : X × Y → X and π2 : X × Y → Y are continuous.

Proof. For a given open set U ⊂ X, π−1
1 (U) = U × Y is in the basis B that generates the product

topology on X ×Y . In particular, π−1
1 (U) is open in X ×Y , proving that π1 : X ×Y → X is continuous.

Now, let V ⊂ Y be open. Then π−1
2 (V ) = X × V also belongs to the basis B generating the

product topology on X × Y . Hence, π−1
2 (V ) is also open in X × Y , proving that π2 : X × Y → Y is

continuous. ■

Theorem 4.2 (Maps into products)
Let W be a topological space. A function f : W → X × Y is continuous if and only if both of its
components f1 = π1 ◦ f : W → X and f2 = π2 ◦ f : W → Y are continuous.

Proof. (⇒) It is immediate by the use of the fact that composition of continuous functions is continuous
and Lemma 4.1.

(⇐) Let U ⊂ X be open. One then has

f−1
1 (U) = (π1 ◦ f)−1(U) = f−1(π−1

1 (U)) = f−1(U × Y ). (4.1)

On the other hand, let V ⊂ Y be open. One then has

f−1
2 (V ) = (π2 ◦ f)−1(V ) = f−1(π−1

2 (V )) = f−1(X × V ). (4.2)

Since, by hypothesis, both f1 and f2 are continuous, given U ⊂ X open, both f−1
1 (U) and f−1

2 (V ) are
open in W . And hence their intersection f−1

1 (U) ∩ f−1
2 (V ) is also open in W . But

f−1
1 (U) ∩ f−1

2 (V ) = f−1(U × Y ) ∩ f−1(X × V )
= f−1((U × Y ) ∩ (X × V ))
= f−1(U × V ).

Note that the collection B = {U × V | U open in X and V open in Y } generates the product topology
on X × Y . In other words, any open set in X × Y can be written as a union of open sets in X × Y of
the form U × V . Inverse image of a basic open set U × V ∈ B, under f , is open. So, by Lemma 3.3
f : W → X × Y is continuous. ■

Example 4.1. Let W = (a, b) ⊂ R and X = Y = R. A function f : (a, b) → R × R is written as
f(t) = (f1(t), f2(t)). Then f is continuous if and only if both the component functions f1 and f2 are
continuous by Theorem 4.2.

In the circle example (Example 3.4), f : [0, 1) → R2 was given by f(t) = (cos 2πt, sin 2πt) where
f([0, 1)) = S1 ⊂ R2. Here, both f1(t) and f2(t) are continuous functions on [0, 1). Hence by Theorem 4.2,
f : [0, 1] → R2 is continuous.
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Lemma 4.3
The product topology on X × Y is the coarsest topology for which both the projection maps
π1 : X × Y → X and π2 : X × Y → Y are continuous.

Proof. Both the projection maps π1 : X × Y → X and π2 : X × Y → Y are continuous for the product
topology on X × Y were proven in Lemma 4.1.

Now, suppose that the projection maps π1 and π2 are both continuous with respect to a topology T
on X × Y . Now, let U ⊂ X be open and V ⊂ Y be open. From the continuity of the projection maps,
π1 : X × Y → X with respect to the topology T implies that π−1

1 (U) ∈ T . Also, from the continuity
of π2 : X × Y → Y with respect to the topology T , one has X × V ∈ T . But we have

(U × Y ) ∩ (X × V ) = U × V, (4.3)

implying that U × V ⊂ T for all U open in X and V open in Y . Any open set in the product topology
can be written as a union of basic elements of the form U × V . All the basic open sets of the product
topology are in the topology T on X × Y . So T is finer than the product topology. So we have that
any topology on X × Y , with respect to which π1 and π2 are continuous, is finer than the product
topology. So product topology is the coarsest such that π1 and π2 are continuous. ■

§4.2 Product Topology
Let J be an index set. Also, let X be a set. By a J-tuple of elements of X, we mean a function
x : J → X. If α ∈ J , we denote its image under x simply by xα instead of x(α). It’s called the α-th
coordinate of x. We also often denote the function x by the symbol (xα)α∈J . The set of all J-tuples of
elements of X is denoted by XJ .

Definition 4.1. Let {Xα}α∈J be a family of sets indexed by the set J . Take the union X =
⋃

α∈J Xα.
The Cartesian product of this indexed family, denoted by∏

α∈J

Xα,

is defined as the set of all J-tuples (xα)α∈J of elements of X such that xα ∈ Xα for all α ∈ J . In
other words,

∏
α∈J Xα is the set of all functions x : J →

⋃
α∈J Xα = X such that x(α) ∈ Xα for

all α ∈ J .
If all sets Xα are equal to some set Y , then the Cartesian product

∏
α∈J Xα is simply the set

Y J of all J-tuples of elements of Y .

Now we add structure to the constituent sets Xα.

Definition 4.2. Suppose {Xα}α∈J is a family of topological spaces indexed by J . We introduce a
topology on the Cartesian product

∏
α∈J Xα in the following way:

Observe that the collection of all sets of the form
∏

α∈J Uα, with Uα ⊂ Xα open for all α ∈ J , is
a basis for

∏
α∈J Xα. The topology generated by this basis is called the box topology.

Definition 4.3 (Projection map). For each β ∈ J , there is a projection function

πβ :
∏
α∈J

Xα → Xβ, (xα)α∈J 7→ xβ.

i.e., πβ((xα)α∈J) = xβ.

Now, suppose {Xα}α∈J is a family of topological spaces indexed by J . We wish to equip
∏

α∈J Xα

with the coarsest topology Tprod such that each projection πβ is continuous. In other words, for each
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open set Uβ ⊂ Xβ, the inverse image π−1
β (Uβ) ⊂

∏
α∈J Xα must be open. The collection

S = {π−1
β (Uβ) | β ∈ J, Uβ ⊂ Xβ open} (4.4)

is a subbasis for
∏

α∈J Xα and generates the product topology Tprod on
∏

α∈J Xα. Consider the basis
B that S generates. The collection B consists of all finite intersections of elements of S.

Now, for a given index β ∈ J , let us denote by Sβ the collection

Sβ = {π−1
β (Uβ) | Uβ ⊂ Xβ open}. (4.5)

And then the collection of subbasis reads

S =
⋃

β∈J

Sβ. (4.6)

Let us get back to the formation of B from S by taking all finite intersections of elements from S. If we
intersect elements finitely many times from the same collection Sβ, we end up with an element again
belonging to Sβ. For example, choose Uα ⊂ Xα open and Vα ⊂ Xα open so that π−1

α (Uα), π−1
α (Vα)

both belong to Sα. Then, using elementary set theory,

π−1
α (Uα) ∩ π−1

α (Vα) = π−1
α (Uα ∩ Vα) ∈ Bα, (4.7)

as Uα ∩ Vα ⊂ Xα is also open.
In other words, by taking finite intersections of elements belonging to a given Sβ for some β ∈ J , we

don’t get anything new in the sense that we already have all the elements of Sβ. Nontrivial things
happen when we intersect elements (of course finitely many times) belonging to distinct Sβ’s. The
typical element of B can thus be described as follows: let β1, . . . , βn be a finite set of distinct indices,
then

B = π−1
β1

(Uβ1) ∩ π−1
β2

(Uβ2) ∩ · · · ∩ π−1
βn

(Uβn) (4.8)

is a basic open set in the product topology Tprod.
Now, take a point x = (xα)α∈J ∈ B is given by (4.8). Its βi-th coordinate xβi

belongs to Uβi
. For

example, xβ1 ∈ Uβ1 , xβ2 ∈ Uβ2 and so on. As a result, one writes B as a product:

B =
∏
α∈J

Uα (4.9)

with Uβi
⊂ Xβi

are open for i ∈ {1, . . . , n}, and Uα = Xα for all α ∈ J \ {β1, . . . , βn}.
Based on the discussion above, one has the following theorem:

Theorem 4.4 (Comparison of the box and product topologies)
The box topology on

∏
α∈J Xα has as basis all sets of the form∏

α∈J

Uα

with Uα ⊂ Xα open for all α ∈ J . The product topology on
∏

α∈J Xα has as basis all sets of the
form ∏

α∈J

Uα

with Uα open in Xα for all α ∈ J and Uα = Xα for all but finitely many values of α in J .

Remark 4.1. For finite products
∏n

i=1 Xi, the box topology and the product topology are the same.
From Theorem 4.4, by application of Lemma 1.7, one finds that the box topology on a product space∏

α∈J Xα is, in general, finer than the product topology on it.
Indeed, if one denotes by Tprod the product topology on

∏
α∈J Xα and by Tbox the box topology on∏

α∈J Xα, then Tprod ⊂ Tbox. Let us denote the basis of
∏

α∈J Xα generating the box topology on it by
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Bbox and the basis of
∏

α∈J Xα generating the product topology on it by Bprod. The collections Bbox and
Bprod are given by Theorem 4.4. It is evident that for each x ∈

∏
α∈J Xα and each

∏
α∈J Uα ∈ Bprod,

with x ∈
∏

α∈J Uα, there exists
∏

α∈J U ′
α ∈ Bbox with

x ∈
∏
α∈J

U ′
α ⊂

∏
α∈J

Uα,

since Bprod ⊂ Bbox. Therefore, by Lemma 1.7, Tprod ⊂ Tbox.

Theorem 4.5
Suppose the topology on each space Xα is given by a basis Bα. The collection of all sets of the
form ∏

α∈J

Bα,

where Bα ∈ Bα for each α, will serve as a basis for the box topology on
∏

α∈J Xα. The collection
of all sets of the same form, where Bα ∈ Bα for finitely many indices α and Bα = Xα for all the
remaining indices, will serve as a basis for the product topology

∏
α∈J Xα.

Proof. Given any x ∈
∏

α∈J Xα and
∏

α∈J Uα ∈ Tbox, there exists basic open sets Bα such that

xα ∈ Bα ⊂ Uα, (4.10)

for each α ∈ J . So we have
x = (xα)α∈J ∈

∏
α∈J

Bα ⊂
∏
α∈J

Uα. (4.11)

Then by Recognition principle, the collection of all sets of the form∏
α∈J

Bα,

where Bα ∈ Bα for each α, is a basis for the box topology on
∏

α∈J Xα.
The proof for product topology is analogous. ■

Theorem 4.6
Let Aα be a subspace of Xα, for each α ∈ J . Then

∏
α∈J Aα is a subspace of

∏
α∈J Xα if both

products are given the box topology, or if both products are given the product topology.

Proof. Suppose Bα is a basis for the topology on Xα. We consider the case of box topology first. By
Lemma 1.16 and Theorem 4.5, a basis for the subspace topology on the set

∏
α∈J Aα is

Bsubspace =
{(∏

α∈J

Bα

)
∩
(∏

α∈J

Aα

) ∣∣ Bα ∈ Bα

}

=
{∏

α∈J

(Bα ∩ Aα)
∣∣ Bα ∈ Bα

}
. (4.12)

The collection {Bα ∩ Aα |Bα ∈ Bα} is a basis for the subspace Aα, by Lemma 1.16. By Theorem 4.5,
a basis for the box topology on

∏
α∈J Aα is

Bbox,
∏

α
Aα

=
{∏

α∈J

(Bα ∩ Aα)
∣∣ Bα ∈ Bα

}
, (4.13)

which coincides with the subspace topology basis. So
∏

α∈J Aα is a subspace of
∏

α∈J Xα if both
products are given the box topology.
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Now we consider the case where both
∏

α∈J Aα and
∏

α∈J Xα are given product topologies. The
collection {Bα ∩ Aα |Bα ∈ Bα} is a basis for the subspace Aα, by Lemma 1.16. By Theorem 4.5, a
basis for the product topology on

∏
α∈J Aα is

Bprod,
∏

α
Aα

=
{∏

α∈J

(Bα ∩ Aα)
∣∣ Bα ∈ Bα for finitely many α, Bα = Xα for other α’s

}
. (4.14)

A basis for the subspace topology on the set
∏

α∈J Aα is

Bsubspace =
{(∏

α∈J

Bα

)
∩
(∏

α∈J

Aα

) ∣∣ Bα ∈ Bα for finitely many α, Bα = Xα for other α’s
}

=
{∏

α∈J

(Bα ∩ Aα)
∣∣ Bα ∈ Bα for finitely many α, Bα = Xα for other α’s

}
. (4.15)

Since the bases coincide, we can conclude that
∏

α∈J Aα is a subspace of
∏

α∈J Xα if both products are
given the product topology. ■

Theorem 4.7
If each space Xα is a Hausdorff space, then

∏
α∈J Xα is a Hausdorff space in both the box and

product topologies.

Proof. We shall prove it for product topology only. Since box topology is finer, i.e., it contains more
open sets than product topology, if the result is true in product topology, it’s true in box topology as
well. Take two distince points

x = (xα)α∈J , y = (yα)α∈J ∈
∏
α∈J

Xα.

Since x ̸= y, there exists some index β such that xβ ̸= yβ. Since Xβ is Hausdorff, there exist disjoint
open sets Uβ, Vβ ⊂ Xβ such that they contain xβ, yβ, respectively. Now we take open sets

U =
∏
α∈J

Uα, V =
∏
α∈J

Vα, (4.16)

where Uα = Vα = Xα for α ̸= β, and for α = β, we choose Uβ, Vβ ⊂ Xβ as above. Then U contains x
and V contains y. Furthermore,

U ∩ V =
(∏

α∈J

Uα

)
∩
(∏

α∈J

Vα

)
=
∏
α∈J

(Uα ∩ Vα) . (4.17)

This product is empty, as Uβ ∩ Vβ = ∅. So
∏

α∈J Xα is a Hausdorff space. ■

Theorem 4.8
Let {Xα} be an indexed family of spaces; let Aα ⊂ Xα for each α. If

∏
Xα is given either the

product or the box topology, then ∏
Aα =

∏
Aα.

Proof. Let x = (xα)α∈J be a point of
∏

α∈J Aα; we show that x ∈
∏

Aα. Let U =
∏

α∈J Uα be a basis
element for either the box or product topology that contains x. Since (xα)α∈J ∈

∏
α∈J Aα, xα ∈ Aα

for every α ∈ J . So we can choose a point yα ∈ Uα ∩ Aα for each α. Then

y = (yα)α∈J ∈
∏
α∈J

(Uα ∩ Aα) =
(∏

α∈J

Uα

)
∩
(∏

α∈J

Aα

)
= U ∩

(∏
α∈J

Aα

)
. (4.18)
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So we have shown that given x ∈
∏

α∈J Aα, every basis element U of
∏

α∈J Xα (be it product or box
topology) intersects

∏
α∈J Aα. So it follows that x belongs to the closure of

∏
Aα.

Conversely, suppose x = (xα)α∈J lies in the closure of
∏

α∈J Aα, in either topology. We show that
x ∈

∏
α∈J Aα, i.e. for any given index β, we have xβ ∈ Aβ. Let Vβ be an arbitrary open set of

Xβ containing xβ. Note that π−1
β (Vβ) is open in

∏
α∈J Xα in either topology. Now, π−1

β (Vβ) is a
neighborhood of x = (xα)α∈J , which lies in the closure of

∏
α∈J Aα. Therefore,(

π−1
β (Vβ)

)
∩
(∏

α∈J

Aα

)
̸= ∅. (4.19)

So we take y = (yα)α∈J from the intersection. Then yβ belongs to Vβ ∩ Aβ . So given any neighborhood
Vβ of xβ, it intersects Aβ. So it follows that xβ ∈ Aβ. ■

Theorem 4.9
Let f : A →

∏
α∈J Xα be given by the equation

f(a) = (fα(a))α∈J ,

where fα : A → Xα for each α. Let
∏

α∈J Xα have the product topology. Then the function f is
continuous if and only if each function fα is continuous.

Proof. Let πβ be the projection of the product onto its β-th factor. The function πβ is continuous,
for if Uβ is open in Xβ, the set π−1

β (Uβ) is a subbasis element for the product topology on Xα. Now
suppose that f : A →

∏
α∈J Xα is continuous. The function fβ equals the composite πβ ◦ f ; being the

composite of two continuous functions, it is continuous.
Conversely, suppose that each coordinate function fα is continuous. To prove that f is continuous, it

suffices to prove that the inverse image under f of each subbasis element is open in A, by Lemma 3.4.
A typical subbasis element for the product topology on

∏
Xα is a set of the form π−1

β (Uβ), where β is
some index and Uβ is open in Xβ. Now

f−1
(
π−1

β (Uβ)
)

= f−1
β (Uβ) ,

because fβ = πβ ◦ f . Since fβ is continuous, this set is open in A, as desired. ■

§4.3 Metric Topology Revisited
Let (X, d) be a metric space. Recall the associated metric topology Td on X.

Definition 4.4. A topological space (X, T ) is metrizable if there exists a metric d on X such
that T is the topology associated with d, i.e., T = Td.

Definition 4.5. Let (X, d) be a metric space. A subset A of X is said to be bounded if there is
some positive number M such that

d(a1, a2) < M, ∀a1, a2 ∈ A.

If A is bounded and nonempty, then the diameter of A is defined to be the number

diamA = sup{d(a1, a2) | a1, a2 ∈ A}. (8)

Remark 4.2. Boundedness of a set is not a topological property, for it depends on the metric d of the
underlying metric space (X, d). Given any metric space (X, d), one can construct a metric space (X, d̄)
on the same set X with respect to a metric d̄ relative to which every subset of X is bounded. This
metric is defined in the following theorem.
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Theorem 4.10
Let (X, d) be a metric space. Define d̄ : X × X → R by

d̄(x, y) = min{d(x, y), 1}. (9)

Then d̄ is a metric that induces the same topology as d, i.e., Td̄ = Td. The metric d̄ is called the
standard bounded metric corresponding to the metric d.

Proof. Let us first verify that the standard bounded metric is indeed a metric.

1. If d(x, y) ≥ 1, then d̄(x, y) = 1 > 0. If d(x, y) < 1, then d̄(x, y) = d(x, y) ≥ 0 (since d is a metric).
Therefore, d̄(x, y) ≥ 0, for each x, y ∈ X

2. d̄(y, x) = min{d(y, x), 1} = min{d(x, y), 1} = d̄(x, y).

