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]. Review of Multilinear Algebra

§1.1 Dual Space

Let V and W be real vector spaces. We denote by Hom (V, W) the vector space of all linear maps
f:V — W. In particular, if we choose W = R, we get the dual space V*.

V* =Hom (V,R).

The elements of V* are called covectors on V. In the rest of the lecture, we will assume V to be a
finite dimensional vector space. Let {ej,es,...,e,} be a basis for V. Then every v € V' is a unique
linear combination

n
v:Zviei, (1.1)
i=1

with v* € R. v"’s are called the coordinates of v relative to the basis {e1,e9,...,e,}. Let a' be the
linear function on V' that picks up the i-th coordinate of the vector, i.e.

a'(v)=a' (Z viei> =’ (1.2)
i=1

When v is one of the basis vectors,
1 if i = j,
0 if ¢ # j.

Proposition 1.1

The functions a',...,a" form a basis for V*.

Proof. Suppose f € V*. Then for any v = >, ve; € V,

n

fv)=71 (Z Ui@i) =D v'fle) =) f(e)d (v).
i=1 i=1

=1

Since this holds for any v € V,
F=> flea" (1.4)

1. ..,a" span V*. As for linear independence, suppose

Y aa' =0, (1.5)

where 0 is the function that takes all of V' to 0 € R. If we evaluate (1.5) at e;, we get

n n
0= ch&z (e]') = Zciéij = Cj. (16)
i=1 =1

Therefore, &

So ¢; = 0, and this holds for each j = 1,2,...,n. Therefore, {a',...,a"} is a linearly independent
set that spans V*, i.e. a basis. |
Corollary 1.2

The dual space V* of a finite dimensional vector space has the same dimension as V.

The basis {@l,...,a"} for V* is said to be dual to the basis {e1,es,...,e,} for V.
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§1.2 Permutations

Fix a positive integer k. A permutation of the set A = {1,2,...,k} is a bijection 0 : A — A. The
product of two permutations 7 and o is the composition T oo : A — A. The cyclic permutation
(a1 ag -+ a,) is the permutation o such that

o(a1) =ag, o(ag) =as, ---, o(ar—1) =ar, and o (a,) =1,

leaving all other elements unchanged, i.e. o (j) = j if j is not one of the a;’s. A cyclic permutation
(a1 ag -+ a,) is also called a cycle of length r or an r-cycle. A transposition is a permutation of
the form (a b) that interchanges a and b, leaving all other elements of A fixed.

A permutation o : A — A can be described by

We also write it as

Example 1.1. Suppose o : {1,2,3,4,5} — {1,2,3,4,5} is the permutation given by
l1 2 3 4 5]
2 4 5 1 3|°
In other words, 0 (1) =2,0(2) =4,0(3)=5,0(4) =1, and o (5) = 3.
1234552451 3].
Observe that the cyclic permutation o’ = (1 2 4) acts as o' (1) =2, ¢/ (2) = 4 and ¢’ (4) = 1, keeping

3 and 5 unchanged, i.e. o’ (3) =3 and ¢’ (5) = 5.

12345 2% 24315,

Now the transposition ¢” = (3 5) acts as ¢”(3) = 5 and 0" (5) = 3, keeping 1,2,4 unchanged.
Therefore,

(124) (3 5)

[12345] 24315 ——2 5 [2451 3]
(35)(124)
so that 0 = (3 5) (1 2 4).

Let Sy be the group of permutations of the set {1,2,...,k}. The order of this group is kl. A
permutation is even or odd depending on whether it is the product of an even or an odd number of
transpositions. The sign of a permutation o is 1 if the permutation is even, and —1 otherwise. It is
denoted by sgno. For example, in Example 1.1, 0 = (3 5) (1 2 4). Note that we can write (1 2 4) as
a product of two transpositions:

n2345 —-2 21345 —"Y, 24315

\_/

(1 4)(1 2)=(1 2 4)
In other words, o = (3 5) (1 4) (1 2). Hence, sgno = —1. One can easily check that
sgn (o7) = (sgno) (sgnr). (1.7)

So sgn : S, — {1, —1} is a group homomorphism.
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Example 1.2. Observe that the 5-cycle (1 2 3 4 5) can be written as
(12345)=(15)(14)(13)(12).
Indeed,

(12) (13) (14) (15)

12345 —5 (21345 —5 23145 —5[23415] —25[23451]

(1234 5)=(15)(14)(1 3)(1 2)
Therefore, sgn (1234 5) = 1.

An inversion in a permutation o is an ordered pair (o (i),0 (j)) such that i < j but o (i) > o (j).
In Example 1.1, 0 (1) =2, 0(2) =4, 0(3) =5, 0(4) = 1, and o (5) = 3. So, the inversions in this
permutation are

(0(1),0(4), (0(2),0(4)), (9(2),0(5)), (¢(3),0(4)), (0(3),0(5))-

Hence, there are 5 inversions associated with the permutation o. There is an efficient way of deter-
mining the sign of a permutation.

Proposition 1.3

A permutation is even if and only if it has an even number of inversions.

Proof. Let o € S, with n inversions. We shall prove that we can multiply o by n transpositions and
get the identity permutation. This will prove that sgno = (—1)".

Suppose o (j1) = 1. Then for each i < ji1, (o(i),0 (j1)) is an inversion, and there are j; — 1 many
of them. These are all the inversions with 1 in the second slot of the ordered pair of inversion. If we
now multiply o by the ji-cycle

(1) 1)(o(2) 1)---(e(i—1) 1)
to the left of o, the resulting permutation o; would be

1 92 3 ... 1 TR R k
I o(1) 0(2) -+ o(1—1) o(i1i+1) --- o(k).

This permutation has no inversion with 1 in the second slot of the ordered pair of inversion. Suppose
now that o (j2) = 2. Now observe that if (o7 (i),2) is an inversion in oy, then either (o (i),2) (if
i>j1i+1)oro(i—1),2 (if i < j; — 1) is an inversion in 0. Therefore, the number of inversions
in o1 ending in 2 is precisely the same as the number of inversions in ¢ ending in 2. So following a
similar procedure as above, we can multiply o1 by ie-many transpositions to the left (is is the number
of transpositions ending in 2) and get

12 3 k
1 2 o(1) o (k)
We can continue these steps for each 57 = 1,2,...,k, and the number of transpositions required to

move j to its natural position is the same as the number of inversions ending in j. In the end we
achieve the identity permutation. Therefore, sgn o = (—1)", where n is the number of inversions. W
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§1.3 Multilinear Functions

Definition 1.1. Let V* be the cartesian product of k-copies of a real vector space V.

VE=VxVx---xV

k-copies

A function f: V¥ — R is called k-linear if it is linear in each of its k arguments:
fl..;,av+bdbw,...)=af(...,v,..)+bf(...,w,...), (1.8)

fora,b € R and v,w € V.

Instead of 2-linear and 3-linear, it’s customary to call “bilinear” and “trilinear”, respectively. A k-
linear function on V is called a k-tensor on V. We will denote the vector space of all k-tensors on
V by L (V). The vector addition and scalar multiplication of the real vector space Ly (V') is the
straightforward pointwise operation.

Example 1.3. The dot product f (v, w) = v-w on R" is bilinear: if v =", v'e; and w = Y1, w'e;,
then

n
Few) =vow=Y ik
i=1
Example 1.4. The determinant
f(vi,va, ..., v,) =det {vl vy - Vn}

viewed as a function of the n column vectors vi,va,..., v, is n-linear.

Definition 1.2 (Symmetric and alternating function). A k-linear function f : V* — R is symmetric
if

f (VU(l),vU(g), .. ,vo(k)) = f(vi,va,..., V), (1.9)
for all permutations o € Si. It is alternating if

f (Vo'(l)a Vo(2)s - 7V0'(k)) = (Sgn U) f (V17 V2,... 7Vk‘) ’ (110)

for all permutations o € Si.

The dor product function on R™ in Theorem 1.3 is symmetric, and the determinant function on R™ in
Theorem 1.4 is alternating.

We are especially interested in the vector space Ay (V') of all alternating k-linear functions on a
vector space V, for k > 0. The elements of Ay (V) are called alternating k-tensors (also known as
k-covectors). We define Ay (V') to be R. The elements of Ay (V) are simply constants, which we call
0O-covectors. The elements of A; (V') are simply covectors, i.e. the elements of V*.

Permutation action on k-linear functions
If feLy(V)and o € Sg, define of € L(V) as follows:

(Uf) (V17V27 s avk) =f (VO'(I)’VCT(2)’ ER) Vo‘(k)) . (111)

Thus, f is symmetric if and only if f = of for all ¢ € Si; and f is alternating if and only if
of = (sgno) f for all 0 € Sy. When k£ = 1, S only has the identity permutation. In that case, a
1-linear function or simply linear function on V is both symmetric and alternating. In particular,

A (V)=L, (V) =V™
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Lemma 1.4
If o,7 € Sk and f € Ly (V), then 7 (o f) = (7o) f.

Proof. For any vi,va,...,vip €V,
(t(0f)) (vi,v2,...,vi) = (of) (VT(1)7VT(2),---,VT(k))
) (W17 W27 .. 7Wk) [W’L = VT(Z)]
Wo(1)s Wa(2)s - -+ Wo'(k))

(
(Vr<o<1>)»vr(a(2>)v EE vVT(U(’fD)

= ((r0)f) (vi,va,..., Vi)

Therefore, 7 (o f) = (10) f. [ |

Definition 1.3. If G is a group and X is a set, a map

GxX—>X
(g,) = g-x
is called a left action of G on X if
(i) e-x = x, where e is the identity element in G and x is any element in X; and
(i1) g1 (92 =) = (g192) - z, for all g1,g92 € G and x € X.

Similarly, a right action of G on X is a map

XxG—X
(z,9) »z-g
such that
(i) z-e=ux, for all z € X; and

(ii) (z-g1) 92 =2 - (9192), for all g1,g0 € G and x € X.

Symmetrizing and alternating operators

Given f € Ly (V), there is a way to make it a symmetric k-linear function Sf from it:

(S (vi,va,..oovie) = > f <V0(1)7Va(2)7~-’va(k))- (1.12)
oES)
In other words,
Sf=> of. (1.13)
ocESk

Similarly, there is a way to make an alternating k-linear function from f:

Af = Z (sgno)of. (1.14)

€Sk

Proposition 1.5 (i) The k-linear function Sf is symmetric.

(ii) The k-linear function Af is alternating.
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1
Proof. (i) Let 7 € Sg. Then

T(Sf) =7 (Z af) : (1.15)

€Sk

The group action of S, on Ly (V) is distributive over the vector space addition. Therefore,

T(Sf) = Z T(of) = Z (to)f. (1.16)

o€Sy ocESk

As o varies over Sy, To also varies over Sy.. Therefore, - cg (70)f = Sf. In other words,
T(Sf) =S8/, (1.17)
i.e. Sf is symmetric.

(ii) Let 7 € Sk. Then

T(Af) =171 (Z (sgno) af) = Z (sgno)7(of) = Z (sgno) (to)f. (1.18)

oc€S ocESE c€Sk
. 2
Since (sgn7)” =1,

T(Af) = > (sent)’ (sgno) (ro)f

€Sk

= (sgn7) ) (sgn)(sgno)(ro)f

€Sk

= (sgnT) Z (sgn(7o)) (1o)f. (1.19)

og€ESy,

As o varies over Sk, To also varies over Si. Therefore, 37, g, (sgn(r0))(r0)f = Af. In other

words,
T (Af) = Af, (1.20)
i.e. Af is alternating.
|
Lemma 1.6
If fe Ap (V), then Af = (K!) f.
Proof. Since f is alternating,
Af =3 (sgno)of =Y (sgno)*f= > f= (k) (1.21)
gESy, €Sk €Sk
because the order of S, is k!. |

§1.4 Tensor Product and Wedge Product

Definition 1.4 (Tensor Product). Let f be a k-linear function and g an I-linear function on a vector
space V. Their tensor product f ® g is the (k + [)-linear function defined by

(f ®g) (Vl, ey VES Vi, ,karl) =S f(Vl, e ,Vk-)g(vk+17. .. ,vk+l) . (122)

(k 4 )-linearity of f ® g follows from k-linearity of f and I-linearity of g.

10
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Lemma 1.7 (Associativity of Tensor Product)
Let f € Li(V), g € Li(V) and h € L, (V). Then

(f®g)@h=f®(g®h).

Proof. For vi,...,Viiiim,

[(f®g) @h (v, Visitm) = (f ®9) (Vi, oo, Vi) A (VE4i41, - -+, Vitigm)
= f (V17 cee 7Vk) g (Vk-+17 oo ,Vk-Jrl) h (Vk+l+17 e avk+l+m) . (123)

[f@ @@ (v, s Viirm) = (v, Vi) (@ B) (Vs -5 Vieriem)
=V, VE) 9 (Vi oo Vi) B (Vg ts - Viepiem) - (1.24)

Therefore, (f ® g) @ h = f ® (g ® h), i.e. tensor product is associative. [ |

Example 1.5. Let {ej,eq,...,e,} be the standard basis for R", and {&',...,a"} its dual basis. The
Euclidean inner product on R"™ is the bilinear function

(,):R*xR" 5 R

defined by

n

< ) >(V7W) = <V7W> = Z,ini’

i=1
for v=>3" v'e and w=>" , w'e;. We can express ( , ) in terms of tensor product as follows:

n

() (v,w) = zn:uiwi = znja W) a (w) =Y (a @@i) (v, w).
=1 =1

i=1

Since v, w are arbitrary,
n

()= (aed). (1.25)

i=1

If f e Ap(V) and g € A;(V), then it’s not true that f®g € Ag;(V), in general. We need to construct
a product that is also alternating.