3. d̄(x, y) = 0 ⇐⇒ min{d(x, y), 1} = 0 ⇐⇒ d(x, y) = 0 ⇐⇒ x = y.

4. One needs to verify that for all x, y, z ∈ X,

d̄(x, z) ≤ d̄(x, y) + d̄(y, z).

For x, y, z ∈ X, there are 2 possibilities:
(a) d(x, y) ≥ 1 or d(y, z) ≥ 1. Hence, d̄(x, y) = 1 or d̄(y, z) = 1, so that one has

d̄(x, y) + d̄(y, z) ≥ 1. (4.20)

On the other hand, from the definition of d̄,

d̄ (x, z) ≤ 1. (4.21)

So combining (4.20) and (4.21), we get

d̄(x, z) ≤ d̄(x, y) + d̄(y, z). (4.22)

(b) d(x, y) < 1 or d(y, z) < 1. In this case d̄ (x, y) = d (x, y) and d̄ (y, z) = d (y, z). Since d is a
metric,

d (x, z) ≤ d (x, y) + d (y, z) = d̄ (x, y) + d̄ (y, z) . (4.23)
Also, from the definition of d̄,

d̄ (x, z) ≤ d (x, z) . (4.24)
So combining (4.23) and (4.24), we get

d̄(x, z) ≤ d̄(x, y) + d̄(y, z). (4.25)

Next thing to see that given a metric space (X, d), the collection of ε-balls with ε < 1,

B = {Bd(x, ε) | x ∈ X, ε < 1},

is a basis for the metric topology Td on X induced by the metric d. But Bd(x, ε) = Bd̄(x, ε) for ε < 1.
Indeed, for ε < 1,

Bd̄(x, ε) = {y ∈ X | d̄(x, y) < ε}
= {y ∈ X | min{d(x, y), 1} < ε}
= {y ∈ X | d(x, y) < ε}; [since ε < 1]
= Bd(x, ε).

Hence, the basis
B′ = {Bd̄(x, ε) | x ∈ X, ε < 1},

generating the topology Td̄ on X is the same as the basis

B = {Bd(x, ε) | x ∈ X, ε < 1},

generating the topology Td on X. Therefore, the two topologies Td̄ and Td induced by the metrics d̄
and d, respectively, coincide, i.e., Td̄ = Td. ■
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§4.3.i Euclidean n-space
Let X = Rn be the set of all real n-tuples x = (x1, . . . , xn). The Euclidean metric is defined by the
Euclidean norm on Rn defined by

dEuc(x, y) = ∥x − y∥Euc =
√

(x1 − y1)2 + · · · + (xn − yn)2, (4.26)

where x = (x1, . . . , xn) and y = (y1, . . . , yn) are elements in Rn. The sup norm (also known as the
max norm) on Rn is defined as

∥x∥max = max{|x1|, . . . , |xn|}. (4.27)

The square metric on Rn is defined by

ρ(x, y) = max{|x1 − y1|, . . . , |xn − yn|} = ∥x − y∥max . (4.28)

Theorem 4.11
The Euclidean metric dEuc, the square metric ρ, and the product topology on Rn (as the product
of n copies of R each with standard topology) all define the same topology on Rn.

§4.4 Infnite Cartesian Products
For any index set J , consider the set RJ of real J-tuples x = (xα)α∈J . The elements of RJ are thought
of as functions x : J → R. For example, for the finite index set J = {1, . . . , n}, we can identify R{1,...,n}

with Rn. When J = {1, 2, . . .} = N, the set of natural numbers, we write Rω to denote the set of real
sequences x = (xn)∞

n=1. Note that the formulas

∥x∥Euc =
√

x2
1 + x2

2 + . . .

and
∥x∥max = max{|x1|, |x2|, . . .}

do not make sense for x ∈ Rω. Replacing the usual metric on R with the standard bounded metric on
it will allow one to generalize the square metric to infinite dimensions in the case of infinite Cartesian
products.

Definition 4.6 (Uniform metric on RJ). Let x = (xα)α∈J and y = (yα)α∈J be two points of RJ .
Let us define a metric ρ on RJ by

ρ(x, y) = sup
{

d̄(xα, yα) | α ∈ J
}

, (4.29)

where d̄ is the standard bounded metric on R. This is called the uniform metric on RJ , and the
topology it induces is called the uniform topology.

It is left as an exercise for the reader to verify that ρ defined by (4.29) is indeed a metric.

Theorem 4.12
The uniform topology on RJ is finer than the product topology and coarser than the box topology;
these three topologies are all different if J is infinite.

Proof. Take x = (xα)α∈J ∈ RJ . Also, take any basis element
∏

α∈J Uα (as given in Theorem 4.4)
in product topology on RJ containing x. Since uniform topology on RJ is generated by the ε-balls
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Bρ(x, ε), all we need to show is that x ∈ Bρ(x, ε) ⊂
∏

α∈J Uα for some ε > 0, to prove that the uniform
topology is finer than the product topology on RJ by the use of Lemma 1.7.

We are given the basis element
∏

α∈J Uα of product topology on RJ containing x = (xα)α∈J . Let
α1, . . . , αn be the indices for which Uαi ̸= R. And we know that for each i ∈ {1, . . . , n}, Uαi is open in
R in standard topology with xαi ∈ Uαi . Hence, there exists εi > 0 such that BEuc(xαi , εi) ⊂ Uαi for all
i ∈ {1, . . . , n}. Here,

BEuc(xαi , εi) = {z ∈ R | |xαi − z| < εi}. (4.30)

Without loss of generality, choose εi < 1 for all i ∈ {1, . . . , n}. Then observe that

Bd̄(xαi , εi) ⊂ BEuc(xαi , εi). (4.31)

Indeed, let y ∈ Bd̄(xαi , εi). Then

d̄(y, xαi) < εi =⇒ min{|xαi − y|, 1} < εi =⇒ |xαi − y| < εi =⇒ y ∈ BEuc(xαi , εi), (4.32)

proving the containment (4.31). But BEuc(xαi , εi) ⊂ Uαi . Hence, by (4.31), one has

Bd̄(xαi , εi) ⊂ Uαi ∀i ∈ {1, . . . , n}, where εi < 1, ∀i. (4.33)

Take ε = min{ε1, . . . , εn}. Then we have that

Bρ(x, ε) ⊂
∏
α∈J

Uα. (4.34)

Indeed, let z ∈ Bρ(z, ε), z = (zα)α∈J . Then, one has

ρ(x, z) < ε =⇒ sup{d̄(xα, zα) | α ∈ J} < ε =⇒ d̄(xα, zα) < ε, ∀α ∈ J (4.35)

In particular,

d̄(xαi , zαi) < ε < 1, ∀i ∈ {1, . . . , n}
=⇒ min{|xαi − zαi |, 1} < ε, ∀i

=⇒ |xαi − zαi | < εi, ∀i ∈ {1, . . . , n}
=⇒ zαi ∈ BEuc(xαi , εi) ⊂ Uαi

=⇒ zαi ∈ Uαi , ∀i ∈ {1, . . . , n}

=⇒ z = (zα)α∈J ∈
∏
α∈J

Uα

=⇒ Bρ(z, ε) ⊂
∏
α∈J

Uα.

Hence, uniform topology on RJ is finer than the product topology on it.
On the other hand, let us take a basis element Bρ(x, ε) (WLOG, ε < 1) generating the uniform

topology on RJ containing x = (xα)α∈J ∈ RJ . Observe that the following basis element for the box
topology on RJ :

U =
∏
α∈J

(
xα − ε

2 , xα + ε

2

)
, (4.36)

containing x = (xα)α∈J , is contained in Bρ(x, ε). In other words,

x ∈ U =
∏
α∈J

(
xα − ε

2 , xα + ε

2

)
⊂ Bρ(x, ε). (4.37)
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Indeed, let z = (zα)α∈J ∈ U . Then

|xα − zα| <
ε

2 < ε, ∀α ∈ J

=⇒ d(xα, zα) < ε, ∀α ∈ J

=⇒ d̄(xα, zα) < ε, ∀α ∈ J

=⇒ sup{d̄(xα, zα) | α ∈ J} ≤ ε

2 < ε

=⇒ ρ(x, z) ≤ ε

2 < ε

=⇒ z ∈ Bρ(x, ε).

Hence, given x ∈ RJ , with x ∈ Bρ(x, ε), a generic basis element from B = {Bρ(x, ε) | ε ∈ R, ε < 1}, we
have found a basis element

U =
∏
α∈J

(
xα − ε

2 , xα + ε

2

)
for the box topology on RJ satisfying x ∈ U ⊂ Bρ(x, ε). Then, by Lemma 1.7., the box topology on
RJ is finer than the uniform topology on it. ■

So we have shown that, for RJ ,

Product topology ⊂ Uniform topology ⊂ Box topology. (4.38)

The following example illustrates that the three topologies are different for Rω.

Example 4.2. Consider the functions f, g, h : R → Rω defined as follows:

f(t) = (t, 2t, 3t, . . .)
g(t) = (t, t, t, . . .)

h(t) =
(

t,
1
2 t,

1
3 t, . . .

)
.

We give R the standard topology, as usual. In the product topology for Rω, each of these functions are
continuous, since the components are continuous (Theorem 4.9). In the box topology, neither of these
functions are continuous. Consider the open set

U =
∞∏

n=1

(
− 1

n2 ,
1
n2

)
(4.39)

in the box topology. Then

f−1 (U) =
{

t ∈ R | nt ∈
(

− 1
n2 ,

1
n2

)
∀n ∈ Z+

}
=
{

t ∈ R | t ∈
(

− 1
n3 ,

1
n3

)
∀n ∈ Z+

}
= {0} .

g−1 (U) =
{

t ∈ R | t ∈
(

− 1
n2 ,

1
n2

)
∀n ∈ Z+

}
= {0} .

h−1 (U) =
{

t ∈ R | t

n
∈
(

− 1
n2 ,

1
n2

)
∀n ∈ Z+

}
=
{

t ∈ R | t ∈
(

− 1
n

,
1
n

)
∀n ∈ Z+

}
= {0} .

Although U is open, its preimage under neither of f, g, h is open in R. So neither of these functions
are continuous in the box topology. Now consider the uniform topology on Rω. We first show that f is
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not continuous in this topology. Consider the open ball Bρ (0, 1).

x = (xn)∞
n=1 ∈ Bρ (0, 1) ⇐⇒ ρ (0, x) < 1

⇐⇒ sup
n∈Z+

d̄(xn, 0) < 1

⇐⇒ sup
n∈Z+

|xn| < 1

=⇒ |xn| < 1 for all n

=⇒ x = (xn)∞
n=1 ∈ (−1, 1)ω .

Therefore,

f−1 (Bρ (0, 1)) ⊂ f−1 ((−1, 1)ω)

=
{

t ∈ R | nt ∈ (−1, 1) ∀n ∈ Z+
}

=
{

t ∈ R | t ∈
(

− 1
n

,
1
n

)
∀n ∈ Z+

}
= {0} .

So f−1 (Bρ (0, 1)) is not open in R. As a result, f is not continuous in the uniform topology on Rω.
Now we shall prove that both g and h are continuous in the uniform topology on Rω. Consider the
basis

B = {Bρ (x, ε) | x ∈ Rω, ε < 1} .

Let’s take Bρ (x, ε) ∈ B. We need to show that both g−1 (Bρ (x, ε)) and h−1 (Bρ (x, ε)) are open in R.
Consider t0 ∈ g−1 (Bρ (x, ε)). So g (t0) ∈ Bρ (x, ε), i.e. ρ (x, g (t0)) < ε. Suppose ρ (x, g (t0)) = ε0 < ε.
We claim that (

t0 − ε − ε0
2 , t0 + ε − ε0

2

)
⊂ g−1 (Bρ (x, ε)) . (4.40)

Given t ∈
(
t0 − ε−ε0

2 , t0 + ε−ε0
2
)
,

ρ (g (t) , g (t0)) = sup
n∈Z+

|gn (t) − gn (t0)| = sup
n∈Z+

|t − t0| = |t − t0| <
ε − ε0

2 . (4.41)

As a result,

ρ (x, g (t)) ≤ ρ (x, g (t0)) + ρ (g (t0) , g (t)) < ε0 + ε − ε0
2 = ε + ε0

2 < ε. (4.42)

So t ∈ g−1 (Bρ (x, ε)), and hence (4.40) holds. Given any t0 ∈ g−1 (Bρ (x, ε)), we can find such an open
interval around t0 that is contained in g−1 (Bρ (x, ε)). Therefore, g−1 (Bρ (x, ε)) is open, and hence g
is continuous.

A similar construction works for h as well. Consider t0 ∈ h−1 (Bρ (x, ε)). So h (t0) ∈ Bρ (x, ε), i.e.
ρ (x, h (t0)) < ε. Suppose ρ (x, h (t0)) = ε0 < ε. We claim that(

t0 − ε − ε0
2 , t0 + ε − ε0

2

)
⊂ h−1 (Bρ (x, ε)) . (4.43)

Given t ∈
(
t0 − ε−ε0

2 , t0 + ε−ε0
2
)
,

ρ (h (t) , h (t0)) = sup
n∈Z+

|hn (t) − hn (t0)| = sup
n∈Z+

|t − t0|
n

= |t − t0| <
ε − ε0

2 . (4.44)

As a result,

ρ (x, h (t)) ≤ ρ (x, h (t0)) + ρ (h (t0) , h (t)) < ε0 + ε − ε0
2 = ε + ε0

2 < ε. (4.45)

So t ∈ h−1 (Bρ (x, ε)), and hence (4.43) holds. Given any t0 ∈ h−1 (Bρ (x, ε)), we can find such an
open interval around t0 that is contained in h−1 (Bρ (x, ε)). Therefore, h−1 (Bρ (x, ε)) is open, and
hence h is continuous.
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Now, we compare the three topologies on Rω in light of the continuity of these functions. Suppose
F1 : (X, TX) → (Y, T1) and F2 : (X, TX) → (Y, T2) are two maps between topological, whose underlying
set-functions are the same (i.e. F1 (x) = F2 (x) for every x ∈ X). Suppose T1 and T2 are two topologies
on Y , such that T2 is finer than T1. If F2 is continuous, then so is F1, since call the open sets of T2 are
also in T1. Similarly, if F1 is not continuous, then F2 also can’t be continuous. On the other hand, if
we discover that F1 is continuous but F2 is not, this must mean that T2 contains an open set whose
preimage under F2 is not open in the topology TX of X. But by the continuity of F1, the preimages of
all the open sets of T1 are open in the topology TX of X. Since T2 is finer than T1, this means that T2
contains an open set that is not in T1. In other words, T2 is strictly finer than T1.

We have seen earlier in Theorem 4.12 that

Product topology ⊂ Uniform topology ⊂ Box topology. (4.46)

We have proved earlier that f : R → Rω is continuous in the product topology on Rω, but not
continuous in the uniform topology on Rω. Therefore, the uniform topology on Rω is strictly finer than
the product topology.

g : R → Rω and h : R → Rω are continuous in the uniform topology on Rω, but not continuous in
the box topology on Rω. Therefore, the box topology on Rω is strictly finer than the uniform topology.
Therefore, for Rω,

Product topology ⊊ Uniform topology ⊊ Box topology. (4.47)

Theorem 4.13
Let d̄ : R × R → R given by d̄(a, b) = min{|a − b|, 1} be the standard bounded metric on R. If
x = (xi)i∈N and y = (yi)i∈N are two points of Rω, define

D(x, y) = sup
{

d̄(xi, yi)
i

| i ∈ N
}

. (4.48)

Then D is a metric that induces the product topology on Rω.

Proof. That D satisfies the first two properties of a metric are trivial. Let us verify that it obeys the
triangle inequality. Note that

d̄(xi, yi)
i

≤ sup
{

d̄(xi, yi)
i

| i ∈ N
}

= D(x, y) (4.49)

Then, for x = (xi)i∈N, y = (yi)i∈N, and z = (zi)i∈N ∈ Rω, one has

d̄(xi, zi)
i

≤ d̄(xi, yi)
i

+ d̄(yi, zi)
i

≤ D(x, y) + D(y, z). (4.50)

From (4.50), it follows that

sup
{

d̄(xi, zi)
i

| i ∈ N
}

≤ D(x, y) + D(y, z)

=⇒ D(x, z) ≤ D(x, y) + D(y, z). (4.51)

So D is indeed a metric.
Let us now prove that D defined by (4.48) gives the product topology on Rω. Let us denote the

metric topology on Rω induced by the metric D with TD and the product topology on Rω by Tprod.
We need to show that TD = Tprod. Let us first prove that TD ⊂ Tprod.

For this purpose, choose x = (xi)i∈N ∈ Rω and a basis element BD(x, ε) from the basis set of ε-balls
generating the metric topology TD on Rω, where x ∈ BD(x, ε). Now, choose N ∈ N large enough such
that 1

N < ε. With N so chosen, write down the basis element V for the product topology Tprod as

V = (x1 − ε, x1 + ε) × · · · × (xN − ε, xN + ε) × R × R × · · · . (4.52)
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It is immediate that x = (xi)i∈N ∈ V . We now assert that V ⊂ BD(x, ε).
Observe the following for y = (yi)i∈N ∈ Rω, if i > N , then

1
i

≤ 1
N

. (4.53)

Also,
d̄(xi, yi) ≤ 1. (4.54)

Now, (4.53) and (4.54) together imply
d̄(xi, yi)

i
≤ 1

N
. (4.55)

Now,

D(x, y) = sup
{

d̄(xi, yi)
i

| i ∈ N
}

≤ max
{

d̄(x1, y1)
1 ,

d̄(x2, y2)
2 , . . . ,

d̄(xN , yN )
N

,
1
N

}
. (4.56)

Now, choose y = (yi)i∈N ∈ V . From (4.52), one sees that

d̄(x1, y1) ≤ d(x1, y1) < ε,

d̄(x2, y2)
2 ≤ d(x2, y2)

2 <
ε

2 < ε

...
d̄(xN , yN )

2 ≤ d(xN , yN )
N

<
ε

N
< ε.

(4.57)

Besides, we have chosen 1
N < ε. So we have

max
{

d̄(x1, y1)
1 ,

d̄(x2, y2)
2 , . . . ,

d̄(xN , yN )
N

,
1
N

}
< ε. (4.58)

Combining (4.56) and (4.58), we get

D(x, y) < ε =⇒ y ∈ BD (x, ε) . (4.59)

So given any x ∈ Rω, and a basis element BD (x, ε) of TD containing x, there exists a basis element V
of Tprod,

y ∈ V ⊂ BD (x, ε) . (4.60)

Therefore, by Lemma 1.7,
TD ⊂ Tprod. (4.61)

Now, let us prove that Tprod ⊂ TD. For this purpose, consider a basis element

U =
∏
i∈N

Ui, (4.62)

generating Tprod on Rω. Here, Ui is open in R for i = α1, α2, . . . , αn and Ui = R, for i ∈ N\{α1, . . . , αn}.
Given x = (xi)i∈N ∈ Rω, choose a basis element U as given in (4.62) satisfying x ∈ U , so that xi ∈ Ui,
for each i ∈ N. In particular, xi ∈ Ui for all i ∈ {α1, . . . , αn}, with Ui being open in R, for each
i ∈ {α1, . . . , αn}. Now choose an interval

(xi − εi, xi + εi) ⊂ Ui, (4.63)

for each i ∈ {α1, . . . , αn}. WLOG, choose εi < 1. Then define

ε = min
{

εi

i
| i = α1, . . . , αn

}
. (4.64)
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We claim that
x ∈ BD(x, ε) ⊂ U. (4.65)

Let y = (yi)i∈N ∈ BD(x, ε). Then D(x, y) < ε. Therefore, from the definition of D, one obtains,

d̄(xi, yi)
i

≤ D(x, y) < ε, ∀i ∈ {α1, . . . , αn}. (4.66)

Now, from the definition of ε in (4.64), one obtains

ε ≤ εi

i
, ∀i ∈ {α1, . . . , αn}. (4.67)

Combine (4.66) with (4.67) to obtain

d̄(xi, yi)
i

≤ D(x, y) < ε ≤ εi

i
. (4.68)

So we have, for every i ∈ {α1, . . . , αn},
d̄(xi, yi) < εi. (4.69)

Since we assumed WLOG that εi < 1, we have

d̄(xi, yi) < εi < 1. (4.70)

In other words,
d(xi, yi) < εi. (4.71)

So we have, for i ∈ {α1, . . . , αn},
yi ∈ (xi − εi, xi + εi) ⊂ Ui. (4.72)

For other i’s, Ui = R, so obviously yi ∈ Ui. Therefore, given y = (yi)i∈N ∈ BD(x, ε), yi ∈ Ui. So we
have

x ∈ BD(x, ε) ⊂ U. (4.73)

So given any x ∈ Rω, and a basis element U of Tprod containing x, there exists a basis element BD(x, ε)
of TD,

x ∈ BD(x, ε) ⊂ U. (4.74)

Therefore, by Lemma 1.7,
Tprod ⊂ TD. (4.75)

So TD = Tprod. ■

Remark 4.3. Theorem 4.11 and Theorem 4.13, imply that both Rn and Rω equipped with product
topology are metrizable. Certain countability axiom and separation axiom as pointed out by Urysohn
will render metrizability to to topological space X. It turns out that RJ endowed with the product
topology is only metrizable if J is countable.
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§5.1 Quotient Maps

Definition 5.1 (Quotient map). Let X and Y be topological spaces. Also let p : X → Y be a
surjective map. The map p is said to be a quotient map provided u ⊂ Y open if and only if
p−1(u) ⊂ X is open.

An immediate consequence of this definition is if p : X → Y is a surjective continuous map that is either
open map or a closed map, then p is a quotient map. Suppose p : X → Y is a surjective continuous
map that is open. Let U ⊂ Y be open. Then p−1(U) ⊂ X is open by continuity of p. Now, suppose
p−1(U) is open for some U ⊂ Y . Then p(p−1(U)) is open in Y by openness of p. But from surjectivity
of p, one has p(p−1(U)) = U . And hence U is open. In other words p is a quotient map. By elementary
set theoric argument, one shows that the ‘closed map’ part of the above consequence holds.

Definition 5.2 (Saturated subset). We say that a subset V ⊂ X is saturated with respect to the
function f : X → Y if f(x) ∈ f(V ) =⇒ x ∈ V .

Or in other words x ∈ f−1(f(V )) = {x ∈ X | f(x) ∈ f(V )} implies x ∈ V , which is equivalent to
claiming that f−1(f(V )) ⊂ V . Since V ⊂ f−1(f(V )) always holds, V ⊂ X is saturated with respect to
the function f : X → Y if

V = f−1(f(V )). (5.1)

Equivalently, one can state that a subset V ⊂ X is saturated with respect to the function f : X → Y
if any point lying outside V cannot have it’s image under f to be contained in f(V ), i.e, x /∈ V =⇒
f(x) /∈ f(V ).

Lemma 5.1
Let X and Y be topological spaces. Let p : X → Y be a surjective map. Then p is a quotient
map if and only if p maps saturated open sets of X (or equivalently, saturated closed sets of X)
to open sets of Y (or equivalently, closed sets of Y ) and p is continuous.

Proof. (⇒) Suppose that V ⊂ X is open and saturated with respect to the quotient map p : X → Y .
Hence,

V = p−1(p(V )). (5.2)

Hence, p−1(p(V )) ⊂ X is open. Since, p is a quotient map by hypothesis, one has p(V ) ⊂ Y is open.
Also, p : X → Y being quotient map can easily seen to be continuous.

(⇐) Suppose p : X → Y is a surjective continuous map that takes saturated open sets of X to
open sets of Y . We need to show that p is a quotient map.

Let U ⊂ Y be open. Then p−1(U) ⊂ X is open by continuity of p. On the other hand, let us assume
that p−1(U) is open for some U ∈ Y . First, observe that p−1(U) is saturated with respect to p. Since
p(p−1(U)) = U as p is surjective,

p−1(U) = p−1(p(p−1(U))). (5.3)

Now (5.3) tells us that p−1(U) is saturated with respect to p. We therefore see that p−1(U) ⊂ X is
saturated open. Therefore, using the hypothesis, one concludes that p(p−1(U)) = U is open in Y . This
proves that p is a quotient map. ■
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Example 5.1 (Saturated subsets and Quotient map). Let X = [0, 1]∪ [2, 3] and Y = [0, 2] be subspaces
of R. Consider the map p : X → Y defined by,

p(x) =
{

x if x ∈ [0, 1],
x − 1 if x ∈ [2, 3].

X

Y

1 2

3

p can be seen to be surjective, continuous and closed. Therefore, it is a quotient map. However, it is
not an open map. Indeed, observe that [0, 1] is open in X since,

[0, 1] =
(

−1
2 ,

3
2

)
∩ X.

where, (−1
2 , 3

2) is open in R. But p([0, 1]) = [0, 1], is not open in Y .

Now let A = [0, 1) ∪ [2, 3] be the subspace of X. Denote by q : A → Y the restriction of p to
A, i.e, q = p

∣∣
A

.

X

Y

1 2

3

The map q, being a restriction of the continuous map p is also continuous. Also, q is easily seen to be
surjective. But q is not a quotient map. Indeed, [2, 3] ⊂ A is open and

q−1(q([2, 3])) = q−1([1, 2]) = [2, 3],

implies that [2, 3] ⊂ A is saturated with respect to q. But q([2, 3]) = [1, 2] ⊂ Y is not open. Also, note
that [2, 3] ⊂ X is not saturated with respect to p. Indeed,

p−1(p([2, 3])) = p−1([1, 2]) = [2, 3] ∪ {1} ≠ [2, 3]. (5.4)

Example 5.2. Let π1 : R2 → R be the projection map onto the first coordinate. Then π1(x, y) = x is
easily seen to be a surjective and it is continuous by Lemma 4.1. Also, see that π1 is an open on a
generic basis element of the form U × V , with U, V open in R (in standard topology), for the product
topology R2. Indeed, π1(U × V ) = U is open in R. Hence, π1 is a open map.

Let C = {(x, y) ∈ R2 | xy = 1}. C can be seen to be a closed subset of R2 with the help of the
continuous function f : R2 → R defined by f(x, y) = xy. Here {1} ⊂ R is closed. Hence, C = f−1({1})
is closed in R2.

BEuc(0, 1)

x

y
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But f(C) = R \ {0} is not closed in R. Hence, π1 is surjective continuous map that is open and hence
a quotient map. But π1 is not a closed map.

Now choose A ⊂ R2 with A = C ∪ {(0, 0)}. A = R2 \ {(0, 0)}. Then define q : A → R to be the
restriction of π1 to A, i.e, q = π1|A.

q is surjective and continuous. But q is not a quotient map. See that, {(0, 0)} ⊂ A is open in the
subspace topology it inherits from R2. Indeed, {(0, 0)} = Beuc((0, 0), 1) ∩ A.
Also,

q−1(q({(0, 0)})) = q−1({0}) = {(0, 0)} (5.5)

implies that {(0, 0)} ⊂ A is saturated with respect to q. But q({(0, 0)}) = {0} ⊂ R is not open. Then
by Lemma 5.1, q is not a quotient map.

In Example 5.4 we shall see an example of a quotient map which is neither open nor closed.

§5.2 Quotient Topology

Definition 5.3 (Quotient topology). Let (X, TX) be a topological space and A is a set. If p : X → A
is a surjective map, then there exists exactly one topology on A with respect to which p is a
quotient map. This topology on A is called the quotient topology on A induced by p. We
denote this topology on A by TQ. One therefore writes

U ∈ TQ ⇐⇒ p−1(U) ∈ TX . (5.6)

Let us first verify it’s existence. In other words, we verify that TQ defined above is indeed a topology
on A. Indeed, A,∅ ∈ TQ since p−1(A) = X ∈ TX and p−1(∅) = ∅ ∈ TX .

Now, suppose that {Uα}α∈J is a family of elements in TQ. Hence, one has p−1(Uα) ∈ TX for all
α ∈ J . Since, TX is a topology on X, one has⋃

α∈J

p−1 (Uα) ∈ TX . (5.7)

But from elementary set theory, one has

⋃
α∈J

p−1(Uα) = p−1
(⋃

α∈J

Uα

)
. (5.8)

One therefore obtains, p−1 (
⋃

α∈J Uα) ∈ TX leading to
⋃

α∈J Uα ∈ TQ.
Now, let {Ui}n

i=1 be a finite collection of elements in TQ. Then, p−1(Ui) ∈ TX for all i = 1, 2, . . . , n.
Since TX is a topology on X, one has

n⋂
i=1

p−1(Ui) ∈ TX . (5.9)

But from elementary set theory, one has

n⋂
i=1

p−1(Ui) = p−1
(

n⋂
i=1

Ui

)
. (5.10)

One therefore obtains, p−1 (
⋂n

i=1 Ui) ∈ TX leading to
⋂n

i=1 Ui ∈ TQ. (5.8) and (5.10) together imply
that TQ is a topology on A.

Let us now see that TQ is the only topology on A such that p : (X, TX) → (A, TQ) is a quotient
map. Suppose that TA is another topology on A such that p : (X, TX) → (A, TA) is a quotient map.
We will show that TA = TQ.
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Since p : (X, TX) → (A, TA) is a quotient map, we have that U ∈ TA ⇐⇒ p−1(U) ∈ TX . Again,
since p : (X, TX) → (A, TQ) is a quotient map, we have that U ∈ TQ ⇐⇒ p−1(U) ∈ TX . Therefore,
for a subset U ⊂ A,

U ∈ TA ⇐⇒ p−1(U) ∈ TX ⇐⇒ U ∈ TQ. (5.11)

Therefore, TA = TQ, proving the uniqueness of TQ.

Example 5.3. Let p : R → A where A = {a, b, c} be defined by,

p(x) =


a if x > 0,

b if x < 0,

c if x = 0.

The quotient topology TQ on A is given by

TQ = {∅, {a}, {b}, {a, b}, A}.

Indeed, p−1(∅) = ∅, p−1({a}) = (0, ∞), p−1({b}) = (−∞, 0), p−1({a, b}) = (−∞, 0)∪ (0, ∞) p−1(A) =
R are all open in R. In fact, there are no other subset u ∈ A such that p−1(u) is open in the standard
topology on R.

Definition 5.4 (Quotient space). Let X be a topological space, and X∗ be a partition of X into
disjoint subsets whose union is X. Let π : X → X∗ be the surjective map that sends each x ∈ X
to the element (a subset of X) containing it. The set X∗ is called the quotient set. In the quotient
topology induced by the surjective map π : X → X∗, the set X∗ becomes a topological space
called a quotient space of X.

We can see that elements of X∗ are subsets of X. We can impose an equivalence relation on X with
respect to which each subset of X, being an element of X∗, becomes an equivalence class. In other
words, all elements of X belonging to the same subset of X that is an element of X∗, are declared
equivalent under this proposed equivalence relation.

Definition 5.5 (Final Topology). Let {Xα}α∈J be a J-indexed family of topological spaces and A
be a set. Now, let {fα}α∈J be a J-indexed family of functions fα : Xα → A. The final topology
on A is the finest topology TF on it such that fα : Xα → A becomes a continuous function, for all
α ∈ J . We say that the final topology on A is induced by the family of functions {fα}α∈J .

Lemma 5.2
Let (X, TX) be a topological space. Consider the surjective map π : X → X∗ as constructed in the
definition of quotient space. Now, there is a final topology on X∗ induced by a single surjective
map π. By definition of final topology, it is the finest topology on X∗ that makes the surjective
function π : X → X∗ continuous. Let us denote this final topology on X∗ by TF. On the other
hand, there is the quotient topology on X∗ that we denote by TQ. Then, TF = TQ.

Proof. TF is the finest topology such that π : X → X∗ is continuous. We know that π : (X, TX) →
(X∗, TQ) continuous. Therefore, TQ ⊂ TF.

Since π : (X, TX) → (X∗, TF) is continuous, given any U ∈ TF, π−1 (U) ∈ TX . By the definition of
TQ,

V ∈ TQ ⇐⇒ π−1 (V ) ∈ TX . (5.12)

Since π−1 (U) ∈ TX , we have U ∈ TQ. As a result, TF ⊂ TQ. ■
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Theorem 5.3
Let p : X → Y be a quotient map. Also, let A be a subspace of X that is saturated with respect
to p. Now, let q : A → p(A) be the map obtained by restricting p to A. Then the following hold:

1. If A is either open or closed in X, then q is a quotient map.

2. If p is either an open or a closed map, then q is a quotient map.

Proof. Step 1. We first verify the following 2 equations:

q−1(V ) = p−1(V ), if V ⊂ p(A). (5.13)

p(U ∩ A) = p(U) ∩ p(A), if U ⊂ X. (5.14)

To check the first equation, note that V ⊂ p(A) and A is saturated with respect to p. Since, the
preimage operation respects inclusion, one has

p−1(v) ⊂ p−1(p(A)) = A. (5.15)

Now,

p−1(V ) = {x ∈ X | p(x) ∈ V } ⊂ A. (5.16)
q−1(V ) = {x ∈ A | q(x) ∈ V }. (5.17)

(5.15) and (5.16) tells us that
p−1(V ) = {x ∈ A | p(x) ∈ V }. (5.18)

Since p(x) = q(x) for all x ∈ A, from (5.17) and (5.18), one has p−1(V ) = q−1(V ).
For the second equation (5.14), one notes that the following holds using elementary set theory

p(U ∩ A) ⊂ p(U) ∩ p(A). (5.19)

for the function p : X → Y and U , A being subsets of X. Now, let us show that p(U)∩p(A) ⊂ p(U ∩A).
Suppose y ∈ p(U) ∩ p(A). Then there exists u ∈ U and a ∈ A such that,

y = p(a) = p(u). (5.20)

From (5.20), one finds that p(u) ∈ p(A). Hence, u ∈ A. But u ∈ U . Therefore,

u ∈ U ∩ A. (5.21)

One, therefore obtains using (5.20) and (5.21), that

y = p(u) with u ∈ U ∩ A. (5.22)

Hence, y ∈ p(u ∩ A). Therefore, one concludes that,

p(u) ∩ p(A) ⊂ p(u ∩ A). (5.23)

Now, (5.23) together with (5.19) implies that p(u) ∩ p(A) = p(u ∩ A).

Step 2: Now suppose that A ⊂ X is open or p : X → Y is an open map. Also, suppose that
q−1(V ) ⊂ A is open for some V ⊂ p(A). We need to show that V ⊂ p(A) is open.

Suppose first the case where A ⊂ X is open. Also, q−1(V ) ⊂ A is open by hypothesis. Hence,
q−1(V ) ⊂ X is open by Lemma 1.18. Now, since V ⊂ p(A), one has by (5.13), q−1(V ) = p−1(v).
Therefore, one has p−1(V ) ⊂ X is open. Since p : X → Y is a quotient map, one has, V ⊂ Y is open.

Since V ⊂ p(A) ⊂ Y one has, V is open in p(A) in the subspace topology it inherits from Y . Indeed,
V = V ∩ p(A).
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We proved that q−1(V ) ⊂ A open implies V ⊂ p(A) is open. The other direction follows from the fact
that q : A → p(A) being a restriction of the continuous map p : X → Y is also continuous. Therefore,
q is a quotient map.

Now suppose p : X → Y is open. Since V ⊂ p(A) holds, by (5.13), one has q−1(V ) = p−1(V ). By
hypothesis, q−1(V ) ⊂ A is open. Hence, p−1(V ) ⊂ A is open. By the definition of subspace topology,
there exists U ⊂ X open such that

p−1(V ) = U ∩ A. (5.24)

Since, p : X → Y is a quotient map, it is surjective. Hence,

p(p−1(V )) = V. (5.25)

Combining (5.24) and (5.25), one has

V = p(U ∩ A) = p(U) ∩ p(A). (5.26)

Since U ⊂ X is open, p(U) ⊂ Y is open. From the definition of subspace topology, it then follows from
(5.26) that V ⊂ p(A) is open.