Definition 1.5 (Wedge Product). For f € Ax(V) and g € 4;(V), the wedge product of f and g is
defined as follows:

1
f/\gzmA(f®9)- (1.26)
Explicitly,

(FAD Vi) = o 3 (200) 0 (70 9) (Vi Vi)

: O’ES}H_Z

1
= 2 (5810) (F@9) (Vo) Vatirn)

: GESk+l

1
= > (sgno)f (vg(1), e ,Va(k)) g (vg(kﬂ), . ,vg(kH)) .2

: GGSk+l

11
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When k = 0, the element f € Ag(V) is simply a constant ¢ € R as discussed earlier. In this case, the

wedge product ¢ A g is just scalar multiplication as is evident from (1.27).

1
(cANg)(vi,...,v)) = il z;g (sgno)cyg (va(l),...,va(l)>
ged]

1
=0 > (sgno)c (sgno)g(vi,...,vy)
" oEes;

1
=7 Z cg(vi,...,vp)

og€ES;
1
= l—'l!cg(vl,...,vl)
=cg(Vi,...,v).

Thus ¢ A g = cg, for c€ R and g € 4; (V).

Example 1.6. For f € A3(V) and g € A1 (V),

A(f®g) (vi,v2,v3) = f(v1,v2) g(vs) — f(v1,v3) g (va) — [ (va, V1) g (V3)
— f(va,va)g(vi)+ f(va,v3)g(vi) + f(v3,vi) g (va).

Among these 6 terms, there are 3 pairs of equal terms due to the alternating nature of f.

f(vi,v2) g (vs) = —f(va,v1) g (vs),
f(vs,v1)g(va) = —f(v1,v3) g (va),
f(va,v3)g(vi) = —f(vs,v2) g (v1).

Therefore,
A(f®g) (vi,v2,v3) = 2f (v1,v2) g (v3) + 2f (v3,v1) g (V2) + 2f (v2,v3) g (v1) .

Hence,

(F A9) V1,2, v5) = 5 A (S @) (v1,v2,va)

= f(v1,v2) g (v3) + f(v3,v1) g (va) + f (v2,v3) g (V1) .
Example 1.7 (Wedge product of 2 covectors). If f,g € A1 (V), and vi,vy € V, then
1
(fAg) (Vi ve) = 7 Af @) (Vi va).
S has 2 elements: the identity element e and (1 2). Therefore,

(fAg)(vi,ve) = A(f®g) (vi,v2) = f(vi)g(v2) — f(v2)g(v1).

Proposition 1.8 (Anticommutativity of wedge product)
The wedge product is anticommutative: if f € Ax(V) and g € 4;(V), then
fAg=(=DM"gnf.
Proof. Define 7 € Siy; to be the following permutation:

1 2 l I+1 I+2 - 14k
k+1 k+2 - k+1 1 2 k|-

12

(1.28)

(1.29)
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In other words,

o (k+i if1<i<l,
T(i) =1 .
i—1 fl+1<i<l+k.
Then for any o € Sk4,
I+ if1<j<k
UES SR (1.30)
o(t(j—k)) itk+1<j<k+I.

Now, for any vq,...,vie €V,

A(f®g) Vi, Vi) = > (sgno) f (Va(l)v'”7va(k)> g (Va(kﬂ),---,vo(mz))

0€ESky1
= > (sgno)f (Vo(7(1+1)),~-,VU(T(Hk))) g (VU(T(1)),---,VU(T(1))>
O’ES}H,Z
=(sgn7) > (sgno)(sgn7)g (VJ(T(l)), . -,VJ(T(Z))) f (Vo(7(1+1)), . ,VU(T(H@))
UESk-H
= (sen7) > (sgnoT)g (VU(T(1)), e 7VU(T(l))) f (VU(T(zH)), e ,VJ(T(Hk))) :
O’ESkJrl

Again, as o varies over Sk, o7 also varies over Si4;. Therefore,

A(f®g) (Vi Vis) = (sgnm) A(g @ f) (Viy - ooy Vi) - (1.31)

Now, let us evaluate the sign of the permutation 7. Let (7(i),7(j)) be an inversion of 7. Then it’s
not possible that 1 < i < j <l,orl+4+1<i < j <Il+k; because if we have 1 < i < j <[ or
l+1<i<j<l+k,then 7(i) < 7(j). Therefore, i must be in between 1 and [ (inclusive), and j must
be in between [ + 1 and [ + k (inclusive). So there are [ options for i, and k options for j. Therefore,
7 has kl many inversions. So sgn7 = (—l)kl. Using (1.31),

A(fog) =()"A(ge f). (1.32)

Dividing by k!l!, we obtain
Frag=(=D)M"gnf. (1.33)
|

Corollary 1.9
If f is a k-covector on V, i.e. f € Ax(V), and k is odd, then f A f = 0.

Proof. By anticommutativity of wedge product,
2
FAF=(EDNFAf=—f AL
Therefore, f A f =0. |

If f is a k-covector and g is an l-covector, i.e. f € Ag(V) and g € A;(V'), then we have defined their
wedge product to be the (k + [)-covector

frg=mA(T©g). (134)

We have the following lemmas associated with the alternating operator A.

13
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Lemma 1.10
Suppose f € Li(V) and g € L;(V). Then

(i) ACA(f) ®g) = kLA(f ® g).

(ii) A(f® A(g)) =UA(f ®g).

Proof. (i) By definition,

AA(f)@g) = Y (sgno)o(A(f)®g)

0ESk11
= Z (sgno)o Z (sen7)(Tf)®g (1.35)
UESk+l TESk
We can view 7 € Sj as a permutation in the following way: define 7/ € Sk, as follows
; if 1 <k
s@y=17@ sk (1.36)
i if 1 > k.

Then for vi,..., Vg4, we have
[(TH @9l (viseo oy Vir) = (TF) (Vie o, V) 9 (Vit1, -5 Vi)
f( Vi)V (k))g(vk+1,---7vk+z)

f( "(1)s - aVT’(k:)) g (V’T/(k)-‘rl)? s 7VT’(k+l))
=["(f@g](vi,. - Vi) -

Therefore, (7f) ® g = 7/ (f ® g). Furthermore, sgnT = sgn7’ since the inversions (7/(i),7'(j))
occur only when 1 < i < j <k, so that the 7 and 7/ has the same number of inversions.

Let us abuse notation a bit and denote by Sj the subgroup of permutations in Siy; by keeping
the last [ arguments fixed. This subgroup of Si4; is indeed isomorphic to Sy, so we will denote
both these groups by Si. Therefore, from (1.35),

A(A(f)®g) = Z (sgno)o Z (sen7’) 7' (f @ 9g)

0ESky1 T’ESkgS)H,l

Z Z (sgno) (sgn7’) o’ (f ® g)

UeSk+l T'€SKCSk41

_ Z Z sgnosgnt’) ((o7) (f®9)) -

T'€SKCSkt1 0ESK 1

For a fixed 7/, as o varies over Sy;, o7’ also varies over Siy;. Therefore,

AANHeg = Y Afeg=kHA(fog). (1.37)

7/ €Sk CSk11

(i) By (1.32),

A(f @ Al9)) = A((-D)" Alg) @ f)
= (D" A(A(9) @ )
= (-1)"1 ut(g@f)
— 1A ( g®f)
=lA(f®g). (1.38)
|

14



1 Review of Multilinear Algebra 15

Proposition 1.11 (Associativity of wedge product)

Let V be a real vector space and f, g, h be alternating multilinear functions on V' of degree k, [, m,
respectively. Then

(fAgANh=FA(gND).

Proof. Using the definition of wedge product,

1
(k+ D)m!

1 1
1
= G pmmm AR e @)

(k +1)!

:m«“[(f®g)®h]

Al(fog)®h].

(fAg)Nh= Al(f Ng) @ h]

= Elm!

On the other hand,

fA(gnh)= PALf @ (gAh)]

k(L + m)!

:MuimyAp®<&mA@®mﬂ

1
= War A @ Algeh)

(I 4+m)!

= war A @ g h)

Alf @ (g@h)].

= klIm)

Since tensor product is associative (by Lemma 1.7), we conclude that
(fAg)ANh=FfA(gNh). (1.39)
|

By associativity, we can omit the parenthesis and write univocally f A g A h instead of (f A g) A h or
fA(gAD).

Corollary 1.12
Under the hypothesis of Proposition 1.11,

ngAh:kmmer®g®M. (1.40)
This easily generalizes to an arbitrary number of factors: if f; € Ag, (V) for i =1,2,...,r, i.e. f;is
an alternating d;-linear function on V', then
AN ANfr=r—=Ai®-® fr). (1.41)
di!---d,!

15



1 Review of Multilinear Algebra 16

Proposition 1.13

Let a',a2,...,a" be linear functions on a real vector space V (i.e. @' : V — R) and vi,va, ..., Vi €
V. Then

(al Aocoo A ak) (Vl, o0 ,Vk) = det [al (Vj)}

a'(vi) a'(va2) a' (vi)

&% (vi) @*(va) -~ a*(vg)
= det

ak (Vl) ak (V2) e ak (Vk)

Proof. By 1.41,
(@A nd) (vivi) =A@ @ @ah) (vi, Vi)
By the definition of the action of alternating operator,

A@ e 0d) (i, v = 3 (eno)a (Vo) @ (Vo) - (1.42)

o€Sk

By the definition of determinant of a k£ x k matrix A = [a;;],

det A = Z (s8N 0) A15(1)20(2) * * * Ckor(k)- (1.43)
€Sk
Using (1.43) in (1.42), we get
A @ @ak) (vi,...,vi) = det [a7 (v;)] . (1.44)
]

§1.5 A Basis for A(V)

Let {e1,...,e,} be a basis for a real vector space V, and let {&1, ...,@"} be the dual basis for V*.
Introduce the multi-index notation
I = (i1,d2,...,10)

and write e for (e;,,e;,,...,e; ) and &l for @t AQ2 A--- A Q.
A E-linear function f on V' is completely determined by its values on all k-tuples (e;,, €, ..., €;,).
If f is alternating, then f is completely determined by its values on all k-tuples (e;,, €i,, ..., €;, ) with

1< <9< <1 <n.
In other words, it’s sufficient to consider e; with I in ascending order.

Lemma 1.14

Suppose I and J are ascending multi-indices of length k. Then

1 ifI=
0 ifI#J.

@l (es) = 6" = {

Proof. Suppose I = (i1,...,ix) and J = (j1,...,jx). Using (1.42), we get

G (eg) = (@ G2 A+ NG (e, €1, €5)
= Z (sgno) at (eja(1)> S-at (eja(k)>
oESk
= Z (sgno) 0" j, ) 0", - (1.45)
ocESk

16



1 Review of Multilinear Algebra 17

The terms in the sum (1.45) contribute sgn o if and only if

(i1,72,...,1k) = (ja(l),jcr@)a e J'a(k)) ;

otherwise they contribute 0 to the sum. Both I and J are ascending multi-indices. Permuting the
elements of J no longer gives an ascending multi-index (unless the permutation o is the identity permu-
tation). Therefore, in (1.45), all the summands corresponding to ¢ being a non-identity permutation
contribute 0.

, , , . 1 if I =J

~1 1 i 1 i )

a (ey) = E (sgno) 6™y 0%y =0 -6 ——{ ) (1.46)
oyl P To®) o " 0 if I #J.

Proposition 1.15

The alternating k-linear functions af, I = (iy,...,4x), with 1 < 4; < --- < 4 < n form a basis
for the space A(V) of alternating k-linear functions on V.

Proof. Let us first show linear independence. Suppose
> cra’ =0, (1.47)
I

cr € R with I running over ascending multi-indices of length k. Applying e; to both sides, we get
OZZC[(AXI (eJ) :ZC]5IJ=CJ. (1.48)
I I

Therefore, {&I | I is ascending multi-index of length k:} is a linearly independent set. Now let us
prove that this set spans Ag (V). Let f € Ax(V). We claim that
f=> f(en)a. (1.49)
I

Let g = 3, f (er)a’. We need to prove that f = g. By k-linearity and alternating property, if two
k-covectors agree on all ey where J is an ascending multi-index, then they are equal. Now,

glen)=> flena(e)) =) f(end' ;= f(e). (1.50)
T T

Therefore, f =g =3, f (er)a’. |

Corollary 1.16

If the vector space V has dimension n, then the vector space Ay(V) of k-covectors on V has
dimension (})).

Proof. An ascending multi-index I = (43,142, ...,1x), 1 <i1 < iz < -+ < i, < nis obtained by choosing
a k-element subset of {1,2,...,n}. This can be done in (}) ways. [ |

Corollary 1.17
If £ > dimV, then Ax(V) = 0.

Proof. If k > dim V = n, then in the expression

At AQ? AN NQ

with each ¢ € {1,2,...,n}, there must be a repeated i;’s, say &". Then @" A@" arises in the expression
A"t A@ZA---ANa'*k. But @” A@" = 0 by Corollary 1.9. Hence, &t Aa*2 A---Aa = 0. Therefore, the
basis set of Ax(V) is empty, meaning Ax(V) = 0. [ ]

17



2 Differential Forms on R"

Given an open set U C R" and p € U, T,,U is the set of tangent vectors at p € U is identified with
the point derivations of Cp° (germs of smooth functions at p), i.e. a tangent vector X, € T,U is a
map X : C° — R such that X is R-linear:

Xp(af +9) = a(Xpf) + Xpg; (2.1)
and satisfies the Leibniz condition:

Xp (F9) = (Xpf) 9(p) + f(p) (Xpg).-

In contrast to the notion of point derivation, there is this notion of derivation of aa algebra. If X
is a C'* vector field on an open subset U C R", i.e. X € X (U), and f is a C* function on U, i.e.
feC>®({U), then X f € C°(U) defined by

(Xf) (p) = Xpf-

Remember that f in (2.1) and (2) is a representative of an equivalence class, the equivalence class
of germs of C°° functions at p € U. These equivalence classes constitute Cp°(U). It is of course
an R-algebra. While in (2), f € C*°(U), the algebra of C*° functions on U with no reference of p
whatsoever.