Step 3: The proof for the case when A ⊂ X is closed or p : X → Y is closed can be done ex-
actly in the same way as step 2. ■

Example 5.4. Let A be a subset of R2 defined by

A =
{

(x, y) ∈ R2 | x ≥ 0 or y = 0 (or both)
}

Let π1 : R2 → R be the projection on the first coordinate. Let q : A → R be the restriction of π1, i.e.
q = π1

∣∣
A

. Then q is a quotient map. But it is neither open, nor closed.
π1 is an open map, so by Theorem 5.3, q = π1

∣∣
A

is a quotient map. It is not an open map, since the
image of the open set (R × (0, ∞)) ∩ A is not open. Indeed,

(R × (0, ∞)) ∩ A =
{

(x, y) ∈ R2 | x ≥ 0
}

. (5.27)

So its image under p is [0, ∞), which is not open in R. q is not a closed map either, for the image of
the closed set {(x, y) | xy = 1, x > 0} is (0, ∞) is not closed in R.

Lemma 5.4
Composition of quotient maps is also a quotient map.

Proof. Let p : X → Y and q : Y → Z be quotient maps. We need to show that q ◦ p : X → Z is a
quotient map.

Let U ⊂ Z be open. Since q : Y → Z is a quotient map, U ⊂ Z is open if and only if q−1(U) ⊂ Y is
open. Since p : X → Y is a quotient map, q−1(u) ⊂ Y is open if and only if p−1(q−1(U)) ⊂ X is open.
But

p−1(q−1(U)) = (q ◦ p)−1(U). (5.28)

Hence, the quotientness of q : Y → Z and p : X → Y amount to the fact that U ⊂ Z is open if and
only if (q ◦ p)−1(U) ⊂ X is open. This then implies that q ◦ p : X → Z is a quotient map. ■

Theorem 5.5
Let p : X → Y be a quotient map. Let Z be a topological space, and g : X → Z be a map that is
constant on each set p−1({y}), for all y ∈ Y . Then g induces a map f : Y → Z such that f ◦ p = g.
The induced map f is continuous if and only if g is continuous and f is a quotient map if and
only if g is a quotient map.
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Proof. By hypothesis, for every y ∈ Y , g(p−1({y})) is a singleton. Define f : Y → Z by

f(y) = g(p−1({y})). (5.29)

Take any x ∈ X, then (5.29) tells us that f(p(x)) = g(x), i.e, f ◦ p = g. In other words, the following
diagram commutes:

X

Y Z

p
g

f

Now, p : X → Y , being a quotient map, is continuous. If f is continuous, g = f ◦ p is continuous. Now,
suppose g is continuous. Therefore, if V ⊂ Z is open, then g−1(V ) ⊂ X is open. Since, f ◦ p = g, one
has

g−1(V ) = (f ◦ p)−1(V ) = p−1(f−1(V )) ⊂ X is open. (5.30)

Since p is a quotient map, from (5.30), one concludes that f−1(v) ⊂ Y is open. Hence, f is continuous.

Now, suppose that f is a quotient map. Since p is a quotient map, by Lemma 5.4, f ◦ p = g is
a quotient map. Now, let g be a quotient map. Then g is surjective. Then surjectivity of g implies
that, for every z ∈ Z, there exists x ∈ X such that, g(x) = z. Then, from (5.29), one has

f(p(x)) = g(x) = z (5.31)

(5.31) tells us that for every z ∈ Z, there exists y ∈ Y , namely y = p(x) such that f(y) = z. Hence, f
is surjective. Now, since g is continuous (as g is a quotient map by hypothesis), f is continuous by the
previous statement of this theorem. Therefore, V ⊂ Z open implies f−1(V ) ⊂ Y is open. For the other
direction, assume f−1(V ) ⊂ Y is open for some v ⊂ Z. As p is a quotient map, p−1(f−1(V )) ⊂ X is
open. But

p−1(f−1(v)) = (f ◦ p)−1(v) = g−1(v). (5.32)

One therefore obtains that g−1(V ) ⊂ X is open. But g is a quotient map. Hence V ⊂ Z is open. This
proves that, f is a quotient map, as required. ■

Corollary 5.6
Let g : X → Z be a sujective continuous map. Let X∗ be the following collection of subsets of X:

X∗ = {g−1({z}) | z ∈ Z}.

Give X∗ the quotient topology.

(a) The map g induces a bijective continuous map f : X∗ → Z, which is a homeomorphism if
and only if g is a quotient map.

X

X∗ Z

p
g

f

(b) If Z is hausdorff, so is X∗.
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Proof. (a) Observe that, X∗ is the partition of X into disjoint subsets where elements of each subsets
is mapped to a single element of Z by g. In other words, X∗ is set of equivalence class of X under
the equivalence relation x ∼ y if and only if g(x) = g(y). Therefore, g induces a map f : X∗ → Z
by bijective map f(g−1({z})) = z.
Let p be the quotient map from X to X∗ that sends each x ∈ X to it’s equivalence class Now, g
is a map that is constant on each set p−1({y}). Hence, by Theorem 5.5, f is the induced map
from X∗ to Z by g such that f ◦ p = g, which is continuous if and only if g is continuous. But g is
continuous by hypothesis. Hence, f is continuous.
Suppose f is a homeomorphism. Then f is also a quotient map. Since p is a quotient map and g is
composition of quotient maps, g is a quotient map by Lemma 5.4. Conversly suppose that g is a
quotient map. Then f is a quotient map by theorem (5.5). But since f is bijective, f is therefore a
homeomorphism.

(b) Suppose that Z is hausdorff. Let x, y ∈ X∗ be distinct. We need to show that there exists disjoint
open neighbourhoods of x and y in X∗. Since f is bijective, f(x) ̸= f(y). Hence, there exists open
sets U, V ⊂ Z such that f(x) ∈ U , f(y) ∈ V with U ∩V = ∅. Hence, f being a continuous, f−1(U),
f−1(V ) are distinct and open in X∗. Therefore, f−1(U), f−1(V ) are disjoint open neighbourhoods
of x and y in X∗. Thus, X∗ is hausdorff.

■

Example 5.5. Let X be the closed unit ball in R2:

X = {(x, y) ∈ R2 | x2 + y2 ≤ 1}

And let X∗ be the partition of X into 2 classes:

1. All the one point sets {(x, y)} with x2 + y2 < 1.

2. The set S1 = {(x, y) ∈ R2 | x2 + y2 = 1}.

Give X∗ the quotient topology. Then X∗ is homeomorphic to the subspace of R3 called the unit
2-sphere defined by:

S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}.

Let g : X → S2 be the map defined as follows: given (x, y) ∈ X = B(0, 1), we express (x, y) =
(r cos θ, r sin θ) for 0 ≤ r ≤ 1 and 0 ≤ θ < 2π. Then we define

g (x, y) = g (r cos θ, r sin θ) = (sin (πr) cos θ, sin (πr) sin θ, − cos (πr)). (5.33)

Then g is surjective. g is also continuous, since we can write g as follows:

g (x, y) =


 sin

(
π
√

x2+y2
)

x
√

x2+y2
,

sin
(

π
√

x2+y2
)

y
√

x2+y2
, − cos

(
π
√

x2 + y2
) if (x, y) ̸= (0, 0),

(0, 0, −1) if (x, y) = (0, 0);
(5.34)

and each components are continuous on X \ {(0, 0)}. For (x, y) = (0, 0), observe that∣∣∣∣∣∣
sin
(
π
√

x2 + y2
)

x√
x2 + y2

∣∣∣∣∣∣ ≤
∣∣∣∣sin(π

√
x2 + y2

)∣∣∣∣ , (5.35)

which approaches 0 as (x, y) → (0, 0). Similarly,∣∣∣∣∣∣
sin
(
π
√

x2 + y2
)

y√
x2 + y2

∣∣∣∣∣∣ ≤
∣∣∣∣sin(π

√
x2 + y2

)∣∣∣∣ . (5.36)
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Therefore,
lim

(x,y)→(0,0)
g (x, y) = (0, 0, −1), (5.37)

so g is continuous at (0, 0) as well. So g is continuous on the whole X.
Now we see that X∗ is precisely the collection

{
g−1 ({z}) | z ∈ S2}. From g (r1 cos θ1, r1 sin θ1) =

g (r2 cos θ2, r2 sin θ2), comparing the third component, we get

cos πr1 = cos πr2 =⇒ r1 = r2, (5.38)

since cos is injective on [0, π]. Comparing the first and second components, we get that

either sin πr1 = sin πr2 = 0 or cos θ1 = cos θ2, sin θ1 = sin θ2. (5.39)

The first option means that r1 = r2 = 0 or r1 = r2 = 1. But there is only one point with r = 0. The
second option means that θ1 = θ2. Therefore, g is injective on B(0, 1), and all the points on S1 gets
mapped to (0, 0, 1). Therefore, the collection

{
g−1 ({z}) | z ∈ S2

}
=

 ⋃
x2+y2<1

{(x, y)}

 ∪
{

(x, y) ∈ X | x2 + y2 = 1
}

= X∗. (5.40)

Now, one can show that g is a quotient map (in fact, it follows readily from Theorem 7.5 once we develop
the notion of compact spaces). Then by Corollary 5.6, g induces a homeomorphism f : X∗ → S2.

U

V

p

p(U)

p(V )

Figure 5.1: Open sets in X that are p-saturated

Example 5.6. Let X be the rectangle [0, 1] × [0, 1]. Define a partition of X into the following classes:

1. all singletons {(x, y)} with x, y ∈ (0, 1);

2. all sets of the form {(x, 0) , (x, 1)} with x ∈ (0, 1);

3. all sets of the form {(0, y) , (1, y)} with y ∈ (0, 1);

4. {(0, 0), (1, 0), (0, 1), (1, 1)}.

p

T 2
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Now, use Corollary 5.6. X = [0, 1] × [0, 1]. Take the continuous map g : X → R3 defined by,

g(s, t) = ([b + a cos 2πt] cos 2πs, [b + a cos 2πt] sin 2πs, a sin 2πt) (5.41)

Deonte by Z, the image of X under g, i.e, Z = g(X). Then g : X → Z is a continuous surjective map
defined by (5.41). Now, check that X∗ = {g−1({z}) | z ∈ Z}, is precisely what is given by the list
above. Now, Corollary 5.6 states that there exists a bijective continuous map f : X∗ → Z such that
f ◦ p = g with p : X → X∗ being the quotient map. One can show that g is a quotient map (in fact, it
follows readily from Theorem 7.5 once we develop the notion of compact spaces). Hence, Corollary 5.6
guranatees that f is a homeomorphism. This homeomorphic image of X∗ in R3 is called the 2-torus
denoted by T 2.

U V Q W

p

p(U)

p(V )

p(Q)

p(W )

Figure 5.2: Open sets in X that are p-saturated
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6 Connectedness

§6.1 Connected spaces

Definition 6.1. Let X be a topological space. A separation of X is a pair of disjoint non-empty
open subsets U and V of X such that U ∪ V = X. A topological space X is said to be connected
if there does not exist a separation of X.

Lemma 6.1
A topological space X is connected if and only if the only subsets of X that are both open and
closed (clopen) in X are the empty set and X itself.

Proof. For if A is a nonempty proper subset of X that is both open and closed in X, then the sets
U = A and V = X − A are nonempty, open, disjoint, and their union is X. So they constitute a
separation of X.

Conversely, if U and V form a separation of X, then U is a nonempty proper subset of X, and it is
both open and closed in X, since V = X \ U is open. ■

Lemma 6.2
If Y is a subspace of X, a separation of Y is a pair of disjoint nonempty sets A and B whose
union is Y , neither of which contains a limit point of the other. The space Y is connected if there
exists no separation of Y .

Proof. We have to show that the usual definition of a pair U, V of Y (as a topological space) is
equivalent to the one stated above. Then it will follow that the space Y is connected if there exists no
separation U, V of Y in the above sense.

Suppose U, V forms a separation of Y . Then U is both open and closed in Y . If we denote the
closure of U in X by U , then the closure of U in Y , denoted by ClY (U), is as follows:

ClY (U) = U ∩ Y. (6.1)

Since U ⊂ Y is closed, ClY (U) = U , so that one has

U = U ∩ Y. (6.2)

Since the pair U, V forms a separation of Y , U ∩ V = ∅. So

∅ = U ∩ V = U ∩ Y ∩ V = U ∩ V. (6.3)

Suppose U ′ is the set of limit points of U in X. Then U = U ∪ U ′. As a result,

U ∩ V = ∅ =⇒
(
U ∪ U ′) ∩ V = ∅

=⇒ (U ∩ V ) ∪
(
U ′ ∩ V

)
= ∅

=⇒ ∅ ∪
(
U ′ ∩ V

)
= ∅

=⇒ U ′ ∩ V = ∅.

In other words, V doesn’t contain any limit point of U in X. Similarly, U also doesn’t contain ant of
the limit points of V in X.
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Conversely, suppose that U and V are disjoint nonempty sets such that U ∪ V = Y and neither of U
and V contains a limit point of the other. By hypothesis, one has:

U ′ ∩ V = U ∩ V ′ = ∅. (6.4)

Also by hypothesis, U ∩ V = ∅. Since U = U ∪ U ′, and we have U ′ ∩ V = U ∩ V = ∅, we get

U ∩ V =
(
U ∪ U ′) ∩ V = (U ∩ V ) ∪

(
U ′ ∩ V

)
= ∅. (6.5)

Similarly,
V ∩ U = ∅. (6.6)

Since U ∩ U = U and U ∩ V = ∅,

U ∩ Y = U ∩ (U ∪ V ) =
(
U ∩ U

)
∪
(
U ∩ V

)
= U. (6.7)

Similarly,
V ∩ Y = V. (6.8)

So both U and V are closed sets in Y . Also, they are complement of each other in Y . So they are
both open in Y . Hence, U, V are disjoint nonempty open subsets of Y such that U ∪ V = Y , i.e. the
pair U, V forms a separation of Y . ■

Example 6.1. Let X = {a, b} be a 2-point set. Now take the topological space (X, Tindis) by equipping
the 2-point set with indiscrete topology so that the only open sets in X are just ∅ and X itself. In
particular, none of the sets {a} or {b} is open in X with indiscrete topology so that there exists no
separation of X. Hence, X equipped with indiscrete topology is connected.

Example 6.2. Let X be the subspace [−1, 0) ∪ (0, 1] of R equipped with standard topology. The
sets [−1, 0) and (0, 1] are disjoint and nonempty, and their union is Y . Also, note that [−1, 0) has a
limit point in common with the set (0, 1], namely 0. But 0 belongs to none of these sets. In particular,
we see that none of the sets [−1, 0) and (0, 1] contains a limit point of the other in R. Hence, by
Lemma 6.1, the sets [−1, 0) and (0, 1] form a separation of Y , and hence Y ⊂ R is not connected.

Example 6.3. Let X be the subspace [−1, 1] of R equipped with standard topology. The sets [−1, 0]
and (0, 1] are disjoint and nonempty. Also, [−1, 0] ∪ (0, 1] = [−1, 1]. Yet the pair [−1, 0] and (0, 1]
doesn’t form a separation of X. This is because [−1, 0] contains 0 which is a limit point of (0, 1]. In
fact, it will be shown later that there exists no separation of the space [−1, 1].

Example 6.4. Let Q be the subspace of R equipped with subspace topology it inherits from R (with
respect to standard topology). Then Q is not connected. In fact, a set consisting of 2 rational points
p, q with p < q is not connected. Here, Y = {p, q} is a subspace of R. Then the pair {p}, {q} forms a
separation of Y . Indeed, {p} and {q} are both open in Y in the subspace topology it inherits from R:
choose a ∈ R \ Q that lies between p and q, i.e., p < a < q. Then write

{p} = Y ∩ (−∞, a), {q} = Y ∩ (a, ∞).

Indeed, {p} ∩ {q} = ∅ and Y = {p} ∪ {q}. This proves that Y is not connected. Only singletons
containing one rational point are connected.

Lemma 6.3
If the sets C and D form a separation of X, and if Y is a connected subspace of X, then Y lies
entirely within either C or D.
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Proof. Since C and D are both open in X, from the definition of subspace topology one has C ∩ Y
and D ∩ Y to be open in Y . Since C ∩ Y ⊂ C and D ∩ Y ⊂ D and C ∩ D = ∅, one must have

(C ∩ Y ) ∩ (D ∩ Y ) = ∅. (6.9)

Also,
(C ∩ Y ) ∪ (D ∩ Y ) = (C ∪ D) ∩ Y = X ∩ Y = Y. (6.10)

Hence, the pair C ∩ Y, D ∩ Y will form a separation of Y if they are both nonempty. But by hypothesis,
Y is connected. Hence, one of C ∩ Y and D ∩ Y is empty. In other words, Y must entirely be contained
in C or in D. ■

Theorem 6.4
The union of a collection of connected subspaces of X having a point in common is connected.

Proof. Let {Aα}α∈J be a collection of connected subspaces of a topological space X. Also, let
p ∈

⋂
α∈J Aα. We want to show that

⋃
α∈J Aα is connected. We proceed by contradiction. Let

Y =
⋃

α∈J Aα. Let C, D be a separation of Y , i.e.,

C ∪ D = Y =
⋃

α∈J

Aα, with C ∩ D = ∅. (6.11)

Now, since p ∈
⋂

α∈J Aα, it follows that p will be in one of the sets. Suppose p ∈ C. Since Aα is
connected for each α ∈ J , it must lie entirely in either C or D. Since p ∈ Aα and p ∈ C, Aα cannot be
contained in D. Therefore, one has Aα ⊂ C for all α ∈ J . As a result,

C ∪ D = Y =
⋃

α∈J

Aα ⊂ C. (6.12)

C ∪ D ⊂ C implies that D ⊂ C, contradicting the fact that the pair C, D being a separation for Y
(and hence they have to be disjoint). ■

Theorem 6.5
Let A be a connected subspace of X. If A ⊂ B ⊂ A, then B is also connected. In other words, if
B is formed by adjoining to the connected subspace A some or all of its limit points, then B is
connected.

Proof. Let A be connected and let A ⊂ B ⊂ A. Suppose the pair C, D is a separation for B, so that
B = C ∪ D. By Lemma 6.3, A being a connected subspace of B entirely lies in C or in D; suppose
that A ⊂ C.

Then we have A ⊂ C. We know from Lemma 6.1 that C ∩ D = ∅. Then we have B ⊂ A ⊂ C. Since
B ⊂ C,

B ∩ D ⊂ C ∩ D = ∅. (6.13)

So B and D are disjoint. But from B = C ∪ D, one has D ⊂ B, so that

B ∩ D = D. (6.14)

(6.13) and (6.14) together imply that D = ∅. This is a contradiction, as C, D is a separation for B,
and hence both C and D are nonempty, disjoint, open sets. ■

Theorem 6.6
The image of a connected space under a continuous map is connected.
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Proof. Let f : X → Y be a continuous map; let X be connected. We wish to prove the image space
Z = f(X) is connected. Observe that it is sufficient to prove that the image of a connected space
under a continuous surjective map is connected. Because if one proves so, then one can easily construct
a continuous surjective map g from the given continuous map f : X → Y by restricting the codomain
of f to its range, i.e. a continuous surjective map g : X → Z = f(X), to prove that Z = f(X) = g(X)
is connected. We will, therefore, consider the case of a continuous surjective map g : X → Z.

Suppose that the pair A, B is a separation of Z, i.e. Z = A ∪ B and A ∩ B = ∅. Now, we have

X = g−1 (Z) = g−1 (A ∪ B) = g−1(A) ∪ g−1(B). (6.15)

A and B are open in Z, so g−1(A) and g−1(B) are open in X by the continuity of g. Furthermore,

g−1(A) ∩ g−1(B) = g−1 (A ∩ B) = g−1 (∅) = ∅. (6.16)

(6.15) and (6.16) together imply that the pair g−1(A), g−1(B) is a separation of X, contradicting the
connectedness of X. Therefore, Z must be connected. ■

Corollary 6.7
A topological space X is connected if and only if every continuous map f : X → {0, 1} is constant,
where {0, 1} is equipped with the discrete topology.

Proof. If f is connected, then so is f(X). But the only connected subspaces of {0, 1} are singletons.
So f must be constant.

Suppose there is a non-constant continuous function f : X → {0, 1}. Then f−1 ({0}) and f−1 ({1})
are nonempty, disjoint, open subsets of X, and their union is X. So X is not connected. ■

Theorem 6.8
A finite cartesian product of connected spaces is connected.

Proof. As usual, we shall prove it for the product of two connected spaces. The theorem then follows
by induction. Suppose X and Y are connected. We shall prove that X × Y is connected in the product
topology.

Each set of the form {x} × Y and X × {y} is connected, since they are homeomorphic to Y and X,
respectively. Let f : X × Y → {0, 1} be continuous. Choose (x1, y1) , (x2, y2) ∈ X × Y .

f1 = f
∣∣
{x1}×Y

and f2 = f
∣∣
X×{y2} (6.17)

are continuous as they are restrictions of a continuous map. Since the domains of f1 and f2 are
connected, they are constant maps. So we have

f (x1, y1) = f1 (x1, y1)
= f1 (x1, y2)
= f (x1, y2)
= f2 (x1, y2)
= f2 (x2, y2)
= f (x2, y2) . (6.18)

Therefore, f is constant. Since every continuous map f : X × Y → {0, 1} is constant, X × Y is
connected by Corollary 6.7. ■
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Example 6.5. Consider the countably infinite cartesian product Rω in the box topology. Let us
denote by A the subset of Rω consisting of all bounded sequences of real numbers. Also, denote by
B the subset of Rω consisting of all unbounded sequences of real numbers. It’s easy to verify that
A ∪ B = Rω and A ∩ B = ∅.

We shall now prove that both A and B are open in the box topology. Note that, a sequence
x = (xi)i∈N is bounded if there exists some M ∈ N such that

|xn| < M, (6.19)

for every n ∈ N. On the other hand, a sequence x = (xi)i∈N is unbounded if given any M ∈ N, there
exists some n0 ∈ N (possibly depeding on M), such that

|xn0 | > M. (6.20)

We now show that A is open in Rω in the box topology. Take a = (ai)i∈N ∈ A. We need to find a basic
open set U such that

a ∈ U ⊂ A.

We choose
U =

∏
i∈N

(ai − 1, ai + 1) . (6.21)

Clearly, a ∈ U . Now take x = (xi)i∈N ∈ A. Since a = (ai)i∈N is bounded, there exists some M ∈ N
such that |an| < M for every n ∈ N. Since xn ∈ (an − 1, an + 1), |xn − an| < 1. Therefore,

|xn| ≤ |xn − an| + |an| < 1 + M. (6.22)

Therefore, (xi)i∈N is a bounded sequence, i.e. x ∈ A. So U ⊂ A. Therefore, A is open.
Now we show that B is open in Rω in the box topology. Take b = (bi)i∈N ∈ B. We need to find a

basic open set V such that
b ∈ V ⊂ B.

We choose
V =

∏
i∈N

(bi − 1, bi + 1) . (6.23)

Clearly, b ∈ V . Now, take y = (yi)i∈N ∈ V . Since (bi)i∈N is unbounded, given any M ∈ N, there exists
i0 ∈ N such that

|bi0 | > M + 1.

Then, yi0 ∈ (bi0 − 1, bi0 + 1), so |yi0 − bi0 | < 1. As a result,

|yi0 | ≥ |bi0 | − |bi0 − yi0 | > M + 1 − 1 = M. (6.24)

Hence, given any M ∈ N, there exists i0 ∈ N such that

|yi0 | > M.

Therefore, (yi)i∈N is an unbounded sequence, i.e. y ∈ B. So V ⊂ B. Therefore, B is open.
Since both A and B are open, and they are disjoint, the pair A, B is a separation for Rω. Therefore,

Rω is not connected in the box topology. This illustrates that an infinite product of connected spaces
in the box topology need not be connected (the fact that R is connected is to be proved in the next
section).

Example 6.6. In this example consider Rω in the product topology. Assuming that R is connected,
we show that Rω is connected. Let R̃n ⊂ Rω be a subspace of Rω (in product topology) consisting of
all sequences x = (x1, x2, . . .) such that xi = 0 for i > n. In other words,

R̃n = {(x1, x2, . . . , xn, 0, 0, 0, . . .) | xi ∈ R} . (6.25)
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The topological space R̃n is clearly seen to be homeomorphic to Rn being connected by Theorem 6.8.
Let us denote by R∞, the union of all the R̃n’s, i.e.,

R∞ =
∞⋃

n=1
R̃n. (6.26)

One immediately sees that (0, 0, . . .) ∈ R̃n for each n. Therefore, by Theorem 6.4, R∞ is connected.
We will now show that the closure of R∞ (in product topology) is all of Rω. Then it will follow from
Theorem 6.5 that Rω is connected.

Let a = (ai)i∈N = (a1, a2, . . .) be a point of Rω. Also, let

U =
∏
i∈N

Ui (6.27)

be a basis element for the product topology in Rω that contains a. We now show that a ∈ R∞, the
closure of R∞ in Rω in product topology. By Theorem 2.8, all we need to show is that U ∩ R∞ ̸= ∅.
From the definition of product topology on an infinite fold cartesian product of topological spaces, we
know that there exists N ∈ N such that Ui = R for every i > N . Hence, the point

z = (a1, . . . , aN , 0, 0, . . .) ∈ U =
∏
i∈N

Ui, (6.28)

as ai ∈ Ui for i ∈ {1, . . . , N}, and 0 ∈ Ui = R for i > N . Thus z ∈ U ∩ R∞, proving that U ∩ R∞ is
nonempty. Therefore, the closure of R∞ is Rω, and hence Rω is connected.

Theorem 6.9
If {Xα}α∈J is a collection of connected spaces, then their product∏

α∈J

Xα

is connected in the product topology.

Proof. If J is finite, then we are done by Theorem 6.8. Now suppose J is infinite. Fix a = (aα)α∈J ∈∏
α∈J Xα. Given any finite set F ⊂ J , we define the following subset of

∏
α∈J Xα:

XF =
{

x = (xα)α∈J ∈
∏
α∈J

Xα | xα = aα for α /∈ F

}
. (6.29)

So we can write XF as follows:

XF =
∏
α∈J

Uα, where Uα =
{

Xα if α ∈ F,

{aα} if α /∈ F.
(6.30)

Then XF is homeomorphic to the space ∏
α∈F

Xα. (6.31)

Since this is a finite product of connected spaces, by Theorem 6.8, XF is connected. Now, for any
finite set F ⊂ J , a ∈ XF . Therefore, the union

X :=
⋃

F ⊂J, F finite
XF (6.32)

is connected by Theorem 6.4. Now we claim that X =
∏

α∈J Xα. Then it will follow from Theorem 6.5
that

∏
α∈J Xα is connected.
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Choose any b = (bα)α∈J ∈
∏

α∈J Xα, and any basic open set

U =
∏
α∈J

Uα (6.33)

containing b. We now show that b ∈ X, the closure of X in
∏

α∈J Xα in product topology. By
Theorem 2.8, all we need to show is that U ∩ X ̸= ∅.

By the definition of product topology, Uα = Xα for all but finitely many α’s. Let F be the finite
subset of J , consisting of all α ∈ J for which Uα ≠ Xα. Then we take the point c = (cα)α∈J defined by

cα =
{

bα if α ∈ F,

aα if α /∈ F.
(6.34)

By the definition of XF given in (6.30), c ∈ XF . Furthermore, for α ∈ F , cα = bα ∈ Uα, and for α /∈ F ,
cα = aα ∈ Xα = Uα. Therefore, c ∈ U as well. Hence,

c ∈ U ∩ X, (6.35)

i.e. U ∩ X is nonempty. Therefore, the closure of X is
∏

α∈J Xα, and hence
∏

α∈J Xα is connected. ■

§6.2 Connected subspaces of R

We now use the existence of least upper bound for nonempty bounded subsets of R to prove that R is
connected.

Definition 6.2 (Convex sets). A subset C ⊂ R is convex if for every pair of points a, b ∈ C, the
closed interval [a, b] is also contained in C.

Example 6.7. Q ⊂ R is not convex. Also, (−∞, 0) ∪ (0, ∞) is not convex in R as one can choose
−1 < 1 in R with [−1, 1] ⊈ (−∞, 0) ∪ (0, ∞).

The convex subsets of R are ∅, (a, b), [a, b), (a, b], [a, b], (−∞, b), (−∞, b], (a, ∞), [a, ∞), and R
itself.

Theorem 6.10
Each convex subset C ⊂ R is connected.

Proof. Suppose the contrary and U, V is a separation of C. Choose a ∈ U and b ∈ V . We may assume
a < b. Let A = [a, b] ∩ U and B = [a, b] ∩ V . Then one finds that A, B is a separation of [a, b] with
a ∈ A and b ∈ B. Indeed,

A ∩ B = [a, b] ∩ (U ∩ V ) = ∅, (6.36)
since U ∩ V = ∅; and

A ∪ B = [a, b] ∪ (U ∩ V ) = [a, b] ∩ C = [a, b] , (6.37)
since C is convex, so [a, b] ⊂ C. Now, A = [a, b] ∩ U is open in [a, b] in the subspace topology, since U
is open in C. Also, since A is bounded, it has a least upper bound. Let c = sup A be the least upper
bound of the elements of A. Now, since A ⊂ [a, b], b is an upper bound. As c is the least upper bound,

c ≤ b. (6.38)

Also, from A ⊂ [a, b], every element of A is greater than or equal to a. Since c is an upper bound of
the elements of A,

a ≤ c. (6.39)
Therefore,

a ≤ c ≤ b. (6.40)
If c = a,then A = {a}, contradicting the fact that A is open in [a, b]. If c = b, then we use the following
property of real line:
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Supremum of a subset of R can be made arbitrarily close to a point in the subset.

It means that given a positive real number ε > 0, there exists x ∈ A s.t. c − x < ε. Now, A is a closed
subset of [a, b] and [a, b] is closed in R so that A is closed in R. Therefore, sup A ∈ A or in other words,
b ∈ A which contradicts the fact that A ∩ B = ∅, since b ∈ B.

One, therefore, is left with the only possibility a < c < b. Note that c being the least upper bound
for A, is also an upper bound for the elements of A. Hence, A ∩ (c, b] = ∅. As a result,

(c, b] ⊂ B. (6.41)

Hence, there are points y ∈ (c, b] ⊂ B arbitrarily close to c, i.e., given ε > 0, there exists y ∈ (c, b] ⊂ B
s.t. y − c < ε. In other words, c is in the closure of B. But B is closed in [a, b] closed in R so that B is
closed in R so that c ∈ B leading to c ∈ B. As above, c = sup A ∈ A. So we have A ∩ B ̸= ∅, which
leads to a contradiction! Therefore, C is connected. ■

Remark 6.1. In Example 6.7, we saw that R is a convex subset of itself. Hence, by Theorem 6.10, R
is connected.

Remark 6.2. The converse of Theorem 6.10 also holds. In other words, the only connected subsets
of R are convex sets. Suppose X ⊂ R is not convex. Choose a, b ∈ X such that [a, b] ̸⊂ X. So there
exists c ∈ (a, b) and c ̸∈ X. Then choose U = X ∩ (−∞, c) and V = X ∩ (c, ∞). Clearly, U and V are
open in X, and they are disjoint. Also,

U ∪ V = (X ∩ (−∞, c)) ∪ (X ∩ (c, ∞)) = X, (6.42)

since X ⊂ R \ {c}. U and V are also nonempty, since a ∈ U and b ∈ V . So U, V is a separation for X,
proving that non-convex subsets of R are not connected.

Theorem 6.11 (Intermediate value theorem)
Let f : X → R be a continuous map with X being a connected topological space. If a, b ∈ X, and
r lies between f(a) and f(b), then there exists a point c ∈ X with f(c) = r.

Proof. Since X is connected, so is f (X), by Theorem 6.6. By Theorem 6.10 and Remark 6.2, connected
is equivalent to convex for R. Therefore, f (X) is convex. Given a, b ∈ X, WLOG, assume f (a) < f (b).
Since f (X) is convex, we have that

[f (a) , f (b)] ⊂ f (X) . (6.43)

Therefore, given any r that lies between f(a) and f(b), r ∈ f (X), i.e. r = f(c) for some c ∈ X. ■

§6.3 Path connected spaces

Definition 6.3 (Path). Given points x, y ∈ X, a path in X from x to y is a continuous map
f : [a, b] → X with f(a) = x and f(b) = y, where [a, b] ⊂ R in the subspace topology.

Definition 6.4 (Path connected space). A space X is said to be path connected if every pair of
points of X can be joined by a path in X.

Lemma 6.12
A path connected space is connected.
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Proof. Let X be path connected, and suppose that the pair U, V is a separation of X. Choose points
x ∈ U and y ∈ V , and a path f : [a, b] → X from x to y, i.e., f(a) = x and f(b) = y. Then one
immediately finds that f−1(U) and f−1(V ) form a separation for [a, b]. Indeed, from [a, b] = f−1(X)
follows,

[a, b] = f−1 (X) = f−1(U ∪ V ) = f−1(U) ∪ f−1(V ). (6.44)

Also,
f−1(U) ∩ f−1(V ) = f−1(U ∩ V ) = f−1(∅) = ∅. (6.45)

From the continuity of f : [a, b] → X, it follows that both f−1(U) and f−1(V ) are open in [a, b] as U
and V are both open in X, forming a separation for X. Hence, we indeed verify that f−1(U), f−1(V )
forms a separation for [a, b], contradicting the fact that [a, b] is a connected subspace of R. ■

Lemma 6.13
The continuous image of a path connected space is path connected.

Proof. Let g : X → Y be a continuous map where X is path connected. We need to show that
g(X) ⊂ Y is path connected. Any two points in g(X) can be written g(x) and g(y) with x, y ∈ X.

Since X is path connected, there exists a path f : [a, b] → X in X joining x to y, i.e.,

f(a) = x and f(b) = y. (6.46)

Then it is easy to see that g ◦ f : [a, b] → Y is a continuous map as a composition of 2 continuous maps
and

g(f(a)) = g(x) and g(f(b)) = g(y). (6.47)

In other words, g ◦ f : [a, b] → Y is a path in g(X) joining g(x) to g(y). We, therefore, have shown that
any two points g(x) and g(y) in g(X) can be joined by a path g ◦ f : [a, b] → Y , proving that g(X) is
path connected. ■

Definition 6.5. A subset C of a real vector space V is convex if for each pair of points x, y ∈ C,
the straight line path f : [0, 1] → V defined by

f(t) = (1 − t)x + ty

takes all its values in C, i.e. f (t) ∈ C for every t ∈ [0, 1].

Example 6.8. Any convex subset of Rn is path connected. For example, the n-ball

Bn = {x ∈ Rn | ∥x∥ ≤ 1} (6.48)

is convex for n ≥ 1, hence path connected.

Example 6.9. The punctured Euclidean space Rn \ {0} is path connected for n ≥ 2. For n = 1, the
space R \ {0} is not connected, and hence not path connected (by the contrapositive of Lemma 6.12).
For n = 0, the space R0 \ {0} is empty, and hence is path connected, vacuously.

Example 6.10. The (n − 1)-dimensional unit sphere

Sn−1 = {x ∈ Rn | ∥x∥ = 1} (6.49)

is the continuous image of g : Rn \ {0} → Sn−1 given by

g(x) = x
∥x∥

(6.50)

and hence is path connected by Lemma 6.13, for n ≥ 2. For n = 1, the 0-sphere S0 = {1, −1} is not
connected, and hence not path connected. For n = 0, the (−1)-sphere S−1 is empty, and hence is path
connected vacuously.
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Example 6.11. The converse of Lemma 6.12) does not hold, in general. Let

S =
{(

x, sin
(1

x

))
| 0 < x ≤ 1

}
⊂ R2. (6.51)

It is the image of the connected space (0, 1] under the continuous map g (t) =
(
t, sin

(
1
t

))
, and hence

is connected by Theorem 6.6.

p = (0, yp)

U

It oscillates extremely rapidly as t approaches 0. Any point of the vertical interval V = {0} × [−1, 1]
is a limit point of S. Let us denote the closure of S in R2 by S, so that

S = S ∪ V. (6.52)

The space S is called the topologist’s sine curve. Since S is connected, it’s closure S is connected
by Theorem 6.5. Now we show that S is not path connected. Assume the contrary.