From the discussion above, a C* vector field X gives rise to an R-linear map C°(U) — C*°(U) by
f — X f that additionally has to satisfy the following Leibniz condition:

X(fg)=(X[fg+ f(Xg). (2.2)

Note that a derivation at p is not a derivation of the algebra C°. A derivation at p is a map from
Cp° — R that satisfies (2), while a derivation of the algebra C,° is supposed to be a map from C}° to
itself obeying Leibniz condition.

§2.1 1-form

From any C* function f : U — R, one can construct a 1-form (dual notion of C'* vector field) df,
the restriction of which to a given point p € U yields a covector (df )p € T, U, the dual space of T,U,
in the following way:

(df)p (Xp) =Xpf (2.3)

Proposition 2.1

If z', 22, ..., 2" are the standard coordinates on R”, then at each point p € R®,

{(@a1) ) (a%) oo™, }

is the basis for the cotangent space T7R"™ dual to the basis {8‘21 d

A s
P ox

} for the tangent
P

space T,R"™.

Proof. (d:vi)p : T;R™ — R is a linear map for each i. Now,

. 0 0
(dx)p<6gﬂp>:83ﬂ

18
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2 Differential Forms on R" 19

9 }for
P
[ |

Therefore, {(dxl)p , (d:cQ)p e, (dx”)p} is the basis of T;R™ dual to the basis { 8%1
T,R".

p’ T Bam

If w is a 1-form on an open subset U C R"™, then by Proposition 2.1, there is a linear combination
n .
wp =Y ai(p) (dwz) ; (2.5)
i=1 P
for some a;(p) € R. As p varies over U, the coefficients a; become functions on U, and we may write
n .
w=>Y ada". (2.6)
i=1

The 1-form w is said to be C* on U if the coefficient functions a; are all C'*° functions on U.

Proposition 2.2 (The differential in terms of coordinates)
If f:U — R is a C* function on an open set U C R"”, then

df Z 81‘2

Proof. By Proposition 2.1, at each point p € U,

(@, = > a) (dz?) . (2.7)
=1

for some constants a;(p) depending on p. Thus
n .
df = Zai dz’, (2.8)
i=1

for some functions a; on U. To evaluate aj, apply both sides of (2.8) to the coordinate vector field
o .
Oz *

( > Zal da’ < ) Zal j = aj. (2.9)

On the other hand, using (df), (Xp) = X, f = (Xf) (p), we get (df) (X) = X[. So

0 af
df (6w1) oxd (2.10)
Therefore, a; = %. Hence,
df=>" gfl dz’ (2.11)
i=1
[ |

(2.11) tells us that df will be a C*° 1-form if gj,- is C*° on U. Hence, it is sufficient to have f as a
C®® function on U in order to have df as a C'"*° 1-form.

19



2 Differential Forms on R" 20

§2.2 Differential k-forms

A differential form w of degree k (or a k-form) on an open subset U C R™ is a map that assigns to
each point p € U, an alternating k-linear function on the tangent space T,R", i.e.

wp € Ag (T,R™) .

By Proposition 1.15, a basis for Ay (T,R") is

(de)p = (dxil)p A (dx@)p Ao A (dxik)p ,

where 1 <141 < ig < --- < it < n. Therefore, at each point p € U, wj, is a linear combination
_ I
wp = Zaj(p) (d:): )p, (2.12)
I

and a k-form w on U is a linear combination

w = Za[ da’, (2.13)
I

with function coefficients ay : U — R. We say that a k-form w is smooth on U if all the coeflieicnts
ay are C*° functions on U.

Denote by QF(U) the vector space of C™ k-forms on U. A O-form on U assigns to each point
p € U an element of Ay (IT,R™) = R. Thus a 0-form on U is simply a real-valued function on U, and
Q0 (U) = C=(U).

Since one can multiply a C* k-form by a C™ function on U from the left, the set Q¥ (U) of C*° k-
forms on U is both a real vector space and a C*°(U)-module. With the wedge product as multiplication,
the direct sum

2'(U) = @)
k=0

becomes an algebra over R as well as a module over C*°(U). As an algebra, it is anticommutative and
associative.

Example 2.1. Let z,v, z be the coordinates on R3. The C* 1-forms on R? are
P(z,y,z) de + Q (z,y,2) dy + R (z,y,2) dz,
where P, Q, R range over all C*> functions on R3. The C* 2-forms are
A(z,y,z) dyNdz+ B(z,y,2) de Adz + C (z,y,2) dz Ady;

and the C*° 1-forms are
a(z,y,z) de Ady Adz.

Example 2.2 (A basis for 3-covectors). Let x!, 22 23 2% be the standard coordinates on R*, and
p € R%. A basis for Az (T,R?) is

{(dxl)pA (a2) A (@) | (at) A (as?) n(as?) |
(ast) A (a®) A (at) L (@0%) A (a%) A (ast) .

So dim (A3 (T,R™)) = 4.

20



2 Differential Forms on R" 21

§2.3 Exterior Derivative
Before defining exterior derivative of a C*° k-form on an open subset U C R", we first define it on
O-forms. The exterior derivative of a C'*° function f € C*°(U) is its differential:

n

Z

(V).

Definition 2.1 (Exterior Derivative). If w = >, a; dz! € w®(U), then its exterior derivative is
defined as follows:

dw =Y da; Ada’ = Z (Z dar dxﬂ) Adz! e QFFL(D). (2.14)
I

Example 2.3. Let w be the 1 form fdx + gdy on R?, where f and g are C* functions on R?. Let us
: _ of _ of
write fp = 5, and f, = oy Then

dw=df Adz +dg Ady
= (fzdz + fydy) A dz + (gpdz + gydy) A dy
= —fydex ANdy + g, dz A dy
= (gm_fy)dx/\dy-

Definition 2.2 (Graded Algebra). An algebra A over a field K is said to be graded if it can be
written as a direct sum -
A=(pAF
k=0

of vector spaces over K so that the multiplication map sends A* x A! to A*+,

The notation A = @2, A* means that each element of A is uniquely a finite sum
a = Gy + Qiy + 0+ gy,
where a;; € A,

Example 2.4. The polynomial algebra
[e.e]
=P A*
k=0

with A* being the vector space of homogenous polynomials of degree k in 2 and y. Observe that the 0
polynomial is trivially homogenous of any degree, and hence belongs to A¥ for all & > 0. Multiplication
of degree k homogenous polynomial with a degree [ homogenous polynomial in x and y will result in
a homogenous polynomial of degree k + [ in x and y.

Example 2.5. The algebra Q*(U) of C* differential forms on U is also graded by the degree of
differential forms. Each QF(U) is a vector space. Multiplication of differential forms is defined by
wedge product between them. The wedge product of a degree k differential form on U with a degree
[ differential form results in a degree k + [ differential form.

21



2 Differential Forms on R" 22

Definition 2.3 (Anti-derivation). Let A = @2, A* be a graded algebra over a field K. An anti-
derivation of the graded algebra A is a K-linear map D : A — A such that for w € A* and
7 € Al, one has

D (wr) = (Dw) 7 + (—1)*w (D7). (2.15)
If the antiderivation D sends w € AF to Dw € A*™ we say that it is an antiderivation of degree
m.

Proposition 2.3 (i) The exterior derivative d : Q*(U) — Q*(U) is an antiderivation of degree
1:
d(wAT) = (dw) AT+ (=1)%B“w A drT. (2.16)

(ii) d? = 0.
(iii) If f € Q°(U) = C*°(U) and X € X(U) (the space of C* vector fields), then (df)(X) = X f.

Proof. (i) Since the exterior derivative operator d : QF(U) — QFF1(U) is linear, it suffices to check
the equality (2.16) for w = f da! and 7 = g da’ with I = (i1,...,4;) and J = (j1,..., ;) being
strictly ascending multi-indices.

dwAT)=d (fgde /\d:):‘])

)d NG N

I

s
I
—

Ms IIM:

@
Il
MR

- gdat A dz! A da” +Zf 8—gdﬂc Adat A dz?

*da' A da' A gda” +Zagdaz A fdz! Ada?. (2.17)

Now, in the second sum in (2.17),
and hence in the process picks out a sign (—1)¥. Therefore,

~ 99 . T J_ k 1,99 J
;wdx A fdz! Adz! = (=1)" fdz A gopdet Ada. (2.18)
Now, observe that
dw =d (fda’) :i OF 42t A da, and (2.19)
= 0%’ ’
dr = d (gdz’ I dz A da. 2.2
T (gw);xzx/\x (2.20)
Therefore,
dwAT)=dw AT+ (—DFwAdr (2.21)

(ii) Again, by R-linearity of d, it suffices to show that d?w = 0 for w = fda'.

_ i % 1
= ZZ O:Ejaxidx Adz" Adx’. (2.22)

If i = j, then dz/ Ada® = 0. If i # j, then % is symmetric in i and j, but dz? A dz® is
alternating in 7 and j. Therefore, the terms with i # j pair up and cancel out.

22



2 Differential Forms on R" 23

(iii) Let X =01, a’ Then

8wL

= zn:ai fz =X/ (2.23)

Proposition 2.4 (Characterization of exterior derivative)

The 3 properties of Proposition 2.3 uniquely characterize exterior derivative on an open set
U C R™ In other words, if D : Q*(U) — Q*(U) is an antiderivation of degree 1 such that D? = 0
and for f € C®(U) and X € X(U), (Df)(X) = Xf, then D =d.

Proof. Since every k-form on U is a sum of terms such as fdz® A dz® A --- A dz?, by linearity of d,
it suffices to show that D = d on a k-form of this type. Applying property (iii) for f = 2%, one has

Da' (X) = X (7).

Writing X =37, 88], we get

Therefore, ‘ ‘
Dz' = dx". (2.24)

Now,
D(fda;“ A--.Adxik) :D(fD:c“ A...Apxik)
=Df A(Dz A+ A Da™) 4 (=1)° fD (Da A-o- A D). (2.25)
Now, since df (X) = X f = Df(X) for any X € X(U), df = Df. Furthermore, D (Dxz') = 0, and
D (Da" A--- A Da™) = D™ ADa' A+ A Da's — Da™* A D (Da’ A+« A Da'*)
= —Da"" A D (Da™ A+ A Da'v). (2.26)

Therefore, by induction on k,

D (D:c“ A A Dmik) = 0. (2.27)
Hence, from (2.25),
D (fdxil A---/\da:ik) =Df A (Da:i1 A---ADa:ik)
—df A (dgc"1 A---Admik)
=d(fda"™ Ao Adai). (2.28)

So D =d on Q*(U). [ |
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2 Differential Forms on R" 24

Closed Forms and Exact Forms

A k-form w on U is closed if dw = 0; it’s exact if there is a (k — 1)-form 7 on U such that w = dr.
Since d? = 0, every exact form is closed. But in general, a closed form may fail to be exact. We will
see how non-exact closed forms capture the geometry of a manifold when we do de Rham cohomology
on a manifold.

Example 2.6. Define a 1-form w on R?\ {0} by

Then w is closed.

[e.@]
A collection of vector spaces {Vk }k;fo with linear maps di, : V¥ — V¥t such that dpy10dp =0
is called a differential complex or a cochain complex. For aany open set U C R", the exterior
derivative d makes the vector space Q*(U) of C*° forms on U into a cochain complex, called the de

Rham complex on U:

Qo) S ot L) S -

The closed forms are precisely the elements of the kernel of d and the exact forms are the elements of
the image of d. In the language of cohomology, d is also called the coboundary operator.

§2.4 Applications to Vector Calculus

The theory of differential forms unifies many theorems in vector calculus on R3. A vector valued
function on R? is the same as a vector field. Recall the 3 operators on scalar and vector-valued
functions on R3.

{scalar function} grad, {vector function} cur, {vector function} v, {scalar function} .

P
Let f be a scalar function and |[Q| be a vector field on R?, where each of P,Q, R is a scalar function
R
on R3. Then
Jz
grad f = | fy |,
e
P R, - Q.
curl |Q| = | P, — R, |, (2.30)
R Q:— Py
P
div |Q| = P, +Qy + R..
R
Then one has the following results.
Proposition 2.5
0
curl (grad f) = (0] . (2.31)
0
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Proposition 2.6

P
div | curl |Q| | =0.

(2.32)
R

Proposition 2.7

On R3, a vector field F (z,v, 2) is the gradient of some scalar function if and only if curl F = 0.

A 1-form on R3 can be written as

P(:L',y,z) dx + Q (xay7 Z) dy + R(l’,y,Z) dz.
P
This 1-form on R? can be identified with the vector field |Q].

R
Similarly, the 2-forms on R? given by

A(z,y,z)dy ANdz + B (x,y,z)dz Adz + C (x,y,z)dz A dy
A
can be identified with the vector field | B| on R3.
C

In terms of these identifications, the exterior derivative of a O-form f (scalar function) is

S N |
df = awdx+ ayder azdz,

which can be identified with the vector field

= grad f.