Choose two points p, q ∈ S, with p ∈ V and q ∈ S. Since S is path connected, there is a path
f : [a, b] → S such that f (a) = p ∈ V and f (b) = q ∈ S. Now, consider the set

A = {t ∈ [a, b] | f (t) ∈ V } = f−1 (V ) . (6.53)

This is closed in A, since V is closed in S (V is closed in R2, so V = S ∩ V is closed in S). Hence,
sup A ∈ A. Suppose

c = sup A. (6.54)

Now consider the subset [c, b] ⊂ [a, b], and the restriction f
∣∣
[c,b]. Since c ∈ A, f (c) ∈ V . The restriction

of a continuous function is continuous, so f
∣∣
[c,b] is a path from f (c) ∈ V to f (b) = q ∈ S.

Note that, f(t) ∈ S for every t ∈ (c, b]. Let us now reparametrize the path f
∣∣
[c,b] with help of the

following homeomorphism

α : [0, 1] → [c, b] ,

t 7→ (1 − t)c + tb.
(6.55)

α maps 0 to c and 1 to b. Then we form the composition

f̃ = f
∣∣
[c,b] ◦ α : [0, 1] → S. (6.56)

Then f̃ (0) ∈ V , and f̃ (t) ∈ S for t ∈ (0, 1]. Now write

f̃ (t) = (x (t) , y (t)) . (6.57)

f̃ (0) ∈ V = {0} × [−1, 1], so x (0) = 0. Also since f̃ (t) ∈ S for t ∈ (0, 1], we have x (t) > 0.
We now show that there is a sequence of points tn ∈ (0, 1] with 0 < tn < 1

n , and y (tn) = (−1)n.
0 < tn < 1

n implies that
lim

n→∞
tn = 0. (6.58)
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But y (tn) = (−1)n does not converge, contradicting the continuity of y. Let us now construct the
sequence tn.

For each n ∈ N, we choose a point v with

v >
1

x
(

1
n

) and sin v = (−1)n . (6.59)

Let u = 1
v , so clearly u > 0 = x(0). Also,

u = 1
v

< x

( 1
n

)
. (6.60)

u lies between x (0) and x
(

1
n

)
. Therefore, by the Intermediate value theorem and the continuity of x,

there exists some tn ∈
(
0, 1

n

)
such that

x (tn) = u. (6.61)

For tn ∈
(
0, 1

n

)
, we have

y (tn) = sin
( 1

x (tn)

)
= sin

(1
u

)
= sin v = (−1)n . (6.62)

Therefore, we have constructed the sequence (tn)n∈N which converges to 0, but (y (tn))n∈N does not
converge, contradicting the continuity of y. So S can’t be path connected.

§6.4 Components and path components

Definition 6.6 (Components). An equivalence relation ∼ can be defined for points in a topological
space X in the following way: for a pair of points x, y ∈ X, x ∼ y holds if there is a connected
subspace C of X with x, y ∈ C. The equivalence classes under ∼ are called the components of
the topological space X.

One can easily check that ∼ defined above is indeed an equivalence relation. Symmetry and reflexivity
of the relation are obvious. Transitivity follows by noting that if A is a connected subspace containing
x and y, and if B is a connected subspace containing y and z, then A ∪ B is a subspace containing x
and z that is connected because A and B have the point y in common.

Theorem 6.14
The components of X are connected disjoint subspaces of X whose union is X, such that each
nonempty connected subspace of X intersects only one of them.

Proof. Since the components are the equivalence classes under the equivalence relation ∼ defined above,
they must be disjoint nonempty subsets of X whose union is X. If A ⊂ X is connected and intersects
2 components C1 and C2 of X at x and y, respectively, then both x and y belong to A with A being
connected. Then by the definition of the equivalence relation stated above, x ∼ y. Since x ∈ C1 and
y ∈ C2, one must have C1 = C2.

Now, we show that each component C is connected. Suppose x0 ∈ C. Since C is an equivalence class
under the defined equivalence relation, for any x ∈ C, one must have x ∼ x0. Now, by the definition of
the equivalence relation, there exists a connected subset Ax ⊂ X with x, x0 ∈ Ax. Since x ∈ Ax ∩ C,
Ax intersects the component C of X. Then by the result proved in the first paragraph, Ax ⊂ C. One,
therefore, obtains

C =
⋃

x∈C

Ax. (6.63)

All the Ax’s in have the point x0 in common and each Ax ⊂ C is connected. Hence, by Theorem 6.4,
C is connected. ■
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Definition 6.7. We define another equivalence relation ∼p on the space X by defining x ∼p y if
there is a path in X from x to y. The equivalence classes are called path components of X.

Lemma 6.15
∼p defined above is an equivalence relation.

Proof. First observe that if there exists a path f : [a, b] → X from x to y whose domain is the interval
[a, b], then there is a path g : [c, d] → X from x to y whose domain is [c, d]. Indeed, the closed interval
[c, d] is homeomorphic to the closed interval [a, b] with F : [c, d] → [a, b] defined by

F (t) =
(

a − b

c − d

)
(t − d) + b (6.64)

being the underlying homeomorphism. Then g : [c, d] → X is given by g = f ◦ F . Then

g(c) = f ◦ F (c) = f(a) = x, and
g(d) = f ◦ F (d) = f(b) = y,

(6.65)

that is, g is the required path from x to y.
There is always a path from the point x to itself on X given by the constant continuous function

f : [a, b] → X defined by
f(t) = x, ∀ t ∈ [a, b]. (6.66)

Hence, one has x ∼p x.
Now suppose x ∼p y in X. Then there is a path f : [0, 1] → X from x to y in X. Then the reverse

path g : [0, 1] → X defined by g(t) = f(1 − t) is a path from y to x, proving that y ∼p x.
Finally, transitivity is proved as follows: Suppose x ∼p y and y ∼p z. Then there is a path

f : [0, 1] → X from x to y in X and a path g : [1, 2] → X from y to z in X, so that f(1) = g(1) = y.
Since f and g agree on {y} = [0, 1] ∩ [1, 2], one can paste the continuous functions f and g with f to
construct a continuous function h : [0, 2] → X, i.e.,

h (t) =
{

f (t) if t ∈ [0, 1],
g (t) if t ∈ [1, 2].

(6.67)

h is continuous by Pasting Lemma. Hence the continuous function h : [0, 2] → X yields h(0) = f(0) = x
and h(2) = g(2) = y. In other words, h is the required path from x to z yielding the fact that
x ∼p z. ■

Theorem 6.16
The path components of X are path connected disjoint subspaces of X whose union is X, such
that each nonempty path connected subspace of X intersects only one of them.

Proof. Since the path components are the equivalence classes under the equivalence relation ∼p defined
above, they must be disjoint nonempty subsets of X whose union is X. If A ⊂ X is path connected
and intersects 2 path components P1 and P2 of X at x and y, respectively, then both x and y belong
to A with A being path connected. Then by the definition of the equivalence relation stated above,
x ∼p y. Since x ∈ P1 and y ∈ P2, one must have P1 = P2.

Now, we show that each path component P is path connected. Fix x0 ∈ P . Then for any x ∈ P ,
there is a path in X from x to x0. Note that this entire path lies in P . So there is a path in P from x
to x0. Now choose any x, y ∈ P . There is a path in P from x to x0; and there is a path in P from y to
x0. Joining them (after reversing the second path), we get a path in P from x to y. Therefore, P is
path connected. ■
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Observe that each component C of X satisfies C = C, and hence is closed in X. Indeed if C ̸= C, then
there is a point x ∈ C that doesn’t belong to C. In other words, x ̸∼ y for all y ∈ C, i.e., there is no
connected subset K of X that contains both x and y. But x and y both belong to C and C, being the
closure of the connected subset C of X, is also connected. A contradiction! Hence C = C. And hence
each component C of X is closed in X.

If X has finitely many components and C is one of them, then C is also open in X. This is so
because the complement of C can be seen to be a finite union of closed sets and hence a closed set.
One can say even less about the path components of X, for they do not need to be either open or
closed in X, as can be verified from Example 6.13 below.

Example 6.12. Consider the topological space Q of rational numbers as the subspace of R, equipped
with standard topology. Each component of Q consists of a single point. None of the components of Q
are open in Q. Note that Q has got infinitely many components.

Example 6.13. The topologist’s sine curve S that we studied in Example 6.11 is a topological space
that has a single component (since it is connected), but it has 2 path components. One path component
is the curve S and the other is the vertical interval V = {0} × [−1, 1]. It was seen before that V is
closed in S so that S is open in S. Also, S is not closed in S so that V is not open in S.

§6.5 Local connectedness

Definition 6.8. A space X is locally connected at a point x ∈ X if for each neighborhood U of x
(an open set U ⊂ X containing x), there is a connected neighborhood V of x contained in U , i.e.

x ∈ V ⊂ U ⊂ X.

One says that a topological space X is locally connected if it is locally connected at each of its
points.

Definition 6.9. A space X is locally path connected at a point x ∈ X if for each neighborhood U
of x, there is a path connected neighborhood V of x contained in U , i.e.

x ∈ V ⊂ U ⊂ X.

One says that a topological space X is locally path connected if it is locally path connected at
each of its points.

Example 6.14. R, with respect to standard topology, is locally connected and locally path connected
as each neighborhood U of x ∈ R contains a connected and path connected basis neighborhood
(x − ε, x + ε) for some ε > 0.

Example 6.15. Any open subset Ω ⊂ Rn (in which the Euclidean metric, the square metric, and the
product topology as product of n copies of R with respect to standard topology–all yield the same
topology) is locally connected and locally path connected, since each neighborhood U of any point
x ∈ Ω contains a connected and path connected basis neighborhood BEuc(x, ε), for some ε > 0.

Example 6.16. Topologist’s sine curve S is connected. But it is neither locally connected nor locally
path connected. Choose a point p ∈ V = {0} × [−1, 1] ∈ S. Now take an open ball B of radius ε > 0
centered at p ∈ V , which is denoted by U = BEuc(p, ε).
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p = (0, yp)

U

Now, consider the neighborhood of p ∈ V in S in subspace topology U ∩ S. This neighborhood of S
doesn’t contain a connected neighborhood containing p. Also, U ∩S doesn’t contain any path connected
neighborhood containing p. Hence, S is neither locally connected nor is it locally path connected.

Example 6.17. The subspace [−1, 0) ∪ (0, 1] of R is not connected, but it is locally connected.

Theorem 6.17
A topological space X is locally connected if and only if for every open set U ⊂ X, each component
of U is open in X.

Proof. Suppose first that X is locally connected. Let U ⊂ X be open. Also let C be a component of
U and x ∈ C. Then x ∈ U . Since X is locally connected, there exists a connected neighborhood V of
x such that V ⊂ U , i.e., one has x ∈ V ⊂ U . If there is a point y ∈ V that is not in C, then that point
will not be in the same equivalence class to which x belongs, violating the connectedness of V . Hence,
V has to be entirely contained in C. This proves that C is open in X.

Conversely, suppose that components of open sets of X are open in X. Given a point x ∈ X and a
neighborhood U of x, let C be the component of U containing x. Then C is open by hypothesis. Also,
C, being a component, is connected. Therefore, given a point x ∈ X and a neighborhood U of x, there
is a connected neighborhood C (namely the component of U containing x) of x such that C ⊂ U . This
proves that X is locally connected. ■

Theorem 6.18
A topological space X is locally path connected if and only if for every open set U ⊂ X, each path
component of U is open in X.

Proof. Suppose first that X is locally path connected. Let U ⊂ X be open. Also let P be a path
component of U and x ∈ P . Then x ∈ U . Since X is locally path connected, there exists a path
connected neighborhood V of x such that V ⊂ U , i.e., one has x ∈ V ⊂ U . If there is a point y ∈ V
that is not in P , then that point will not be in the same equivalence class to which x belongs, violating
the path connectedness of V . Hence, V has to be entirely contained in P . This proves that P is open
in X.

Conversely, suppose that path components of open sets of X are open in X. Given a point x ∈ X
and a neighborhood U of x, let P be the path component of U containing x. Then P is open by
hypothesis. Also, P , being a component, is path connected. Therefore, given a point x ∈ X and a
neighborhood U of x, there is a connected neighborhood P (namely the component of P containing x)
of x such that P ⊂ U . This proves that X is locally path connected. ■

Theorem 6.19
If X is a topological space, each path component of X lies in a component of X. If X is locally
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path connected, then the components and the path components of X are the same.

Proof. An equivalence class can’t be empty, so that each path component P is nonempty. Let x ∈ P .
Now take the component C of X containing x. Now the path component P is also connected. If there
is a point in P that is not in C, then that point and x can’t be in the same equivalence class which
violates the connectedness of P . Therefore, P ⊂ C.

We now want to show that if X is locally path connected, then P = C. Now suppose that P ⊊ C,
i.e., P is properly contained in C. Let Q be the union of all the path components, each of which is
different from P and intersects C. Each of these path components lies entirely in C using the argument
used in the beginning of the proof. One, therefore, has

C = P ∪ Q. (6.68)

Since X is locally path connected and X is open in itself, the path component P of X is open in X.
Also, since each path component of the union Q is open in X by the same reasoning, the union Q is
also open in X. Also, it is immediate that they are nonempty as equivalence classes are nonempty.
Hence (6.68) reflects the fact that the pair P, Q constitutes a separation of C, contradicting the fact
that C is connected. Hence, P can’t be properly contained in C. Therefore, P = C. ■
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§7.1 Open cover and subcover

Definition 7.1 (Open cover). A collection C = {Uα}α∈J of subsets of X is said to cover X if the
union of its elements is equal to X, i.e.,

X =
⋃

α∈J

Uα. (7.1)

If each element in the collection C is an open subset of X, then we say that C is an open cover.
A subcollection D ⊂ C that also covers X is called a subcover of C. If F is a subcover with

finitely many elements in it, then we call it a finite subcover of C. In other words, it means that
there is a finite subset {α1, . . . , αn} ⊂ J with F = {Uα1 , . . . , Uαn} and X = Uα1 ∪ · · · ∪ Uαn .

Definition 7.2 (Compact space). A space X is said to be compact if, for each open cover
C = {Uα}α∈J of X, there exists a finite subcover F = {Uα1 , . . . , Uαn} of C.

Example 7.1. A finite topological space X is compact as any open cover of X necessarily has finitely
many open sets in it.

Example 7.2. The real line R with respect to the standard topology is not compact since the open
cover C = {(n − 1, n + 1) | n ∈ Z} doesn’t admit a finite subcover.

Example 7.3. The real line R in the trivial (indiscrete) topology is compact. There are 2 possible
open covers: {R} and {R,∅}, both of which are finite.

Remark 7.1. When we say that the collection C of open sets is finite, we only mean that there are
finitely many open sets; we do not refer to the finiteness of the open sets involved. For example, in
Example 7.3 above, there are two open sets in the open cover {R,∅}, of which the open set R is
infinite.

Example 7.4. The subspace X = {0} ∪
{

1
n | n ∈ N

}
⊂ R with the standard topology is compact.

Given an open covering C of X, there is an open set U ∈ C with 0 ∈ U . Now U is open in X in subspace
topology that it inherits from R. In other words, U is the intersection of an open set of R containing 0
and X. Such an intersection will contain all but finitely many elements from the set

{
1
n | n ∈ N

}
. In

other words, there exists N ∈ N such that 1
n ∈ U , ∀n > N . Now, refer back to the open cover C of X.

There are open sets U1, U2, . . . , UN ∈ C with 1
n ∈ Un for n = 1, 2, . . . , N . One, therefore, immediately

finds that the collection {U1, . . . , UN , U} covers X. In other words, {U, U1, . . . , UN } is a finite subcover
of the given open cover C of X. Since the open cover C was arbitrary, one finds that X is compact.

Definition 7.3 (Open covering of a subspace). If A is a subspace of a topological space X, a
collection B of subsets of X covers A if the union of the elements of B contains A. If the elements
of the cover of the subspace A are all open sets of X, then the cover is called an open cover of
the subspace A of X.

Lemma 7.1
Let A be a subspace of X. Then A is compact if and only if each open cover of A (in the light of
the above definition) has a finite subcover.
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Proof. (⇒) Assume A is compact and let {Uα} be an open cover of A in X. This means that A ⊂
⋃
α

Uα.
Hence,

A =
(⋃

α

Uα

)
∩ A =

⋃
α

(Uα ∩ A)

Now, {Uα ∩ A}α is an open cover of A in A. Since A is compact, every open cover of A in A has a
finite subcover. Let the finite sub-cover be {Uαi ∩ A}n

i=1. Thus,

A ⊂
n⋃

i=1
Uαi

which means that {Uαi}
n
i=1 is a finite sub-cover of the open cover {Uα}α of A in X.

(⇐) Suppose every open cover of A in X has a finite subcover, and let {Vα}α be an open cover of A
in A. Then each Vα is an open set of A in subspace topology. According to the definition of subspace
topology, there is an open set Uα in S such that Vα = Uα ∩ A. Now,

A =
⋃
α

Vα =
⋃
α

(Uα ∩ A) =
(⋃

α

Uα

)
∩ A ⊂

⋃
α

Uα

Therefore, {Uα}α is an open cover of A in S. By hypothesis, there are finitely many sets {Uαi}
n
i=1 such

that A ⊂
n⋃

i=1
Uαi . Hence,

A =
(

n⋃
i=1

Uαi

)
∩ A =

n⋃
i=1

( Uαi ∩ A) =
n⋃

i=1
Vαi

So {Vαi}
n
i=1 is a finite subcover of {Vα} that covers A in A. Therefore, A is compact. ■

§7.2 Compact and Hausdorff spaces

Theorem 7.2
Every closed subset of a compact space is compact.

Proof. Let X be a compact space and A ⊂ X be closed. Let {Uα}α be an open cover of A in X. The
collection {Uα, X \ A} is an open cover of X itself. By compactness of X, there is a finite sub-cover
{Uαi , S \ F}n

i=1 of X, that is,

A ⊂ X =
(

n⋃
i=1

Uαi

)
∪ (S \ F ).

Therefore,

A ⊂
n⋃

i=1
Uαi . (7.2)

Therefore, {Uαi}
n
i=1 is a finite subcover of the open cover {Uα} of A in X. Hence, A is also compact. ■

Proposition 7.3
Every compact subset of K of a Hausdorff space X is closed.

Proof. We shall prove that X \K is open. Let’s take x ∈ X \K. We claim that there is a neighborhood
Ux of x that is disjoint from K.
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Since X is hausdorff, for each y ∈ K, we can choose disjoint open sets Uy and Vy such that Uy ∋ x
and Vy ∋ y. The collection {Vy | y ∈ K} is an open cover of K in S. Since K is compact, there exists
a finite subcover {Vyi}

n
i=1, i.e.

K ⊂
n⋃

i=1
Vyi . (7.3)

Since Uyi ∩ Vyi = ∅ for every i, we have(
n⋂

i=1
Uyi

)
∩
(

n⋃
i=1

Vyi

)
= ∅.

This gives us that

Ux ∩ K = ∅ where Ux =
n⋂

i=1
Uyi . (7.4)

Ux is the finite intersection of open sets, hence open. Also, every Uyi contains x, hence their intersection
Ux also contains x. So Ux is the desired open set that is disjoint from K, in other words x ∈ Ux ⊂ X \K.

Given any x ∈ X \ K, there exists an open set Ux satisfying x ∈ Ux ⊂ X \ K. Therefore, by
Proposition 1.6, X \ K is open. So K is closed. ■

Remark 7.2. Recall from Corollary 2.14 that finite subsets of Hausdorff spaces are closed. In this
sense, Proposition 7.3 above, compact subspaces generalize finite sets.

Example 7.5. The intervals (a, b], [a, b), and (a, b) are not closed in R with respect to standard
topology. Hence, by Proposition 7.3, they are not compact either in R in the same topology. We shall
prove in the next section that each closed interval [a, b] is compact in R with respect to the standard
topology.

Theorem 7.4
The continuous image of a compact space is compact.

Proof. Let f : X → Y be a continuous and X compact. Suppose {Uα} is an open cover of f(X) by
open subsets of Y . Since, f is continuous, the inverse images of f−1(Uα) are all open in X. Moreover,

X ⊂ f−1 (f(X)) ⊂ f−1
(⋃

α

Uα

)
=
⋃
α

f−1 (Uα) . (7.5)

So
{
f−1(U)α

}
is an open cover of X. Since X is compact, there is a finite sub-collection

{
f−1 (Uαi)

}n
i=1

such that
X =

n⋃
i=1

f−1(Uαi) = f−1
(

n⋃
i=1

Uαi

)
. (7.6)

As a result,

f (X) = f

(
f−1

(
n⋃

i=1
Uαi

))
⊂

n⋃
i=1

Uαi . (7.7)

So, given any open cover {Uα} of f(X), there is a finite subcover. So f(X) is compact. ■

Theorem 7.5
Let f : X → Y be a continuous function from a compact space X to a Hausdorff space Y . Then
the following hold:

1. If f is a closed map, i.e., it maps closed subsets of X to closed subsets of Y .

2. If f is surjective, then f is a quotient map.

3. If f is bijective, then f is a homeomorphism.
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4. If f is injective, then f is an imbedding.

Proof. 1. Let A ⊂ X be a closed subset. Since X is compact, A being closed in X is also compact.
Then by Theorem 7.4, one has f(A) being a compact subspace of Y . Since Y is Hausdorff, by
Proposition 7.3, one concludes that f(A) is closed in Y , proving that f is a closed map.

2.f : X → Y is a surjective continuous function that is closed. Hence f is a quotient map.

3. If f : X → Y is bijective, then consider the inverse function f−1 : Y → X. Then for A ⊂ X closed,
(f−1)−1(A) = f(A) is closed in Y by 1, proving that f−1 : Y → X is continuous. Hence, f : X → Y
is a homeomorphism.

4. If f : X → Y is an injective continuous function from the compact space X to the Hausdorff space
Y , then one forms a bijective continuous function g : X → f(X) by restricting the codomain of f to
the range of f . Now, f(X) being a subspace of the Hausdorff space Y is also Hausdorff. Then by 3,
g : X → f(X) is a homeomorphism. Therefore, f : X → Y is an imbedding.

■

§7.3 Product of compact spaces

Theorem 7.6
The product of finitely many compact spaces is compact.

The proof of this theorem requires the following lemma, so we shall prove it first.

Lemma 7.7 (Tube lemma)
Consider the product space X × Y , where Y is compact. Let p ∈ X. Suppose N is an open set of
X × Y containing the “slice” {p} × Y of X × Y . Then there is a neighborhood U of p in X such
that U × Y ⊂ N . The set U × Y is often called a tube about the slice {p} × Y .

Proof. For each q ∈ Y , we have {p, q} ∈ {p} × Y ⊂ N . Since N ⊂ X × Y is open in the product
topology, there is a basis element Uq × Vq ⊂ N for the product topology on X × Y , with p ∈ Up open
in X and q ∈ Vq open in Y . Now, the collection {Vq}q∈Y is an open cover of Y . By compactness of Y ,
there exists a finite subcover {Vq1 , . . . , Vqn} of the open cover {Vq}q∈Y of Y .

For instance, for qi ∈ Y , we have the point (p, qi) in the slice {p} × Y ⊂ X × Y with N ⊂ X × Y
open in the product topology. Thus, the basic element for the product topology on X × Y that is
contained in the open set N ⊂ X × Y containing (p, qi) is Uqi × Vqi .

pX

Y

{p} × Y

N
U × Y

Now, let U = Uq1 ∩ · · · ∩ Uqn . Since p ∈ Uqi and U being a finite intersection of open sets, is also
open. We claim that U × Y ⊂ N .

Suppose (x, y) ∈ U × Y . Then y ∈ Y . Since Y =
⋃n

i=1 Vqi , there exists i ∈ {1, . . . , n} such that
y ∈ Vqi . Also, x ∈ U ⊂ Uqi , so that (x, y) ∈ Uqi × Vqi ⊂ N , proving that U × Y ⊂ N holds. ■
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Remark 7.3. Note that Tube lemma doesn’t hold if Y is not compact. Suppose X = Y = R. Consider
the following open subset of R2:

N =
{

(x, y) ∈ R2 | |x| <
1

1 + y2

}
. (7.8)

x

y

N contains the y-axis, the slice {0} × R. But N doesn’t contain any tube about the y-axis.

Now we get back to the proof of Theorem 7.6.

Proof of Theorem 7.6. Let X and Y be compact spaces. Let A = {Aα}α∈J be an open covering of
X ×Y . Given p ∈ X, the slice {p}×Y is compact (since it is homeomorphic to Y ). Since A = {Aα}α∈J

is an open cover of the compact subspace {p}×Y of X ×Y , there are finitely many elements A1, . . . , Am

from the collection A = {Aα}α∈J such that

{p} × Y ⊂ A1 ∪ . . . ∪ Am =: N. (7.9)

By Tube lemma, the open set N contains a tube U × Y where U ⊂ X is open. In other words, one has

U × Y ⊂ A1 ∪ . . . ∪ Am. (7.10)

Hence, U × Y is covered by finitely many elements A1, . . . , Am.
We now vary p ∈ X. For each p ∈ X, we can choose a neighborhood Up of p such that the tube Up ×Y

is covered by finitely many elements of A = {Aα}α∈J . But the collection {Up}p∈X of neighborhoods of p
forms an open covering of X; thus, by compactness of X, there exists a finite subcovering, {U1, . . . , Uk},
covering X. Hence,

X =
k⋃

i=1
Ui, (7.11)

which implies

X × Y =
k⋃

i=1
(Ui × Y ). (7.12)

Now, each of the finite union on the right side of (7.12), namely Ui × Y , can be covered by finitely
many elements of A = {Aα}α∈J . Hence, the finite union

⋃k
i=1(Ui × Y ) = X × Y can also be covered

by finitely many elements from the collection A = {Aα}α∈J . This provides the required finite subcover.
This proves that X × Y is compact. ■

The infinite version of Theorem 7.6 holds, and it is called Tychonoff’s thoerem. We won’t prove it in
this course.
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§7.4 Finite intersection property
There is another criterion of compact sets in terms of closed sets, which we shall explore now. Let U
be a collection of open subsets of a topological space X. Let C = {X \ U | U ∈ U} be the collection of
closed complements. To say that U is a cover of X is equivalent to saying that C has empty intersection:

⋂
C∈C

C =
⋂

U∈U
(X \ U) = X \

( ⋃
U∈U

U

)
. (7.13)

So we have ⋂
C∈C

C = ∅ ⇐⇒
⋃

U∈U
U = X. (7.14)

Definition 7.4. A collection C of subsets of X is said to have the finite intersection property if
for every finite subcollection

{C1, . . . , Cn}

of C, the intersection C1 ∩ · · · ∩ Cn is nonempty.

Theorem 7.8
Let X be a topological space. Then X is compact if and only if for every collection C of closed
sets in X having the finite intersection property, the intersection

⋂
C∈C C of all the elements of C

is nonempty.

Proof. (⇒) Suppose X is compact, and a collection C of closed sets has finite intersection property, we
need to show that the whole collection has nonempty intersection. Assume for the sake of contradiction
that

⋂
C∈C

C = ∅.

Each C ∈ C is closed in X, so C = X \ U for some open U .

∅ =
⋂

C∈C
C =

⋂
X\U∈C

(X \ U) = X \

 ⋃
X\U∈C

U

 . (7.15)

So we have ⋃
X\U∈C

U = X. (7.16)

So we got an open cover of X. Since X is compact, there is a finite subcover.

X =
n⋃

i=1
Ui. (7.17)

In other words,

X \
(

n⋃
i=1

Ui

)
= ∅

=⇒
n⋂

i=1
(X \ Ui) = ∅.

X \ Ui for i = 1, . . . , n is a finite subcollection of C. But we’ve just shown that this finite subcollection
has empty intersection, contradicting finite intersection property. Therefore,

⋂
C∈C

C ̸= ∅.

(⇐) Now assume that for every collection of closed set in X with finite intersection property, the
whole collection has nonempty intersection. Assume for the sake of contradiction that X is not compact.
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Take an open cover U = {Uα}α∈J of X that has no finite subcover. Consider the collection of closed
sets C = {X \ U : U ∈ U}. Since X is not compact, no finite subcollection of U covers X.

Take finitely many closed sets X \ U1, . . . , X \ Un from the collection of closed sets C. Since no finite
subcollection of U covers X,

⋃n
i=1 Ui ̸= X. As a result,

n⋂
i=1

(X \ Ui) = X \
(

n⋃
i=1

Ui

)
̸= ∅. (7.18)

So C is a collection of closed sets with finite intersection property. Therefore, the whole collection has
nonempty intersection by hypothesis. As U covers X,

⋃
U∈U

U = X.

∅ ̸=
⋂

C∈C
C =

⋂
U∈U

(X \ U) = X \
( ⋃

U∈U
U

)
= X \ X = ∅

Contradiction! So X must be compact. ■

Theorem 7.9
Each closed interval [a, b] is compact.

Proof. Let O = {Ox | x ∈ A} be any Open Cover of [a, b]. This means [a, b] ⊂
⋃

x∈A
Ox. Now we shall

consider the set
C = {x ∈ [a, b] | [a, x] has a finite subcover from O}.

Note that C is bounded by b. Now we want to show that C is non-empty.

Claim 1: C ̸= ∅

Proof. O covers [a, b], so there exists an open set in O that contains a. Let a ∈ Oa. Since Oa is
open, there exists r > 0 such that (a − r, a + r) ⊂ Oa. Thus,[

a, a + r

2

]
⊂ (a − r, a + r) ⊂ Oa.

So
[
a, a + r

2
]

is covered by Oa, in other words
[
a, a + r

2
]

has a finite subcover. Thus
[
a, a + r

2
]

⊂ C,
our claim is proved. □

C is non-empty and has an upper bound. Therefore sup C exists. Let sup C = s.

Claim 2: s = b

Proof. Assume for the sake of contradiction that s < b. So s ∈ (a, b) and thus there exists an
open set in O that contains s. Let s ∈ Os. Since Os is open, there exists r > 0 such that
(s − r, s + r) ⊂ Os.
Since s is the supremum, s − r

2 cannot be a upper bound of C. Therefore there exists s′ ∈ C such
that s − r

2 ≤ s′ ≤ s. Now,[
s′, s + r

2

]
⊂
[
s − r

2 , s + r

2

]
⊂ (s − r, s + r) ⊂ Os.

s′ ∈ C means [a, s′] has a finite subcover Os′ . Now if we take Os′ ∪ Os, it will cover [a, s′] ∪[
s′, s + r

2
]

=
[
a, s + r

2
]
. Thus we can find a finite subcover for

[
a, s + r

2
]
, therefore s + r

2 ∈ C. But
s is the supremum, so we arrive at a contradiction. □

Now we want to show that sup C = b exists in the set C.
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Claim 3: b ∈ C.

Proof. b ∈ [a, b], so there exists an open set in O that contains b. Let b ∈ Ob. Since Ob is open,
there exists r > 0 such that (b − r, b + r) ⊂ Ob.
Since b is the supremum, b − r

2 cannot be a upper bound of C. Therefore there exists b′ ∈ C such
that b − r

2 ≤ b′ ≤ b. Now,

[b′, b] ⊂
[
b − r

2 , b

]
⊂ (b − r, b + r) ⊂ Ob.

b′ ∈ C means [a, b′] has a finite subcover Ob′ . Now if we take Ob′ ∪ Ob, it will cover [a, b′] ∪ [b′, b] =
[a, b]. Thus we can find a finite subcover for [a, b], therefore b ∈ C. □

Therefore [a, b] has a finite subcover. And this is true for every cover O of [a, b] since our choice of O
was arbitrary. Hence, for every cover we can find a subcover of [a, b]. So [a, b] is compact. ■

Example 7.6. Note that the unit circle S1 ⊂ R2 being a subspace of R with respect to the subspace
topology is Hausdorff, since R2 with the standard topology is Hausdorff. The surjective continuous
map f : [0, 1] → S1 given by

f (t) = (cos 2πt, sin 2πt) (7.19)

from the compact space [0, 1] to the Hausdorff space S1 is a quotient map by statement 2 of Theorem 7.5.
Furthermore, S1 = f ([0, 1]) is the continuous image of a compact space. So S1 is compact.

Theorem 7.10 (Heine–Borel theorem)
A subpace A of Rn is compact if and only if it in closed and bounded in the Euclidean metric
dEuc or the square metric ρ.

Proof. Since
ρ (x, y) ≤ dEuc (x, y) ≤

√
nρ (x, y) (7.20)

holds for any x, y ∈ Rn, it suffices to consider only the square metric ρ. The inequality above implies
that A ⊂ Rn is bounded under dEuc if and only if it is bounded under ρ.

(⇒) Suppose A ⊂ Rn is compact. Since Rn is Hausdorff, by Proposition 7.3, A is closed. Now
consider the collection of open sets {

Bρ (0, m) | m ∈ Z+
}

, (7.21)

whose union is all of Rn. So
A ⊂

⋃
m∈Z+

Bρ (0, m) . (7.22)

Since A is compact, there is a finite subcover of this open cover of A. In other words,

A ⊂
k⋃

i=1
Bρ (0, mi) . (7.23)

Choose M = max {m1, m2, . . . , mk}. Then A ⊂ Bρ (0, M). As a result, for any x, y ∈ A,

ρ (x, y) ≤ ρ (x, 0) + ρ (0, y) < 2M. (7.24)

This shows that A is bounded.

(⇐) Now suppose that A ⊂ Rn is closed and bounded under ρ.So ρ (x, y) ≤ N for any x, y ∈ A.
Choose some x0 ∈ A, and let ρ (0, x0) = b. Then by triangle inequality,

ρ (0, x) ≤ ρ (0, x0) + ρ (x0, x) ≤ b + N, (7.25)
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for every x ∈ A. As a result,
A ⊂ [−b − N, b + N ]n . (7.26)

[−b − N, b + N ]n is compact since it’s the product of finitely many compact spaces (Theorem 7.6). A
is a closed subset of a compact space. Therefore, by Theorem 7.2, A is compact. ■

Theorem 7.11 (Extreme value theorem)
Let f : X → R be continuous with X compact. Then there exist points c, d ∈ X with

f (c) ≤ f (x) ≤ f (d) , (7.27)

for all x ∈ X.

Proof. X is compact and f is continuous, so f (X) ⊂ R is compact. Hence it is closed and bounded.
Since it is bounded, it has both infimum and supremum. Suppose

m = inf f (X) , and M = sup f (X) . (7.28)

Since m is the infimum of f (X), given any interval (m − ε, m + ε), there exists an element y0 ∈ f (X)
such that

m ≤ y0 < m + ε. (7.29)

So f (X) ∩ (m − ε, m + ε) is nonempty. So m ∈ f (X) by Theorem 2.7. Similarly, since M is the
supremum of f (X), given any interval (M − ε, M + ε), there exists an element y1 ∈ f (X) such that

M ≥ y1 > M − ε. (7.30)

So f (X) ∩ (M − ε, M + ε) is nonempty. So M ∈ f (X) by Theorem 2.7. Since f (X) is closed, it is
equal to its closure. So m, M ∈ f (X), i.e. there are elements c, d such that m = f(c) and M = f(d),
so that (7.27) holds. ■

§7.5 The Lebesgue number

Definition 7.5. Let (X, d) be a metric space. Also, let A ⊂ X be a nonempty subset. For each
x ∈ X, define the distance from x to A by

d(x, A) = inf{d(x, a) | a ∈ A}. (7.31)

The diameter of A is given by

diam(A) = sup{d(a, b) | a, b ∈ A}. (7.32)

Lemma 7.12
The function x 7→ d(x, A) is continuous.