Q| Q||
N‘*@i ‘%&2 ‘*ﬁ

The exterior derivative of a 1-form on R? is

d (Pdz + Qdy + Rdz)

P P
= a—dy/\dx—i—a—dz/\dx—i—8—de/\dy+8—de/\dy+a—Rdx/\dz+a—Rdy/\dz
oy 0z Ox 0z Ox oy

= (Ry—Q.)dy ANdz + (P, — Ry)dz Adx + (Qp — Py) dz A dy,

which corresponds to

R, - Q. P
P,—R,| =curl |Q
Qx_Py R

The exterior derivative of a 2-form is

d (Ady Adz + Bdz Adz + Cdz A dy)
= Ayde ANdy Adz + Bydy Adz Ada 4+ C.dz Adx Ady
= (A; + By + C,)dz Ady A dz,
which corresponds to

A
Ay + B, +C. =div |B| .
C
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In summary, exterior derivative d on O-forms is identified with gradient; exterior derivative d on
1-forms is identified with curl; exterior derivative d on 2-forms is identified with divergence. Using

de Rham complex on U:

QU) S o' ) S 02w S dw).

c=(U) 224 x () L x ) & o).
4 I
Remark 2.1. Proposition 2.5 and Proposition 2.6 express the property d? = 0 of exterior deriva-
P
tive. A vector field | Q| is the gradient of a C*° function f if and only if the corresponding 1-form
R

Pdz + Qdy + Rdz is df. Proposition 2.7 expresses the fact that a 1-form on R? is exact if and
only if it is closed. It’s worth remarking at this stage that Proposition 2.7 need not hold true on

a region other than R?, as the following well-known example from calculus suggests.
. J

Example 2.7. Suppose U = R3 \ {z-axis}, and F (z,, z) is the vector field

—Y
x2 +y2
x

2 +y2

on U. Then curl F = 0. Indeed,

[ 9 )
dy (0) ~ 95z ($2_T_y2>
el — o)
curl F = = (ﬂfyz) - = (0)
9 z _ 9 (_zu
| Oz \ x2+y? Oy (12+y2>
i 0
_ 0
(:):2+y2)7x 2x . 7(12+y2)+y-2y
L (@%+y2)° (z2+y2)*
[0
_0

But F is not the gradient of a C*° function on U. Recall the theorem from vector calculus that the line
integral of the gradient of a function along a curve gives the total change in the value of the function
from the start to the end of the curve. In other words, if r : [a,b] — R? is a curve and f : R® — R is
a scalar function, then

b
| ()= ) - f e (2.33)

Then if F is the gradient of a smooth scalar function, then the line integral

dz + 5——d
j{cx2+y2 24y

over any closed curve would become 0. Let us take the closed curve to be the unit circle: x = cost,
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2 Differential Forms on R" 27

y =sint, z =0 for t € [0,27]. Then

—y I~
——dr+ 5——=d
72552‘{’?/2 x+$2+y2 Y
27 27
:/ —sintd(cost)+/ costd (sint)
0 0
2m 2m
:/ sin2tdt+/ cos® t dt
0 0
= 2m.

Hence, although curl F = 0, there is no C'*° function f on U such that F = grad f. In the language
of differential forms, the 1-form

= d —d
w 22+ 2 x+x2+y2 Y

is closed but not exact.

It turns out that whether Proposition 2.7 is true for a region U C R3 depends on the topology of U.
One measure of the failure of a closed k-form to be exact is the quotient vector space

_ {closed k-forms on U}
~ {exact k-forms on U}’

H"(U)

called the k-th de Rham cohomology of U. The generalization of Proposition 2.7 to any differential
form on R" is called the Poincaré lemma:

For k > 1, every closed k-form on R" is exact.

This statement is equivalent to the vanishing of the k-th de Rham cohomology H* (R") for k > 1.
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3 Differential Forms on Manifold

§3.1 Definition and Local Expression

Let M be a smooth manifold and p € M. The cotangent space of M at p, denoted by T7M is the
dual space of the tangent space T;, M. An element in Ty M is called a covector at p. Thus, a covector
wp € Ty M is a linear function

wp : TyM — R.

A 1-form on M is a functiion that assigns to each p € M, a covector at p.

Definition 3.1 (Differential of a function). Let f : M — R be a C*° function on a manifold M. Its
differential is defined to be the 1-form df on M such that for any p € M and X, € T,M,

(df)p (Xp) = Xpf. (3.1)

Proposition 3.1
If f: M — Risa C* function, then for p € M and X, € T,M,

0

fep (Xp) = (df)p (Xp) ohe

f(p)

Proof. Since fip (Xp) € TR, there is a real number ¢ such that

P
fop(Xp) = 2| (3.2)
PP Ozl

(Here the chart chosen on R is (R, 1r) so that x is the coordinate of this chart, i.e. =z = 1g.) To
evaluate ¢, apply both sides of (3.2) to the function x € C*° (R). Then

0
FoE)@=cg| @=c
Therefore,
= fip(Xp) (@) = Xp(zof)=X,f = (df)p (Xp), (3.3)
since © = 1. Therefore, substituting the value of ¢ into (3.2),
o (%) = (A1), (%) | (3.4
f(p)
|

Let (U,p) = (U,x',22,...,2") be a coordinate chart on M. Here x° = 1% o ¢, where 7 is the i-th
coordinate function of a vector in R™. Then the differentials dz', dz?,...,dz" are 1-forms on U.

Proposition 3.2

At each point p € U, the covectors (dxl)p yeees (da:")p form a basis for the cotangent space T, M,
dual to the basis { 6%1 IEERRE a% p} for the tangent space T,,M.
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3 Differential Forms on Manifold 29

. 0 0
(dx)p<8xjp>:8xj

So {(dxl)p b (da:”)p} is the dual basis to { 0

Proof. Observe that

#) -

Thus, every 1-form w on U can be wrotten as a linear combination

n
w = Zai dx*,
i=1

where a; are functions on U. In particular, if f is a C"*° function on M, then the 1-form df, when
restricted to U, must be a linear combination

o)

yeooy Bom
p ox

dzt

df = f:ai da’. (3.6)
i=1

If we evaluate both sides of (3.6) on %,

0 - i 0 2L

Then 9 of
%ﬂ“W%J:%f
Therefore,
df =) o7 47 (3.7)
i=1

§3.2 The Cotangent Bundle

The underlying set of the cotangent bundle is the disjoint union of the cotangent spaces at all points
of M:
T*M = | | TyM = | {p} x T; M. (3.8)
peEM peM

Let us give T*M a topology in the following way: let (U,z!,...,2") be a chart on M and p € U.
Then each wy, € TyM can be written uniquely as a linear combination

op = 3 ex o) (A

i=1
with ¢; (wp) € R. This gives rise to a bijection
$:TU — o (U) x R"
(pawp) = (SO (p) yC1 (wp) y C2 (wp) 35 Cn (wp)) :

We use this bijection ¢ to transfer the topology of ¢ (U) x R™ to T*U: a set A C T*U is said to be
open if and only if ¢ (A) is open in ¢ (U) x R™ where ¢ (U) x R™ is given the subspace topology of

R?". Now, let & = {(Ua,¢@a)},e; be the maximal atlas of M. Now, let

B = U {A] ACT"U, is openin A C T*U,}
acl
={A|ACT*U,isopenin ACT*U,, o € I}.
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3 Differential Forms on Manifold 30

It can be shown using the same technique of tangent bundle that B forms a basis for topology. We
give T* M the topology generated by the basis B. We declare A C T*M to be open if and only if there
exists a subfamily {By}, C B such that
A=JBx.
A

Furthermore, T*M has the structure of a C* manifold. An atlas for T*M is

{(T*Uaa ‘Ea)}ael :

If two coordinate open sets U, and Up intersect, suppose Uyg = Uy NUg. Then for p € U,g, each
wp € Ty M has two basis expansions:

wp = a; (dxi)p = En: bi (dyi)p. (3.9)
. =

(Here (Uy,2',...,2") and (Ug,y',...,y") are charts.) Now applying % to both sides of (3.9),
P

0

by = ;ai (dmi)p (&Uk

Therefore, $g 0 P51 : 0o (Uag) X R" — 5 (Uysp) x R™ is given by

" Oxt
= a; —
)=y p

i=1

" oxt

p,...,zaiayn

i=1

(apa (p) N S ,an) — ((@ﬁ o 90(;1) (‘Pa (p))vzai g;i
=1

)

3 o, ! is smooth, and each % is smooth. Therefore, the transition map ¢z o, ! is smooth, making
T*M a smooth manifold.

T*M is, in fact, a vector bundle of rank n over M. It has a natural projection 7 : T"M — M
given by (p,wp) — p. In terms of cotangent bundle, a 1-form on M is simply a section of the cotangent
bundle T*M, i.e. it is a map w : M — T*M such that mow = 1;. We say that a 1-form is smooth
if it is C*° as a map w : M — T* M between two manifolds.

§3.3 Characterization of Smooth 1-forms

By definition, a 1-form on an open set U C M is C*° if it is C*° as a section of the cotangent bundle
T*M over U.

Lemma 3.3

Let (U, p) = (U,a:l, ...,x™) be a chart on a manifold M. A 1-form w =3 a; dz’ on U is smooth
if and only if the coefficient functions a; are all smooth on U.

Proof. This is a special case of Proposition 9.4.2 of DG1 which states that:

Let m: E — M be a C'* vector bundle and U an open subset of M. Suppose s1,..., S, is
T

a C* frame for E over U. Then a section s = ) cjsj of ¥ over U is C* if and only if
i=1
the coefficients ¢/ are C'*° functions on U.

Here we take E to be the cotangent bundle 7%M, and {s;};_; the C*° frame for E over U to be the

coordinate 1-forms {(dz?)};_,. [ ]
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3 Differential Forms on Manifold 31

Proposition 3.4

Let w be a 1-form on a manifold M. Then the following are equivalent:
(i) wis C*.

(ii) For every point p € M, there is a chart (U, z',...,2™) about p such that if w = 1" ; a; da’
on U, then the functions a; are C*° on U.

(iii) For any chart (U, zl, ... , ") on M, if w=3", a dz’ on U, then the functions a; are C™
on U.

Proof. (ii)=-(i): By Lemma 3.3, for every point p € M, there is a chart (U, b .. ,2™) about p such
that w is smooth on U. In particular, the section w : M — T*M is smooth at p, for every p € M.
Therefore, w : M — T*M is a smooth map between manifolds.

(i)=-(iii): If w: M — T*M is a smooth map between manifolds, w is smooth at every chart of M.
Therefore, by Lemma 3.3, if w = 3" ; a; d2’ on a chart (U, A ,2™), each a; is smooth on U.

(iii)=-(ii): Obvious. [ |

Proposition 3.5

A 1-form w on a manifold M is C*° if and only if for every C* vector field X, the function w (X)
is C*° on M.

Proof. (=) Suppose w is a C*° 1-form and X is a C* vector field. Let (U, zt ... ,2™) be a chart on

M. Then
0

e (3.10)

W:Zaidxi and X:ij
i=1

i=1
for C* functions a; and & on U. Then on U, one has

w(X) = (Zaid$z> <ij8$j> :ZZaib]N’j :Zaib’, (3.11)
i=1 i=1 i=1j=1 1=1
which is a C*° function on U. Since U was chosen to be an arbitrary coordinate open set, w (X) is a
smooth function on all of M.

(«<=) Suppose w is a 1-form on M such that for every C* vector field X on M, the function w (X)
is smooth on M. For a given p € M, choose a coordinate neighborhood (U, ¢) = (U, b ,2™) about
p. Then one has

n .
w = Z a; dz’
i=1

on U. Now fix an integer j € {1,2,...,n}. We can extend the C* vector field % on U to a C®
vector field X on the whole of M that agrees with % in a neighborhood V' of p (not necessarily the
whole of U, but possibly a smaller neighborhood) contained in U (Proposition 11.1.4 of DG1). The
extended vector field is defined in the following way: let o : M — R be a C*° bump function which is
identically 1 on a neighborhood V' of p and which has support contained in U. Now, define the vector

field ¢ — X, € T; M, denoted by X, in terms of the bump function o in the following way:
if g e U,

0
Xq = {U(q) o (3.12)

0 ifggU.

The vector field X is smooth in the whole of M, as proved in Proposition 11.1.4 of DG1. Now, by the
hypothesis, w (X) is C* on M. In particular, w (X) is smooth on V. Therefore,

0

w(X) = <Z§n:1 a; dxi> (é)aﬂ) = ;n:laiéij =a;
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3 Differential Forms on Manifold 32

is smooth on V. We, therefore, see that the coefficient functions a;’s appearing in w = 31" | a; dz* are
smooth on V' C U. It means that for a given point p, we can find a chart (V, zh ... ,2"), where

T =ro gp‘v,

such that w = > aif,, dz’ on V, with each a;|,, smooth on V. Therefore, by Proposition 3.4, w is
(G [ |

§3.4 Pullback of 1-forms

Recall that the differential of a smooth map F': N — M at p € N is a linear map Fi p : T,N — Tp,y M
defined by

[Fiep (Xp)] (f) = Xp (fo F), (3.13)

where f € C;?(p)(M ). Indeed, fo F' € C3°(N). Analogously, the codifferential (the dual of a

differential) at F'(p) € M is a linear map
F*’p : T;‘(p)M — T;N

One observes that the differential F} ;, pushes forward a tangent vector at p € N while the codifferential
FP pulls back a covector from T7 M at F(p) € M to Ty N.

Remark 3.1. Note that a vector field, in general, cannot be pushed forward under a smooth map
F:N — M. Suppose F': N — M is a smooth map of manifolds. Also suppose F(p) = F(q) =
z € M so that F' is not injective. Now, the differentials

Fop: T,N —=T,M and F, 4 : T,N = T,M

are linear maps. Now, let X € X(IN) be a C* vector field on N so that X, under F; , is pushed
forward to Fi ) (X,) € T,M and X, is pushed forward to Fi ,(X,) € T, M under F ,. There is
no reason for F, , (X,) and F 4 (X,) to be the same tangent vector in 7, M. In other words, in
general,

Fop (Xp) # Fag (Xq),

so that z — Fyp(X,) :=Y, € T.M and z — F,4(X,) := Y] € T,M are distinct vector fields
on M, denoted by Y and Y”, respectively. Therefore, if there were push forward of vector fields
F, : X(N) — X(M) associated with the non-injective smooth map F' : N — M, there is an
ambiguity regarding which vector field X gets mapped to.

Furthermore, if F' is not surjective, there is z € M such that z # F(p) for any p € N. In that
case as well, defining the push forward vector field F,(X) at the point z is impossible. However,

when F': N — M is a diffeomorphism, one can define the push forward of a vector field.
\ J

Contrary to the non-existence of push forward of a vector field associated with a generic smooth map
F: N — M, one can always talk about pullback of a 1-form w on M:

(F*w), (Xp) = wp(p) (Fip (Xp)) - (3.14)

Here, w € QY(M), Xp € T,N, p € N. Note that (F*w)p is simply the image of the covector wp(,) €

T}(p)M under the codifferential F*P : T;(p)M — T, N. In other words,

(F*w), = F*" (wpg)) - (3.15)
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4 Differential k-forms

§4.1 Definition and Local Expression

We denoted by Aj (V) the vector space of alternating k-tensors on V. We have also seen that if
{@l,...,a"} is a basis for 1-tensors on V, then a basis element of Ay (V) is

G AG2 A A G,

where 1 <4y <ig < --- <14 <n. We apply this construction to the tangent space T),M of a manifold
M at a point p € M. The vector space Ay (T,M), usually denoted by AF (T;M ), is the space of all
alternating k-tensors on the tangent space T, M.

Definition 4.1 (Differential k-form). A differential k-form on a manifold M is a function w that
assigns to each point p € M, a k-covector w), € A (T ! ) An n-from on a manifold of dimension
n is called a top degree form.

Example 4.1. On R", at each point p, there is a standard basis for the tangent space T, R":
9
orl o
Let {(drl)p e (dr")p} be the dual basis of T;R™.
) 5
p

(@), (30

As p varies over R”, we get differential forms dr',...,dr™ on R”. By Proposition 1.15, a basis element
of alternating k-tensors A* (T; R”) is

(dril)p A (drb)p A A (dri’“)p,

where 1 <41 < ig < --- < i < n. If wis a k-form on R", then at each point p € R", w, is the
following linear combination:

wp = Z @i, iy, (dr“)p A (driz)p ARERWA (dri")p. (4.1)

1< <9< <ip<n

0

)
p Or

9
-

p

Omitting the point p, we write

w= Z iy APE AP A A drE (4.2)

1<y <ig<-<ip<nm

In the expression above, a;,...;, are functions on R". To simplify the notations, we use multi-indices
to write (4.2) as

w= Zal dr!, (4.3)
I

where drf = drt Adr2 A--- Adrtk, and T = (1,49, ...,1x) is a strictly ascending multi-index.
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4 Differential k-forms 34

Suppose (U,z',...,2") is a coordinate chart on a manifold M. We have already defined the 1-
forms dz',...,dz™ on U. Since at each point p € U, {(dxl)p,...,(dx”)p} is a basis for T, M, by

Proposition 1.15, a basis for A* (T; R”) is

(dxil)p A (d:ziQ)p AREEWAN (dxi’“>p,

where 1 <141 < i9 < --- <1 < n. Thus, locally a k-form on U will be a linear combination

w= Zal dxl, (4.4)
I

where dz! = dz™ Adz2 A--- Ada'k, [ = (41,92, ...,1k) is a strictly ascending multi-index, and a; are
functions on U.

§4.2 The Bundle Point of View

Let V be a real vector space. Another common notation for the vector space Ai(V) of alternating
k-linear functionos on V is A* (V*).

and so on. Now, AF (T*M) is defined to be the disjoint union of the vector spaces A* (T;M) as p
varies over M. So

A (T M) = || A (TyM) = | ] A (T,M)

peEM peM
= U o} x 4 (T, M), (4.5)
peEM

which is the set of all alternating k-tensors at all points of M. This set is called the k-th exterior
power of the cotangent bundle T M.

If (U, ¢) is a coordinate chart on M, then there is a bijection @ : A*¥ (T*U) — ¢ (U) x R(:) defined
as follows: a generic element of A* (T*U) is (p,w,), where w, € A* (T, U ) Then wy, is a unique linear
combination

wp =Y _ay(p)da’,
I

where I runs over the set of strictly ascending multi-indices of length k. There are (Z) many such
multi-indices. If we fix a labeling of the multi-indices once and for all, then we have a (})-tuple (ar);.
Then we define

Z(pwy) = (), (ar);) € o (U) x RE).

Thus, A¥ (T*U) is in a bijective correspondence with ¢ (U) x R(:). Using this bijective correspondence,

one transfers the topology of ¢ (U) X R() to AF (T*U). By varying the open set U in the charts
contained in the maximal atlas of M, one can obtain a basis that generates the topology on the whole

of A¥ (T*M).
AF (T*M) is defined to be the disjoint union of the vector spaces A* (T » M ) as p varies over M. So

AF (T M) = || AF (M) (4.6)
peEM
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4 Differential k-forms 35

If (U, ) is a coordinate chart on M, then there is a bijection @ : A* (T*U) — ¢ (U) x R(:) defined as
follows: a generic element of A* (T*U) is (p,w,), where w, € A* (TI;k U ) Then w, is a unique linear
combination

wp =Y _ar(p)da’,
I

where I runs over the set of strictly ascending multi-indices of length k. There are (}) many such
multi-indices. If we fix a labeling of the multi-indices once and for all, then we have a (})-tuple (ar);.
Then we define

B (pwy) = (9 (p), (ar);) € o (U) x RG).

Thus, A* (T*U) is in a bijective correspondence with ¢ (U) x R Using this bijective correspondence,

one transfers the topology of ¢ (U) X R() o AF (T*U). By varying the open set U in the charts
contained in the maximal atlas of M, one can obtain a basis that generates the topology on the whole
of A* (T*M).

First, let us verify that A* (T* M) is second countable. By Lemma 9.1.8 of DG1, a manifold M has
a countable basis consisting of coordinate open sets. Let {U;}, be a countable basis for M consisting
of coordinate open sets. Let ¢; be the coordinate map on U;. We have shown that AF (T*U;) is
homeomorphic to ¢; (U;) X R(Z), which is an open subset of R+, Hence, ¢; (U;) % R(}) is secoond
countable. Now, homeomorphism preserves second countability, so A* (T*U;) is also second countable.

For each 4, choose a countable basis {B;;}, for A¥ (T*U;). Then {B;; }; j is also countable. Now we
need to show that {B;;}, ; is a basis for A* (T*M). Let A C A* (T*M) be open and take (p,w,) € A.
We need to show the existence of B; ; such that (p,w,) € B; ; C A.

Since {U;} is a basis for M, p € U; for some i. Then

(p,wp) € {p} x A (T;Ui) C | {p} x A" (T;Ui) =AM (T*T;) .
peU;

Therefore, (p,w,) € AN A* (T*U;).

We have used the topology on A¥ (T*U,), for U, being a coordinate open set of M, to define
the topology on A* (T*M). So A¥ (T*U,,) is a subspace of A¥ (T*M). Since A is open in A¥ (T*M),
A := ANAF (T*U;) is open in A¥ (T*U;). Now, A is open in A (T*U;) and (p,w,) € A = ANAF (T*U;).
Since {Bj;}, is a basis for A* (T*U;), there exists some B; ; such that

(p,wp) €EBi; CA=ANA(T'U;) CA = (p,w,) € Bij CA.
Therefore, the countable collection {B; ;}, jisa basis for TM.

Now we shall prove that A* (T*M) is Hausdorff. Let (p,w,) and (g,7,) be distinct points of
TM.

4 N
Case 1: p # q.

Since M is Hausdorff, there exist disjoint open subsets U; and V; of M that contain p and g,
respectively. Furthermore, there exists coordinate open sets Us and V5 around p and ¢, respectively.
Then U = Uy NUz and V = Vi NV, are disjoint coordinate open sets that contain p and g,
respectively.

(p,wp) € {p} x A* (T3 M) = {p} x A* (T;U) € A" (T°U) .

Similarly, (q,7,) € A* (T*V). Since UNV = @, A* (T*U) N A* (T*V) = @. Therefore, A¥ (T*U)
and A¥ (T*V) are the disjoint open subsets of A* (T*M) that contain (p,w,) and (g, 7,), respec-

tively.
. J
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4 N\
Case 2: p=gq.

Let (U, ) be a coordinate chart containing p. Then (p,w,) and (p,7,) are distinct points on
AF (T*U), which is homeomorphic to ¢ (U) x RG). e (U) xR is Hausdorff, hence so is A* (T*U).
Therefore, (p,w,) and (p,7,) can be separated by open subsets of A¥ (T*U), which are also open

subset of AF (T*M).
\ J

Therefore, A* (T*M) is Hausdorff.

So we have verified that A¥ (T*M) is second countable, Hausdorff, and locally Euclidean. Now we
just have to exhibit an atlas on A* (T*M). Let {(Uq, a)},c; be an atlas for M. We are now going

to show that {(Ak (T*U,) ,¢a>} o is an atlas for A¥ (T*M). Clearly,
(6

U @U) = U U o} x A (150

acl a€cl pely

= U U {p}x Ak (T;M)

a€l pelUy

= U W xar (M)

peUaeI Ua

= U{p} x A (T M) = AF (17 M),
M

So { (Ak (T*U,) ,¢a>} o indeed covers the whole of A¥ (T*M). Now we need to show that the charts
are compatible. Let (U,p) = (U,z',...,2") and (V,9) = (V,y',...,y") be two charts on M such
that U NV # @. We need to show that (Ak (TU) ,@) and (Ak (T*V) ,@) are compatible charts on
AR (T*M), i.e. the map ¢ o B! is C°.

Dop lipUNnV)=pWnV)xRW S5 @wnv)=¢@nv) xR,

Let’s take a point (¢ (p), (ar);) € p(UNV) x R(Z), where p € UNV and ay are real numbers. Then
7! takes it to

(3 (), ) = (1 S (a5, (007) oo () ).

I

Now, we can write the k-covector w, = > ;ar (dm1> in the chart (V,y!,...,y") as follows:
p

wp = ar (dxf)p = b, (dyJ)p =30, (dyjl)p A (dyjz)p A A (dyjk)p. (4.7)
I J J

Now let us evaluate both sides of (4.7) to the tangent vectors 381 ooy | to get:
Yyl lp 'k lp
) 4 o
RHS = by (dy?*) A---A (dy'* .. byo' K = b, 4.8
;J(y)p (y>p<8yllp 8ylk> ;J K (4.8)
where K = (Iy,...,1l) is a strictly ascending multi-index.
k
- - 0 Ox'h
= (20 R i
LHS = zj:al (dx )p A (dx k)p <8yll T 3ylk ) Zal det [ l@] . (4.9)
dy,do=1
Therefore,
"
Oz
b =3 ay det [ xldll . (4.10)
1 Y2 | 4 g1
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Now, in the action of ¥ o 1

dy k
(¢ (), (@) = @ (1), bx)) = | (or™) (¢ Zafdet [%d] (41
Y | 4 dy1 K

1 o ¢~ ! is smooth, the other components are also smooth, since they are just linear combination
of smooth maps. Therefore, 1) o ! is C™, i.e. the charts (Ak (T*U) ,@) and (Ak (T*V) ,E) are

compatible. This proves that {(Ak (T*U,) ,@a)} o is an atlas for A* (T*M). So A* (T*M) is a
smooth manifold. :

A* (T*M) can, in fact, be showen to be a C*° vector bundle of rank (}) over M, i.e. 7 : AF (T*U) —
M is a C*™ vector bundle of rank (}) over M. Let m : A¥ (T*M) — M be the map that takes (p,wp)

top € M. Then (Ak (T*M), M, 7r> is a vector bundle of rank r = (7).
Here, 771 (p) = {p} x AF (T;M), which is a vector space of dimension (}). Each p € M is

contained in a coordinate chart (U, ¢), and we have a chart (Ak (T*U) ,E) on A¥ (T*M). So we have
a diffeomorphism

G L (U) = A (T°U) = o (U) x RG).
U) is diffeomorphic to U, via ¢~ !. Therefore, we have the following diffeomorphism
2 2

b=plx1 yop:nt(U) = UxRG).
r(3)
This diffeomorphism is fibre-preserving, since the following diagram commutes:

AR (T U) — 5 U xRG)

ﬂ\/

Bl ooy s Ha) = {a} x A (T0) = {g} x R

Now, for every q € U,

is a vector space isomorphism. Therefore, (Ak (T*M), M, 7r) is indeed a vector bundle of rank r = (Z)

A differential k-form is a section of this vector bundle. We define a k-form to be C if it is C*° as
a section of the vector bundle A* (T*M).

Notation. If 7 : E — M is a C'"° vector bundle, then the vector space of C'*° sections of F is denoted
by I'(E), or T'(M, E). The vector space of all C* k-forms, i.e. all C* sections of the bundle A* (T* M)
is usually denoted by QF (M). Thus,

QF (M) =T (AF(T*M)) =T (M, AF (T*M)) .

Lemma 4.1

Let (U,xl, ...,a™) be a chart on a manifold M. A k-form w = S ardz! on U is smooth if and
only if the coefficient functions a; are all smooth on U.

Proof. A k-form w is just a section of this vector bundle. Now, given a chart (U,z,...,2") on M, the
collection {de }1 of sections (where I runs over the set of strictly ascending multi-indices of length

k) is a smooth frame, since the collection {(dxl ) }
P
Proposition 9.4.2 of DG1, a section

forms a basis for A* (T;M ) Therefore, by
I

w:ZaIde‘I
I

of A¥(T*M) over U is C™ if and only if the coefficients a; are C* functions on U. [ |
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Proposition 4.2 (Characterization of a smooth k-form)

Let w be a k-form on a manifold M. The following are equivalent:
(i) The k-form w is C*° on M.

(ii) The manifold M has an atlas such that on every chart (U, ¢) = (U, zl, ... ,2™) in the atlas,

the coefficients a; of w = " ay da! relative to the coordinate frame {dxl }I are all C°.

(iii) On every chart (U, ¢) = (U,z?,...,2") on M, the coefficients a; of w = 3" a; dz! relative
to the coordinate frame {da:l }I are all C*°.