Proof. Let x, y ∈ X. By the application of the triangle inequality,

d(x, A) ≤ d(x, a) ≤ d(x, y) + d(y, a), ∀a ∈ A. (7.33)

Hence, one obtains,
d(x, A) − d(x, y) ≤ d(y, a), ∀a ∈ A. (7.34)

By taking the infimum on the right side, one obtains,

d(x, A) − d(x, y) ≤ inf{d(y, a) | a ∈ A} = d(y, A). (7.35)
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In other words,
d(x, A) − d(y, A) ≤ d(x, y). (7.36)

Interchanging x with y in (7.36), one obtains

d(y, A) − d(x, A) ≤ d(y, x) = d(x, y). (7.37)

Combining (7.36) and (7.37), we get

|d(x, A) − d(y, A)| ≤ d(x, y). (7.38)

Let α : (X, d) → (R, | · |) be the function defined by α (x) = d (x, A). Given ε > 0, we choose δ = ε.
So we have for d (x, y) < δ,

|α(x) − α(y)| = |d(x, A) − d(y, A)| ≤ d(x, y) < δ = ε, (7.39)

i.e. |α(x) − α(y)| < ε. Therefore, α is continuous. ■

Lemma 7.13 (Lebesgue number lemma)
Let C be an open cover of a compact metric space (X, d). There exists a δ > 0 such that for each
subset B ⊂ X of diameter < δ, there exists an element U ∈ C with B ⊂ U . The number δ is called
the Lebesgue number of C.

Proof 1. If X ∈ C, then any positive real number works as a Lebesgue number. Because for any B ⊂ X
with diameter less than whatever positive real number we choose, there exists U ∈ C0, namely, U = X
such that B ⊂ U = X.

Now, if X /∈ C, then by compactness of X, there is a finite subcollection {U1, . . . , Un} of C that
covers X, i.e.,

X = U1 ∪ · · · ∪ Un. (7.40)

Let Ci = X \ Ui be the i-th closed complement. And each Ci is nonempty as X /∈ C so that
X /∈ {U1, . . . , Un}. Define f : X → R as

f(x) = 1
n

n∑
i=1

d(x, Ci). (7.41)

Claim 1: f (x) > 0 for all x ∈ X.

Proof. Given x ∈ X, there exists some i ∈ {1, . . . , n} such that x ∈ Ui. Since Ui ⊂ X is open,
there exists ε > 0 such that Bd(x, ε) ⊂ Ui. In other words, all the elements of X that are in less
than ε-distance from x are inside Ui. As a result, d (x, Ci) = d (x, X \ Ui) ≥ ε. So we have

f(x) = 1
n

n∑
i=1

d(x, Ci) ≥ ε

n
> 0. (7.42)

□

Since f : X → R and X is compact, f attains a minimum by Extreme value theorem. Since f (x) > 0
for all x, f achieves a positive minimum, say δ > 0. We now claim that this δ is the desired Lebesgue
number.

Claim 2: δ is a Lebesgue number for the finite subcover {U1, . . . , Un} of C, and hence for C.

Proof. Let B ⊂ X with diam(B) < δ. There is nothing to prove for B empty. Hence, let B ̸= ∅.
Choose p ∈ B. Then indeed

B ⊂ Bd(p, δ). (7.43)
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Suppose q ∈ B. We are given p ∈ B. And since diam(B) < δ by (16), one must have

d(p, q) < δ ⇒ q ∈ Bd(p, δ). (7.44)

Hence, (7.43) follows. Now, consider the real numbers d(p, Ci) for 1 ≤ i ≤ n. Suppose

max{d(p, C1), . . . , d(p, Cn)} = d(p, Cm). (7.45)

Hence, one obtains
δ ≤ f(p) ≤ d(p, Cm). (7.46)

The second inequality holds, since f (p) is the average of all d (p, Ci)’s, whereas d(p, Cm) is the
maximum of them. As a result,

d(p, Cm) = inf
c∈Cm

d (p, c) ≥ δ. (7.47)

Suppose there exists some point c0 ∈ Cm with d (p, c0) < δ. Then by the definition of infimum,

inf
c∈Cm

d (p, c) ≤ d (p, c0) < δ, (7.48)

which contradicts (7.47). Therefore, Cm ∩ Bd (p, δ) = ∅. So we have

Bd (p, δ) ⊂ X \ Cm = Um. (7.49)

Now, (7.43) and (7.49) together imply

B ⊂ Bd(p, δ) ⊂ Um. (7.50)

□

So δ is the required Lebesgue number ■

Proof 2. Take x ∈ X. As C = {Uα}α∈J covers X, we can find Uα ∈ C such that x ∈ Uα. Since Uα is
open and x ∈ Uα, there exists rx > 0 such that

B (x, rx) ⊂ Uα. (7.51)

We do this for every x ∈ X. So we get an open cover of X

X =
⋃

x∈X

B

(
x,

rx

2

)
. (7.52)

Since X is compact, there exists a finite subcover of this open cover. So

X =
n⋃

i=1
B

(
xi,

rxi

2

)
. (7.53)

We define δ > 0 in the following way:

δ = min
{

rxi

2 | i = 1, 2, . . . , n

}
. (7.54)

We claim that this δ is our desired Lebesgue number of the open cover C. Let A ⊂ X with diam(A) < δ.
Fix a ∈ A. Then there exists j ∈ {1, 2, . . . , n} such that

a ∈ B

(
xj ,

rxj

2

)
. (7.55)

As a result,
d (xj , a) <

rxj

2 . (7.56)
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By the construction of rxj , there exists Uβ ∈ C such that B
(
xj , rxj

)
⊂ Uβ. We claim that A ⊂ Uβ.

Take any b ∈ A.
d (a, b) ≤ diam(A) < δ ≤

rxj

2 . (7.57)

Hence,
d (a, b) <

rxj

2 . (7.58)

Now,
d (xj , b) ≤ d (xj , a) + d (a, b) <

rxj

2 +
rxj

2 = rxj . (7.59)

So we have b ∈ B
(
xj , rxj

)
. For every b ∈ A, we have b ∈ B

(
xj , rxj

)
. Therefore,

A ⊂ B
(
xj , rxj

)
⊂ Uβ. (7.60)

■

Definition 7.6 (Uniform continuity). A function f : (X, dX) → (Y, dY ) between metric spaces
(X, dX) and (Y, dY ) is said to be uniformly continuous if for every ε > 0, there exists δ > 0
such that for every pair of points x1, x2 ∈ X,

dX(x1, x2) < δ ⇒ dY (f(x1), f(x2)) < ε. (7.61)

Theorem 7.14 (Uniform continuity theorem)
Let f : (X, dX) → (Y, dY ) be a continuous map from the compact metric space (X, dX) to the
metric space (Y, dY ). Then f is uniformly continuous.

Proof. Given ε > 0, cover Y by the open balls{
BdY

(
y,

ε

2

)
| y ∈ Y

}
(7.62)

and let C = {f−1 (BdY

(
y, ε

2
))

| y ∈ Y } be the open covering of X by the preimages of the open balls
given by (7.62). Indeed,

X = f−1(Y ) = f−1

⋃
y∈Y

BdY

(
y,

ε

2

) =
⋃

y∈Y

f−1
(

BdY

(
y,

ε

2

))
. (7.63)

Since (X, dX) is a compact metric space, there is a Lebesgue number δ associated with the open cover
C = {f−1 (BdY

(
y, ε

2
))

| y ∈ Y }.
Now, let x1, x2 ∈ X such that dX(x1, x2) < δ. Then the 2-point set {x1, x2} has diameter less than

δ. By Lebesgue number lemma, there exists y ∈ Y s.t.

{x1, x2} ⊂ f−1
(

BdY

(
y,

ε

2

))
. (7.64)

Then
f({x1, x2}) = {f(x1), f(x2)} ⊂ f

(
f−1

(
BdY

(
y,

ε

2

)))
⊂ BdY

(y,
ε

2). (7.65)

As a result, dY (f (x1) , y) , dY (f (x2) , y) < ε
2 , so that dY (f(x1), f(x2)) < ε by triangle inequality.

Therefore, we’ve shown that given ε > 0, there exists δ > 0 such that for every pair of points x1, x2 ∈ X
with dX(x1, x2) < δ

dY (f(x1), f(x2)) < ε.

Hence, f : (X, dX) → (Y, dY ) is uniformly continuous. ■
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§7.6 Limit point and sequential compactness

Definition 7.7. A space X is said to be limit point compact if every infinite subset of X has a
limit point.

Theorem 7.15
Compactness implies limit point compactness.

Proof. Let X be a compact space. Given A ⊂ X, we want to prove that if A is infinite, then A has a
limit point. Let us prove the contrapositive of the above statement, i.e., if A ⊂ X has no limit point,
then A is finite.

So, suppose that A ⊂ X has no limit point. Then A contains all its limit points (which is an empty
set in this case). We then conclude that A = A, implying that A is closed in X. Since none of the
elements of A is a limit point, for each a ∈ A, one can choose a neighbourhood Ua of a such that Ua

intersects A at the point a alone. Now, the space X can be covered by X \ A (which is open in X
since A is closed in X) and the open sets Ua:

X = (X \ A) ∪
(⋃

a∈A

Ua

)
. . . (25)

By the compactness of X, there is a finite subcollection of the cover {X \ A, {Ua}a∈A} of X. It
means that in the finite subcollection, there are only finitely many of the open sets {Ua}a∈A since
(X \ A) ∩ (

⋃
a∈A Ua) = ∅. Therefore, finitely many open sets from {Ua}a∈A each containing only one

element of A is all of A. Hence, there are only finitely many elements in A. ■

Example 7.7. The converse of Theorem 7.15 is not true. Let Y = {y1, y2} and let the topology on Y
be the trivial topology consisting of Y and ∅. Consider X = Z × Y with the product topology with Z
being endowed with the discrete topology. Now, given A ⊂ X, with A ̸= ∅, a generic element of A
is given by (m, yi), with i = 1, 2 and m ∈ Z. Any open set in the product topology in X containing
(m, yi) also contains (m, y3−i), for i ∈ {1, 2}. Hence, every subset of X, finite or infinite, has a limit
point.

This implies that X is limit point compact. However, X is not compact. Since the open cover
{Um}m∈Z with

Um = {m} × Y

does not have a subcollection (and hence no finite subcollection) covering X.

Definition 7.8. Let (xn)∞
n=1 be a sequence of points in X. If

n1 < n2 < · · · < nk < · · ·

is a strictly increasing sequence of natural numbers, the sequence

xn1 , xn2 , . . . , xnk
, . . .

also denoted by (xni)
∞
i=1, is called a subsequence of (xn)∞

n=1. It is a convergent subsequence
if xnk

→ p as k → ∞, for some p ∈ X.

Definition 7.9. A space X is sequentially compact if every sequence (xn)∞
n=1 in X has a

convergent subsequence (xni)∞
i=1.
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Lemma 7.16
The Lebesgue number lemma holds for sequentially compact metric spaces. In other words, if X
is a sequentially compact metric space, given an open cover C = {Uα}α∈J , there exists δ > 0 such
that for each subset B ⊂ X with diam B < δ, there exists some U ∈ C such that B ⊂ U .

Proof. Assume for the sake of contradiction that C = {Uα}α∈J is an open cover for which no Lebesgue
number δ > 0 exists. Then, given n ∈ Z+, there exists some a set Cn of diameter less than 1

n that is
not contained in any U ∈ C. Then we choose xn ∈ Cn for each n. Since X is sequentially compact, this
sequence has a convergent subsequence, say (xni)

∞
i=1. Suppose this subsequence converges to a ∈ X.

Since C = {Uα}α∈J covers X, there is some β ∈ J such that a ∈ Uβ. Since Uβ is open, we can find
ε > 0 for which

Bd (a, ε) ⊂ Uβ. (7.66)

We choose i large enough so that 1
ni

< ε
2 , and d (xni , a) < ε

2 . Cni has diameter less than 1
ni

, by
construction. So for any x ∈ Cni ,

d (x, xni) ≤ sup
x,y∈Cni

d (x, y) = diam Cni <
1
ni

<
ε

2 . (7.67)

As a result,
d (x, a) ≤ d (x, xni) + d (xni , a) <

ε

2 + ε

2 = ε. (7.68)

So we have x ∈ Bd (a, ε). Hence,
Cni ⊂ Bd (a, ε) ⊂ Uβ. (7.69)

But Cni was constructed so that it is not contained in any U ∈ C. Contradiction! Therefore, a Lebesgue
number must exist. ■

Proposition 7.17
Given a sequentially compact metric space X, for every ε > 0, there exists a finite cover of X
using ε-balls.

Proof. Assume for the sake of contradiction that there exists some ε > 0 such that no finite covering
of X exists with ε-balls. We construct a sequence (xn)∞

n=1 as follows. Choose x1 to be any point of X.
Suppose we have constructed up to xn−1. Since no finite covering of X exists with ε-balls,

Bd (x1, ε) ∪ Bd (x2, ε) ∪ · · · ∪ Bd (xn−1, ε)

is not all of X. So we choose

xn ∈ X \
(

n−1⋃
i=1

Bd (xi, ε)
)

. (7.70)

By construction, any two elements of this sequence satisfies

d (xm, xn) ≥ ε. (7.71)

Since X is sequentially compact, there is a convergent subsequence xni → a. Then there are infinitely
many elements of the subsequence in the open ball Bd

(
a. ε

2
)
. Take two such elements xnj and xnk

.
Then we have

d
(
xnj , xnk

)
≤ d

(
xnj , a

)
+ d (a, xnk

) <
ε

2 + ε

2 = ε. (7.72)

But then (7.72) contradicts (7.71). Therefore, a finite covering of X with ε-balls must exist. ■
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Theorem 7.18
Let X be a metrizable space. Then the following are equivalent:

1. X is compact.

2. X is limit point compact.

3. X is sequentially compact.

Proof. (1⇒2) is already done in Theorem 7.15.

(2⇒3) Assume that X is limit point compact. Since X is metrizable, its topology is generated by a
metric d. Also metric spaces are Hausdorff. In particular, X is a T1 space.

Given a sequence (xn)n∈N of points of X, consider the set A = {xn | n = 1, 2, 3, . . .}. If the set A
is finite, then there is a point x such that x = xn for infinitely many values of n. In this case, the
sequence (xn) has a subsequence that is constant, and therefore converges trivially.

On the other hand, if A is infinite, then A has a limit point x (since A is an infinite subset of a limit
point compact space X). We define a subsequence of (xn) converging to x as follows: First choose n1
so that

xn1 ∈ Bd(x, 1).

Then suppose that the positive integer ni−1 is given. Since x is a limit point of A ⊂ X, and X is T1,
by Theorem 2.15, the ball Bd

(
x, 1

i

)
intersects A in infinitely many points. So we can choose an index

ni > ni−1 such that
xni ∈ Bd

(
x,

1
i

)
.

Then the subsequence xn1 , xn2 , . . . converges to x. Indeed, if Bd (x, ε) is an open ball about x, there
exists some N such that Nε > 1. Then for j ≥ N ,

xnj ∈ Bd

(
x,

1
j

)
=⇒ d

(
x, xnj

)
<

1
j

≤ 1
N

< ε. (7.73)

So xni → x as i → ∞.

(3⇒1) Suppose C = {Uα}α∈J be an open cover of the sequentially compact metric space X. Let δ > 0
be the Lebesgue number associated with this cover. This exists by Lemma 7.16. Now, suppose ε = δ

3 .
By Proposition 7.17, there is a finite covering of X with ε-balls, i.e.,

X = Bd (x1, ε) ∪ Bd (x2, ε) ∪ · · · ∪ Bd (xn, ε) . (7.74)

Each of these balls are of radius ε, so their diameter is at most 2ε = 2δ
3 < δ. By the Lebesgue number

lemma for sequentially compact spaces, Bd (xi, ε) is contained in some Uαi ∈ C. So we have

X =
n⋃

i=1
Bd (xi, ε) =

n⋃
i=1

Uαi . (7.75)

Therefore, a finite subcover of the open cover C = {Uα}α∈J exists. Hence, X is compact. ■

§7.7 Local compactness

Definition 7.10. A space X is said to belocally compact at x ∈ X if there is a compact subspace
Cx of X containing a neighborhood Ux of x:

x ∈ Ux ⊂ Cx ⊂ X. (7.76)

A space X is said to be locally compact if it is locally compact at each of its points.
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Example 7.8. If X is compact, then take Ux = Cx = X for a given point x ∈ X in the equation
(7.76), yielding the fact that X is also locally compact.

Example 7.9. The real line R with respect to the standard topology is locally compact. Each
point x ∈ R is contained in the compact subspace Cx = [x − 1, x + 1] containing the neighborhood
Ux = (x − 1, x + 1) of x.

Example 7.10. The set of rational numbers Q in the subspace topology inherited from R with respect
to the standard topology is not locally compact.

A basis neighborhood of x in Q in subspace topology inherited from R with respect to standard
topology (a basic open set that is a neighborhood of x) is of the form: Q ∩ (x − ε, x + ε) for some
ε > 0. Now, we will show that any subset Cx ⊂ Q containing such a basis neighborhood of x cannot be
compact. For example, choose an irrational number a ∈ (x − ε, x + ε) and write a function f : Cx → R
defined by

f(t) = (t − a)2. (7.77)

The function f , being a restriction of the R → R continuous function t 7→ (t − a)2, is also continuous.
But the image of Cx under f can be made arbitrarily close to 0 ∈ R with 0 /∈ f(Cx). Hence, the
function f doesn’t attain a minimum. Hence, by the Extreme value theorem, Cx can’t be compact.

85


	Preface
	Contents
	Topologoical Spaces
	Basic Definitions
	Review of Metric Space
	Basis for a Topology
	Subbasis
	The Product Topology on X Y
	Subspace Topology

	Closed Sets and Limit Points
	Closed Sets
	Closure and Interior
	Limit Points
	Hausdorff Spaces

	Continuity
	Definitions
	Homeomorphism

	Product Topology Revisited
	Maps Into Products
	Product Topology
	Metric Topology Revisited
	Infnite Cartesian Products

	Quotient Topology
	Quotient Maps
	Quotient Topology

	Connectedness
	Connected spaces
	Connected subspaces of R
	Path connected spaces
	Components and path components
	Local connectedness

	Compactness
	Open cover and subcover
	Compact and Hausdorff spaces
	Product of compact spaces
	Finite intersection property
	The Lebesgue number
	Limit point and sequential compactness
	Local compactness