(iv) For any k smooth vector fields X1, ..., X on M, the function w (X1,...,Xy) is C*° on M

Proof. (ii)=(i): By Lemma 4.1, for every point p € M, there is a chart (U,z!,...,2™) about p such
that w is smooth on U. In particular, the section w : M — AF (T*M) is smooth at p, for every p € M.
Therefore, w : M — T*M is a smooth map between manifolds.

(i)=-(iii): If w: M — T*M is a smooth map between manifolds, w is smooth at every chart of M.
Therefore, by Lemma 4.1, if w = )";ay da! on a chart U, zt .. z™), each a; is smooth on U.

(iii)=-(ii): Obvious.

(iii)=>(iv): Given a chart (U, p) = (U,z!,...,2"), w = 3 ;ardz!, and these coefficient functions
aj are all smooth. Suppose we are given any k smooth vector fields X1, Xo,..., X on M. Then on
U,

X; = Z b — a - (4.12)

where each bg are smooth functions on U. Therefore,

w(Xy,..., X)) = (Zaldxl> (X1,...,X3)
I
= (Zaldx“/\..wdxik) (X1,...,Xp)
I
=>ar Y (" @@ da’) (X0, Xo (k).
I

ocESk

Now, using (4.12),

, . LA 0
w(Xy,...,Xg) = Za[ Z (dq;“ R ® dxlk) <Z ba(l)ale cey Z ‘Tk(k)agjjk)
1 oSy Jj1=1 Jr=1
n . . . 0 0
_ Jl Jk i . i
ST X 5 et o) ()
I €Sk J15-Jk=1
- Z ar bjl( NI ‘bff(k)(siljl S0,
0ESk Jiy-Jk=1
= Z Z albll bZk )
I oeSk
which is a sum of product of smooth functions, hence smooth. Therefore, w (X1, ..., Xy) is smooth
on U. Since U is an arbitrary coordinate open set of M, w (X1, ..., X)) is smooth on the whole M.
(iv)=-(ii): Take p € M, and let (U, p) = (U, x* z™) be a chart about p. For eachj=1,2,...,n

we can extend the vector field % toa C* Vector ﬁeld X that agrees with 8 5= in a neighborhood V'
of p contained in U (V is not necessarily the whole of U, but possibly a smaller neighborhood).
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4 Differential k-forms 39

On V, we can express w as

w=> ardi, (4.13)
1

where 7! = o cp|v = a:i|v. Fix a strictly ascending multi-index J = (41, j2, ..., ji) of length k. Then
w(Xj,,...,Xj,) is smooth on M, by hypothesis. Now, on V,

0 0
Z ~I
(A)(le,...,XjQ):<Ia[d$>(w,...,m>
S (a5 N B

i i 0 0
:;CL[ <dx1/\/\dxk) (W,,ax]k),

since 2’ is nothing but 2 restricted to V. Now,

. . B B .

w(Xj,. .., Xjy) = ;CL[ (dﬂ1 /\--~/\dazlk> (8:311""’%) = ;CL[{S J=ay. (4.14)
Therefore, a; is smooth on V. So on the chart (V, zh ..., "), if we writew = Y ay dz!, the coefficient
functions a are all smooth. Around each point p, we can find such a chart (V,z!,...,7"). [ |

Example 4.2. We defined the 0-tensors and the 0-covectors as constants, i.e. for a real vector space
V, Ap(V) = Lo(V) = R. Now, recall that

AT M) = {p} x A* (TyM).
peEM

Since AY (T; M ) = R for every p € M, one has

A(T*M)= | {p} xR=M xR (4.15)
peEM
Hence,
Q" (M) =T (A°(T*M)) =T (M, M x R). (4.16)

A C®° section of the 0-th exterior power of the tangent bundle T*M is nothing but a C'°° sectio of the
globally trivial C* vector bundle M x R over M. Such a section maps p € M to a pair (p,o (p)) with
o (p) € R. Therefore, such a section is nothing but a smooth assignment p — o (p), i.e. o € C*(M,R).
So

QY (M) =T (M,M x R) = C>® (M,R).

§4.3 Pullback of k-forms

Let F': N — M be a smooth map of manifolds. Recall that a 1-form w € Q(M) can be pulled back
to Q'(N) via the pullback F* : Q'(M) — Q(N) defined by

(F*w), (Xp) = wp(p) (Fip (Xp)) - (4.17)

For 0-forms, i.e. functions, the pullback is defined by composition:

LA VN SN -
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4 Differential k-forms 40

Given f € C* (M, R), its pullback is defined to be
F*(f)y=foF € C*(N,R), (4.18)

so that indeed F™* : QY (M) — Q0 (N).
For a k-form w on M, we define its pullback F*w as follows: if p € N and X;,Xf,, . ,X[]f € T,N
are k tangent vectors, then

(Frw), (X5, X2, Xp) = wrg) (Fep (X5)  Fep (X2) 1, Py (X5)) - (4.19)

Example 4.3. Let U C M be open, and ¢ : U — M be the inclusion map. For a smooth 0-form on
M, i.e. a smooth function f: M — R, its pullback under ¢* is

L*f:fOL:f|U. (4.20)
For a k-form w on M, its pullback +*w is also given by restriction of domain. Indeed, for p € U and

Xy, X2, X} e T,U=T,M, 1., X}, = X}. So

(L*w)p (X;, Xg, . X;f) = W,(p) (L*yp (X;) s lip (X]f))
=wy (Xp, X2, X}).

Therefore,
(V'w), = wp, (4.21)

for p € U. As a result, *w = w’U.

Proposition 4.3 (Linearity of pullback)
Let FF: N — M be a C* map. If w, 7 are k-forms on M and « is a real number, then

(i) F*(w+71)=F*w+ F*r.

(ii)) F* (aw) = a F*w.

Proof. Suppose F' : N — M is C*°. Then the pullback F™* : Q*(M) — Q*(N) is defined as follows: if
w € QF(M), F*w € QF(N) is defined as:

* 1 k 1 k
(Fw), (X} XE) = wpgy (FopXh . FopXE) (4.22)
for p € N, and XI’; € T,N.
k 1 k
(a) For w,7 € Q%(M) and X,,..., X € TN,
(F*(w+7), (X3, XE) = @+ 7)pg) (FepXps o FepXy)
= (Wr( + TP (FepXps s Pep X))
1 k 1 k
- wF(p) (F*,poy L 7F*,po) + TF(]J) (F*7po7 [ ,F*prp>
* 2 k * 2 k
= (Frw), (X2, X5) + (F*7), (X2,..., X})

Therefore,
F*(w+7)=F'w+ F*r. (4.23)
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(b) For a € Rand X,..., X} € T,N,

(F*(aw)), (X,}, .. ,X];) = (aw) p(p) (F*J,X;, .. ,F*,pXI’f)
= awp() (FupXp, - FupX))
=a- (F'w), (X;, - ,X;f) .

Therefore,
F*aw) = aF*w. (4.24)

§4.4 The Wedge Product

If w € O(M) and 7 € Q' (M), then for any p € M, w, € AF (T;M) and 7, € Al (T;M) and

wp A € AFF (T;M). Then we define the wedge product of w and 7 to be the (k 4 [)-form w A 7
such that
(WAT), =wp ATp. (4.25)

Proposition 4.4

If w and 7 are C'°° forms on M, then so is w A 7.
Proof. Let (U,z',...,2") be a chart on M. On U,

w:ZaIdxl, T:ijdx‘] (4.26)
I J

for C*° functions ay,by on U. Their Wedge product is

WAT = (leafdxf> A (%jbﬂﬂ)

= Za[bj dzf A daz? ... (4.27)
1,J

In (4.27), do! Adaz’ = 0 if I and J have at least an index in common. If I and J are disjoint, i.e.,
have none of their indices to be common, then

dz! A dz? = +da®, (4.28)

where K = I U J but reordered as an increasing sequence. Thus,

WAT = Z ( Z :taIbJ> dz’. (4.29)

K \luJ=K

Since the coefficients of do® in (4.29) are C°°, by Proposition 4.2, w A 7 is C* on M. [ |

Proposition 4.5 (Pullback of wedge product)

If F: N = M is a C* map of manifolds and w are 7 are differential forms on M, then

F*(wAT) = F* (w) A F* (). (4.30)
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4 Differential k-forms 42

Proof. If w € QF(M),7 € Q' (M), and X}, ..., X} € T,N,
(F*(wAT)), (X5, X5H)
= WA pg) (FepXp, - FepXEH)

= (wre) Arg) (FepXo o FepXpH)

1 o o(k o(k o(k+l
= O (seno)wrg) (PepXg D, FupXg W) 7 (Fup Xg 80, R XD
v O’ESk+l
1 " (1) o(k)) 1+ o(k+1) o(k+1)
= 3 (sgna)Fw(X vy XT )FT(X vy XT )
o UGSk+1
1
= (sgno) (F'we F*7) (Xg0, ... xg0+0)
o UGSk+1
= L A(Fwe P (X, Xk
= o (Ffw® 7')( pre Xp )
= (F*W) AF* (7)) (X3, X5)
Therefore,
F*(wAT) = F*(w) A F*(1). (4.31)

We define the vector space Q* (M) of C*° differential forms on a manifold M of dimension n to be the
direct sum

Q" (M) = é QF (M). (4.32)
k=0

Each element of Q* (M) is uniquely a formal sum >}, wg. with wg, € QF (M). With the wedge
product, the vector space Q*(M) becomes a graded algebra, graded by the the degree of differential
forms. Proposition 4.3 and Proposition 4.5 tells us that the pullback map F* : Q*(M) — Q*(N) is a
homomorphism of graded algebras!.

'Note that we haven’t yet proved that F* prerserves smoothness of forms, so we don’t yet know that F'* maps QF (M)
into Q% (V). But we shall soon prove this in Theorem 5.6, and once we do that we are all good with the notation.
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5 Exterior Derivative

The basic objects in differential geometry are differential forms. Our goal will be to learn how we
can differentiate and integrate differential forms on manifolds. Recall that an antiderivation on a
graded algebra A = @52, A* is an R-linear map D : A — A such that

D(w-7)=(Dw) -7+ (=) w- (D7),

for w € A¥ and 7 € A!, and - is the multiplication of the graded algebra. In the graded algebra A, an
element of A* is called a homogenous element of degree k. The antiderivation D is of degree m if

deg (Dw) = degw +m

for all homogenous elements w € A.

Now, let M be a manifold and Q* (M) the graded algebra of C*° differential forms on M. Now, we’ll
see that on the graded algebra Q* (M), there is a uniquely and intrinsically defined anti-derivation
called exterior derivative.

Definition 5.1 (Exterior derivative). An exterior derivative on a manifold M is an R-linear map
D: Q" (M) — Q" (M)
such that
(i) D is an antiderivation of degree 1,
(i) Do D =0,
(iii) if f is a C*° function and X is a C*° vector field on M, then (Df) (X) = X f.

\
Remark 5.1. Condition (iii) in the definition above says that on 0-forms, i.e. C*° functions on

M, an exterior derivative agrees with the differential df of a function f. We have learned earlier
that in a coordinate chart (U, zl, ..., z™), the 1-form df can be expressed as

df =) 75 da’.
i=1

Hence, in the chart (U, z!,...,z"),

_ O gy
Df_;amidx.
N J

We now prove the existence and uniqueness of the exterior differentiation on a manifold.

Lemma 5.1

Let D : Q* (M) — Q* (M) be an exterior derivative on M. If f!,...  f* are smooth functions on
U, then
D(Dfl/\DfQ/\---/\ka) =0.

Proof. We prove it by induction on k. The base case k = 1 follows trivially from D o D = 0. Suppose
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5 Exterior Derivative 44

D(Dfl/\DfQ/\---/\ka_l) = 0. Then

D(Dfl/\sz/\---/\Df’“)

- D((DflADf2A--.Aka—1) /\ka)

= D(Dfl/\DfQ/\---/\ka_l) A DR 4 (—1)F1 (Dfl/\DfQ/\---/\ka_l) /\D(Df"“)
0.

= (5.1)
Therefore,D(Dfl/\sz/\~--/\ka):0foranyk:21. ]
§5.1 Exterior Derivative on a Coordinate Chart
Suppose (U, AT ,2™) is a coordinate chart on a manifold M. Then any k-form w on U is uniquely

a linear combination

w:ZaIde,
I

where a; € C*°(U), and the sum runs over all strictly ascending multi-indices I of length k. The
R-linear map d : Q*(U) — Q*(U) can be constructed to be an exterior derivative on U. In fact, d acts
on a homogenous element w € QF(U) in the following way:

dw=d <Z ar dxl> = Zda[ Adat + (fl)OZaI ddz’
I T T
= ZdaIAde—}—ZaId (d:ci1 /\--~/\da:i’“)
I )i
= Zdaj A da!
I

= 2 4 pda, (5.2)
5 OxJ

(5.2) suggests that dw € QF*1 (U), and it can be written in the chart (U,z?,...,z") using (5.2). This
proves the existence of the exterior derivative d : Q*(U) — Q*(U), on an open set U of M. The
uniqueness of d : Q*(U) — Q2*(U) can be shown exactly the same way we proved it for the Euclidean
case in Proposition 2.4.

Sometimes we write dyw instead of dw to emphasize that it is the unique exterior derivative on
the open set U C M. In other words, if (U, ) and (U,y?) are two charts on M, and w = Y a;da! =
S bydy”’, then

This reveals that the expression dyw is chart independent.

§5.2 Local Operators

An endomorphism of a vector space W (a linear transformation from W to itself) is often called an
operator on W. For example, if W = C°°(R), the vector space of C* functions on R, then % is an
operator on W:

d ,
i@ =f @,

The derivative has the desired property that the value of f’ at a point p depends only on the values
of f in a small neighborhood of p. More precisely, if f = g on an open set U C R, then f' = ¢’ on U.
We say that the derivative is a local operator on C*°(R).
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5 Exterior Derivative 45

Definition 5.2 (Local operator). An operator D : Q*(M) — Q*(M) is said to be local if for all
k > 0, whenever a k-form w € QF(M) restricts to 0 on an open set U (i.e. w, = 0 at every p € U),
then Dw=0on U (ie. (Dw), =0 at every p € U).

An equivalent definition of local operator is that for all £ > 0, whenever two k-forms w,7 €
QF(M) agree on an open set U, then Dw = D7 on U (i.e. (Dw), = (D), at every p € U).

Proposition 5.2

Any antiderivation D on Q*(M) is a local operator.

Proof. Suppose w € Q*(M) and w = 0 on an open subset U. Let p € U. It suffices to show that
(Dw)p = 0. Take a bump function f at p supported in U, i.e. supp f C U. In particular, f =1 in a
neighborhood V of p in U, so that V C supp f C U. Then fw =0 on M. This can be seen by noting
that if g € U,
(fw)q = f(Q)wq = 07

since wy = 0 by hypothesis. On the other hand, if ¢ ¢ U, then ¢ ¢ supp f, so f (¢) = 0, which yields
Therefore, fw =0 on M. Applying D on fw = f Aw, we get

D (fw)=(Df)Aw+ (=1)° f A Dw. (5.4)
By the linearity of D, D (fw) = 0. Now, we evaluate the RHS of (5.4) at p € U, and use the fact that
f(p) =1and w, =0. As a result,

(Df), Nwp + f(p) A (Dw)p =0

= (Dw), =0. (5.5)
Since p € U is arbitrary, Dw =0 on U. [ |
Sometimes we are given a differential form 7 that is defined only on an open subset U of a manifold

M. We can use bump functions to extend 7 to a global form 7 on M that agrees with T near some
point.

Proposition 5.3
Suppose 7 is a C* differential k-form on an open subset U of M (such a differential form is called

a local differential form). For any p € U. There is a C° global form 7 on M (can be defined
anywhere on M using its charts) that agrees with 7 on a neighborhood of p contained in U.

Proof. Choose a smooth bump function f at p supported in U, i.e. supp f C U. In particular, f =1
in a neighborhood V of p in U, so that V C supp f C U. Then we define
- _ @7 ifgeU,

By the definition of 7, it agrees with 7 on V. By Proposition 9.3.1(ii) of DG1, T is smooth on U. Now,
let ¢ ¢ U. We want to show that 7 is smooth at gq.

Since supp f C U, q ¢ U implies ¢ € M \U C M \ supp f. Since supp f is closed, M \ supp f is open.
Hence, we can find a coordinate chart (W, ¢) about ¢ such that W C M\ supp f. Then, for r € W,
Tr = Opn(rear)- Also, (Ak (T*U) ,@) is a chart on A¥ (T*M) about Ok (72 01)-

(@oT)(r) = (p(r),0,0,...,0).

¢ is smooth. Therefore, T is smooth on W. In particular, 7 is smooth at ¢. Since ¢ ¢ U was arbitrary,
7 is smooth at every ¢ ¢ U. Therefore, 7 is smooth on all of M. |
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§5.3 Existence and Uniqueness of an Exterior Differentiation

To define an exterior derivative d : Q*(M) — Q*(M), let w € Q¥(M) and p € M. Choose a chart
(U,x!, ..., 2™) about p. Suppose w = 3, arda! on U. Now, dw is supposed to be a (k + 1)-form on
M, i.e. dw € QF1 (M). Define dw € QFF! (M) such that at p € U, (dw), is expressed as

(dw), = (Z dar A da;f> : (5.6)
I

p

It needs to be proven that the definition (5.6) is independent of chart. If (V, Y. ,y") is another
chart about p, and w =" ;b;dy” on V, then on U NV,

> ardpava’ =Y byduavy?,
i 7

where dyny is the unique exterior derivative dyny : Q* (UNV) — Q* (UNV). Then by the locality
of exterior derivative,

dunv (Z ar dUmVJUI) = dunv (Z by dUmvil/J> : (5.7)
i 7

Reading off the antiderivation dyny in the chart (U NV, 2!, ... 2") using (5.6), the LHS of (5.7) can
be recast into

I
> dunvar dunva’
i

On the other hand, the antiderivation dyny in the chart (UNV,yt, ... ,y") can be expressed using
(5.6) to compute the RHS of (5.7):

> dyavbs dunvy”.
7
Therefore,
> duvavarduava’ = duavbs doavy?, (5.8)
I 7

on UNYV. In particular, for pe UNV,

(Z dunvar dUmvilU]) = (Z dunvby dUﬂVyJ> ;
1 7

p p

proving that the definition (5.6) is indeed chart independent. As p varies over all of M, (5.6) defines
an operator
d: Q" (M) = Q*(M).

It’s straightforward to verify that the 3 desired conditions of exterior derivative are fullfilled by the
definition (5.6).

Now we prove the uniqueness of exterior derivative. Suppose D : Q*(M) — Q*(M) is an exterior
derivative. We will now show that D coincides with the exterior derivative defined by (5.6).

Let w € QF(M), and p € M. Choose a chart (U, zl, ... ,2™) about p, and suppose w = >_;ar dz! on
U. Extend the functions ar, z',...,z" to C* functions a7, Z",...,Z" that agrees with a,z!,..., 2"
in a neighborhood V of p. Define

@=> ardz'. (5.9)
I
Then w = @ on V. Since D is a local operator, one must have Dw = D@ on V. Thus,
(Dw), = (D), = [D (Z arda’ ﬂ : (5.10)
1 P
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5 Exterior Derivative 47

Since D is an exterior derivative operator on Q*M, and d is the exterior derivative operator defined
by (5.6), for f € C*(M),
(Df)(X) =Xf=(df)(X),

for any C'*° vector field X. In particular,
Da; = day, and DF' = d7°,

so that Dzl = dz!, for a strictly ascending multi-index I of length k. Hence, (5.10) reduces to

o= o))
[l

= (? Daj A Dg?f>
= (le day A da’ )

p

p

Now, since a; = a; and Z* = 2’ in a neighborhood of p, we have da; = da; and dz! = dz! at p.
Therefore,

(Dw), (Zdaf Ad7 ) = (Zdaj/\dxl> = (dw),,. (5.11)
p I p
So D = d, and hence the exterior derivative is unique.

The restriction of a k-form to a submanifold

Let S be a regular submanifold of a manifold M, and w is a k-form on M, i.e. w € Q¥(M). Then the
restriction of w to S is the k-form w|¢ on S defined by

(w\s)p (X;,...,Xg) = w, (Xl ...,X;f), (5.12)

for X;, e ,Xﬁ € 1,5 C T,M. Thus, (w[s)p is obtained from w, by restricting its domain to 7,5 x
TpS x -+ x TS (k-times).

Example 5.1. If S is a smooth curve in R? defined by the non-constant function f (x,y) = 0 (f could
be 22 + 32 — 1, defining the unit circle in R?), then

ot 9y

df = By

is a nonzero 1-form on R% But since f is identically 0 on S, (df) | ¢ = 0. So a nonzero form on M
can be restricted to a zero form on a submanifold S.

A form that is not identically zero is called a nonzero form. On the other hand, a form w that is
nowhere zero,i.e. w, # 0 for all p € M, is called a nowhere vanishing form.

Example 5.2 (A nowhere vanishing 1-form on S'). Let S' be the unit circle defined by 22 +y? =1
in R%2. The 1-form dx restricts from R? to a 1-form on S'. When restricted to S', the domain of the

covector ((dz) |, ) is T,S" instead of T,R?:
S p D
P

((dz) ’sl)p L T,8" - R.
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5 Exterior Derivative 48

Now, from 22 + 32 = 1, one obtains
2xdx +2ydy = 0. (5.13)

At p = (1,0), (5.13) reduces to (dz), = 0. It shows that although dz is a nowhere vanishing 1-form

on R2, it vanishes at (1,0) when restricted to S*.
To find a nowhere vanishing 1-form on S!, we again take exterior derivative of both sides of the
equation x? + y? — 1 = 0 to arrive at

2xdr +2ydy = 0. (5.14)

Let U, = {(x,y) € S* | 2 # 0}, and U, = {(x,y) € S* | y # 0}.

- U, NU,

8

Uy

By (5.14), then one obtains on U, N Uy,

d d
Y (5.15)
x Y
Now we define a 1-form w on S' by
4 U
W= { = w (5.16)
- on U,.
Since % = —%"" on U, NUy, w is a well-defined 1-form on Sl=U, U Uy. To show that w is C°° and

nowhere vanishing, we need charts.
Ui ={@yes |z>0},U; ={@yes|z<o},
U;:{(:c,y)esl | y>0},Uy‘Z{(ﬂﬂ,y)ES1 | y<0}-

On U, the local coordinates are the y-coordinates, so that (dy),, is a basis for the cotangent space

TS at each p € U, Now, since w = 4 on U, wis C* and nowhere zero on U;f. Similarly, w = %
on U, is also C*° and nowhere zero on U, . One can show using similar argument that w = —d?x is
(C* and nowhere vanishing on UJ and U, . Hence, w is C*° and nowhere zero on S L
It’s easy to see that this nowhere vanishing smooth 1-form on S! is nothing but zdy — ydz. On
Uy, x # 0; so using xdx + ydy = 0, we get
2
rdy —ydr =xdy — %xdaz =xdy + %dy

2 2 2
- <$+y> dy:w -y dy
xr xr

_dy
-2

(5.17)
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On Uy, y # 0. Again using xdx + ydy = 0, we get

x z?
xdy —ydx = ;ydy—ydxz—;dx—ydx

2 2, ,2
——<$—i—y> do = -2 Ty dx
Y

Yy
dz
=——. 5.18
” (5.18)
Therefore,
dy U
rdy —yde=w=14"7 on Ve, (5.19)
— on U,.

§5.4 Exterior Differentiation Under a Pullback

Theorem 5.4
Let F: N — M be a smooth map of manifolds. If w € Q¥(M), then

dF*w = F*dw.

Proof. Let us first check the case when k = 0, i.e. when w is a O-form (C*° function). We denote this
smooth function with h. For p € N and X, € T, N,

(AF™h), (Xp) = Xp (F"h) = Xp (ho F), (5.20)
since (df), (Xp) = Xpf for f € C°°(M). On the other hand,
(F"dh), (Xp) = (dh) p() (FapXp) = (FupXp) (h) = Xp (ho F). (5.21)
Combining (5.20) and (5.21), we get
(dF™h), = (F™dh),, .

Since p € N is arbitrary,
dF*h = F*dh. (5.22)

Now, consider the general case of a C™ k-form w on M, i.e. w € QF(M). It suffices to verify that
dF*w = F*dw at an arbitrary point p € N. This reduces the proof to a local computation. If
(V,y,...,y") is a chart of M at F (p), then on V,

w = Zajdyl = Za[dyil Ady Ao Ady'E,
I I
for some C° functions a; on V. Now,

Fro =3 (F*ar) (F*dyil) A (F*dyiQ) A A (F*dyik) .
I
Since dF*h = F*dh for C* function h, we have
Fro=Y (aroF)d (F*y“) Ad (F*yi2> A-ond (Fyk)
I
= (aro F) d(y“ oF) Ad(yi20F> /\---Ad(yik oF)
I

=Y (ago F) dF" NdF™? A--- AdF™. (5.23)
I

49



5 Exterior Derivative 50

Therefore, from (5.23), one obtains

dFfw =" "d(afo F) NdF" AdF"” A -+ ANdF™, (5.24)
I

On the other hand,
F*dw = F* (Z day Ady™ Ady2 A--- A dyi’“)
I
= ZF* (day) N F* (dyil) Ao+ NF* (dyi’“>
I
= Zd(F*aI) /\d(F*yil) /\---/\d(F*yi’“>
I
:Zd(aloF)/\d<yi1 oF) /\---/\d(yi’“ oF)
I
=Y d(ago F) ANdF" AdF™? A+ AdF™, (5.25)
i
Comparing (5.24) and (5.25), one obtains

dFfw = F*dw, (5.26)

on V. In particular, (5.26) holds at p € N. Since p € N is arbitrary, (5.26) holds everywhere on
N. |

Example 5.3. Let U be the open set (0,00) x (0,27) in the (r,0) plane R?, i.e. U is R? except the
non-negative z-axis.

Define F : U — R? by

(x,y) = F (r,0) = (rcosf,rsinf).
Let us compute the pullback F* (dz A dy).

F*dr =dF*zx =d(zoF)=d(rcosf) = cosfdr — rsinf do; (5.27)
F*dy=dF*y=d(yo F) =d(rsinf) = sinfdr + rcos 0 df. (5.28)

Therefore,

F*(dz Ady) = F*dx A F*dy
= [cos@dr — rsinfdf] A [sin 0 dr + r cos 6 d0]
=rcos®6dr Adf — rsin®fdf Adr
=rdr Adf. (5.29)
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§5.5 Pullback Preserves Smoothness of Forms

In this section, we will prove that if w is a smooth k-form on M, and F' : N — M is smooth, then
F*w is a smooth k-form on N. For that purpose, we need a lemma first.

Lemma 5.5
Let (U,z!,...,2") be a chart on a manifold and f1,..., f* smooth functions on U. Then
a(f17"'7fk) . .
dft A AdffF =) L dzt A--- Ada®
/ / ;a(gﬂl,...,w) v o
where I = (i1, ...,1x) is a strictly ascending multi-index of length k.
Proof. On U, A A
dft A Adff =Y epdad A A dat, (5.30)
J

for some functions cy. By the definition of the differential,

1 () = s

Applying both sides of (5.30) to the list of coordinate vector fields 83.1 yeens 8;9% , we get
0 0 oft
LHS_(df A /\df)(axil,...,axik> det [axij]
Co(fh ) 5o
O (an, ..., xir)’ '
by Proposition 1.13. On the other hand,
RHS:ZCJ (dle/\~'/\dxj’“)( 8' (9.):20]5‘]:0[. (5.32)
> Oz’ 77 Oxik y I
o(ft,....f*)
Hence, Cr = W [ ]
Theorem 5.6

If F: N — M is a C* map of manifolds and w is a C'*° k-form on M, then F*w is a C"*° k-form
on N.

Proof. 1t is enough to show that every point in N has a neighborhood on which F*w is C*°. Fix
p € N and choose a chart (V, Y. ,y™) on M about F(p). Let F' =40 F be the i-th coordinate of
the map F in this chart. By the continuity of F', there is a chart (U,z!,...,2™) on N about p such
that F(U) C V. Since w is C*°, on V,

w:ZaIdyil Ao Adyt
I
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for some C*° functions ay € C*°(V'). By properties of the pullback

= F* <Za1dyi1 /\---/\dyik>
T
=3 (Frap) F* () A+ F (dy™)
:ZI:(CL[OF) dAF*yt Ao A dF*yt
Z (afo F)dF" A--- AdF™

Fin . F
Z (aro F) O, F) g (5.33)
3 0 (xir, ... xk)

O(F™1,....Fk)
Since the ay o F' and FeS T

are all C*°, F*w is C* on U. In particular, F*w is C*° at p. Since
p € N is arbitrary, F*w is C* on the whole of N

[ |
Theorem 5.7

If F:N— M and G: M — K are smooth maps between manifolds, then

(GoF)* = F* o G* : Q*(K) — Q*(N).

(5.34)
Furthermore, if 1,; is the identity map on M
(Ln)* = Lgeary - (5.35)
Proof. Suppose 1, is the identity map on M. Take any w € QF(M)

At any p € M, for any
X}, X} eT,M,

(1ar)" w), (X;, .

’XII)C) = Win(p) ((]IM)*,pXév RRE) (]]-M)

= wp (]lTpMX;a . ,ILTPM X;)
=wp (X}, XE)
since (1a7),

(5.36)
» = Lz,m by Remark 6.1.2 of DG1. Therefore, ((Tp)* w), = wp. Since p € M is arbitrary,
(1y) w=w.

)

Now suppose F' : N — M and G : M — K are smooth maps between manifolds
we Q¥ (K). Atany pe N, for any X},..., X} € T,N

Take any
(GoF) w), (X}, X}) = waw) (Go P, X;,..., (GoF), , XF)
k
= wer@) (Corw) (FepXp) o Gur) (FepX))) (5.37)
since (G o F), , = G, p(p) © Fiyp by Theorem 6.1.1 of DG1. Now on the other hand
(P0G w), (X5, Xp) = (F* (G'w)), (X}, X})
= (G*0)py) (FepXhooo s FupXE)
k
= war) (Ger (FepXp) - Gurw) (FepXh)) - (5.38)
Therefore,
(GoF) w), (X,.... X)) = (F* 0 G")w), (X},..., XF)
So we have ((G o F)*w), = ((F* 0 G*)w),. Since p € N is arbitrary,
(GoF)'w= (F*oG"w (5.39)
|
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4 I
Remark 5.2. Theorem 5.6 tells us that F* is indeed a map from Q¥(M) to QF(N). So we can
think of it as a map between the graded algebras:

F* . Q* (M) —» F*(N).

Previously we were writing this without really verifying that F* preserves the smoothness of
forms. Now, by Proposition 4.3 and Proposition 4.5, F* : Q*(M) — Q*(N) is a homomorphism
of graded algebras. This gives rise to a contravariant functor from the category Man of manifolds
and smooth maps to the category GrAlg of graded algebras and graded algebra homomorphisms:

F : Man — GrAlg.

F takes an object of Man, a manifold M, to the graded algebra Q*(M); and it makes an arrow of
Man, a smooth map F': N — M, to the graded algebra homomorphism F* : Q* (M) — F* (N).

Since F reverses the direction of arrows, Theorem 5.7 ensures that it is a contravariant functor.
. J
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6 Orientation

§6.1 Orientations on a Vector Space

On R, an orientation is one of the two possible directions:

A <

6T ‘—61

On R?, an orientation is either counterclockwise or clockwise:

€2 €2

N N

€1 €1

counterclockwise: (e1,es) clockwise: (eg,e1)

On R3, an orientation is either right handed or left handed:

€3 thumb € thumb
€9 es
index finger %X finger
€1 1
Right handed orientation: (ey,es,e3) Left handed orientation: (es,e1,e3)

Now, we want to define an orientation on R*, or more generally on R”. We do it through ordered
basis for R”. Let eg,...,e, be the standard basis for R”. For R!, an orientation is given by e;, or
—ey. For R?, counterclockwise orientation is (eq, e3), and clockwise orientation is (es, e1). For R3, the
right handed orientation is (e, ez, e3), and the left handed orientation is (e, €1, e3).

For any two ordered bases (u1,us) and (v, vs) of R?, there is a unique non-singular 2 x 2 matrix
A = [a;j] such that

2
Uj = Z’UZ' aij. (6.1)
=1

A is called the change of basis matrix from (v1, v2) to (u1,u2). In matrix notation, (6.1) can be written
as

[ul UQ} = {’Ul 1)2} A. (62)
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6 Orientation 55

We say that two ordered bases are equivalent if the change of basis matrix A has positive determinant.
Then one can check that this is indeed an equivalence relation on the set of all ordered bases of R2.
It, therefore, paritions the ordered bases into two equivalence classes. Each equivalence class is called
an orientation on R2.

The equivalence class containing (e, e2) is the counterclockwise orientation, and the equivalence
class containing (eg, e1) is called clockwise orientation. Indeed,

o =l ]} 3]

0 1
det [1 0] = —1.

Similarly, for R3, the ordered bases (e, ez, e3) and (ez,e1,e3) don’t belong to the same equivalence
class:

and

010
[61 €9 63}:[62 el 63} 1 0 0],
0 0 1
and
010
det [1 0 O =-—1.
0 0 1

The general case for an n-dimensional vector space V' is as follows:

Definition 6.1. Two ordered bases u = [ul un} and v = [vl un} of an n-dimensional
vector space V are said to be equivalent if

u = vA,

for an n x n matrix A with det A > 0. An orientation on V is an equivalence class of ordered
bases.

The 0-dimensional vector space {0} is a special case as its basis is the empty set &. We define an
orientation on {0} to be one of the two numbers +1.

§6.2 Orientations and n-covectors
Instead of using an ordered basis, we can also use an n-covector to specify an orientation on an n-
dimensional vector space V. This is based onthe fact that the vector space A™ (V*) of n-covectors on

V is 1-dimensional (so that it has 2 orientations).

Lemma 6.1

Let uy,...,u, and vq,...,v, be vectors in a vector space V. Suppose
n
Uj = E Vi Qg
i=1

for a matrix A = [aij} of real numbers. If w is an n-covector on V, then

w(u,...,uy) =det Aw (v1,...,0p).
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Proof. By hypothesis, u; = ;' | v;a;;. Using linearity of w, one arrives at

n n n
w (ur, g, ) =w [ D 0051, Y VinGints s D VigQign

i1=1 io=1 in=1
n
= Z aillaigg cee ainnw (Uil,'l}iQ, . 7Uin) . (6.3)
11,02,...,in=1
For w (vi,, viy, ..., v;,) to be nonzero, ii,...,i, must all be different as w is alternating. Therefore,
i1,...,in can be thought of as a permutation o of {1,2,...,n} that takes each j to i;. From the

alternating property of w, one has

w (v(,(l), o uo(n)) = (sgno)w (v1, ..., vp). (6.4)

Therefore, using (6.3),

w (U1, ug, ..., up) = 25: Uo(1)10(2)2 ** * Go(n)n (5E00) W (V1, ..., Uy)
oESy
= (det A)w (v1,...,0p) . (6.5)
|
f Corollary 6.2 b
If uy,...,u, and vy, ..., v, are ordered bases of a vector space V', then
w (u1,ug,...,u,) and w (vy,...,v,) have the same sign

< detA >0

< ui,...,Uy and vy, ...,v, are equivalent ordered bases.
. J
We say that the n-covector represents the orientation (vy,...,v,) ifw (v1,...,v,) > 0. By Corollary 6.2,
this notion is well-defined, i.e. independent of the choice of ordered basis vy,...,v, from the same

equivalence class.

Remark 6.1. A" (V*) = R, so that the set of nonzero n-covectors can be identified with R\ {0},
which has 2 connected components. Two nonzero n-covectors w and w’ on V are in the same
component if and only if w = aw’ for some real number a > 0. Thus, each connected component
of A™ (V*)\ {0} represents an orientation on V.

Example 6.1. Let e, es be the standard basis of R?, and o', a? its dual basis. Then the 2-covector
a' A o? represents the counterclockwise orientation on R?, since

(ozl /\on) (e1,e2) =1> 0.
o)

p’ ((Ty‘p
be the dual basis, i.e. for the basis of TyR?. Then (dz), A (dy), represents the counterclockwise

Example 6.2. Let 8% be the standard basis for the tangent space T,R?, and (dz), ., (dy),

orientation on TPRQ.

We define an equivalence relation on the nonzero n-covectors on the n-dimensional vector space V as
follows:
w~w <= w=aw for some a > 0.

Then an orientation on V is also given by ana equivalence class of nonzero n-covectors on V.
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§6.3 Orientations on a Manifold

Every vector space of dimension n has two orientations, corresponding to the two equivalence classes
of ordered bases or the two equivalence classes of nonzero n-covectors. To orient a manifold M, we
orient the tangent space at each point p € M in a coherent way so that the orientation doesn’t change
abruptly in a neighborhood of a point. The simplest way to guarantee this is to require that the
n-form (or top degree form) on M specifying the orientation at each point be C°°. We also want the
n-form to be nowhere vanishing.

Definition 6.2. A manifold M of dimension n is orientable if it has a C'"* nowhere vanishing
n-form. If w is a nowhere vanishing C*° n-form on M, then at each point p € M, the n-covector
wp picks out an equivalence class of ordered bases for the tangent space 1), M.

Example 6.3. The Euclidean space R" is orientable as a manifold, because it has the nowhere
vanishing n-form dz! A dz? A--- A da™.

If w and w’ are both C*° nowhere vanishing n-forms on a manifold M of dimension n, then w = fu'
for a C'*° nowhere vanishing function f on M. On a connoted manifold M, such a function f is either
everywhere positive or everywhere negative. Thus, the C°*° nowhere-vanishing n-forms on a connected
manifold M can be partitioned into 2 equivalence class:

w~w = w= fw with f > 0. (6.6)

We call either equivalence class an orientation on the connected manifold M. Thus, by definition, a
connected manifold has exactly 2 orientations. If the manifold M is not connected, then each connected
component of M has one of the 2 possible orientations. We call a C*° nowhere-vanishing n-form on M
that specifies an orientation of M an orientation form. An oriented manifold is a pair (M, [w]),
where M is a manifold of dimension n and [w] is an orientation on M, i.e. the equivalence class of
nowhere vanishing C'*° n-forms containing w.

-
Remark 6.2 (Orientations on a 0-dimensional manifold). A zero dimensional manifold is a point,

and by definition is always orientable. Its two orientations are represented by the numbers +1.
.

Definition 6.3. A diffeomorphism F' : (N, [wy]) — (M, [was]) of oriented manifolds is said to be
orientation preserving if [F*w)/] = [wy]. It’s orientation reversing if [F*w)/] = [~wn].

Proposition 6.3

Let U and V be open subsets of R”, A diffeomorphiam F : U — V is orientation-preserving if

and only if the Jacobian determinant det {%} is everywhere positive on U.

Proof. Let (x',...,2") and ¢/, ..., y" be standard coordinates on U C R"™ and V C R", respectively.
F* (dy1 A-'-/\dy") = F* (dy1> Ao ANF*(dy")
=d (F*yl) A AADE (FFy™)
=d(y' o F) A Ad(y" o F)
=dF' A ANAF?

OF"| . n
—detlaxj] dz* A~ Ada", (6.7)

where the last equality follows from Lemma 5.5. Now, F' is orientation preserving if and only if

F* (dyl/\-~/\dy”) ~dat A A da, (6.8)
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where ~ is defined as (6.6). Using (6.7), we can conclude that (6.8) holds if and only if det [gij} is

everywhere positive on U. |

§6.4 Orientation and Atlases

Definition 6.4 (Oriented atlas). An atlas on M is said to be oriented if for any two overlap-
ping charts (U, x',...,2") and (V,y!,...,y") of the atlas, the Jacobian determinant det [%} is
everywhere positive on U N V.

Proposition 6.4

A manifold M of dimension n has a C'°° nowhere vanishing n-form w if and only if it has an
oriented atlas.

Proof. (<) Supoose we are given an oriented atlas

1 2 n
{(Ua,wa,xa, . ,:ca) }aEA .

Suppose {pa} e is a C° partition of unity subordinate to the open cover {Us},c 4. Define
w:Zpadxi/\---/\de. (6.9)

Since {supp po} is locally finite by deinition of partition of unity, for any p € M, there is an open
neighborhood U, of p that intersects only finitely many of the sets supp po. Thus, (6.9) is a finite sum
on Up. This actually shows that w is defined and C>° at every point of M.

Let (U, zt ... ,2™) be one of the charts about p in the oriented atlas. On U, N U, by Lemma 5.5,

i

3%1 dz' Ao Ada™ (6.10)

1
dx,,

A+ Adz? = det :
xh e [895]

By hypothesis, det [%} > 0 as the atlas is oriented. Then on U, N U,

wzzpadxé/\---/\dxa: (Zpa det [6:&]) dzt A~ Ada™. (6.11)

The sum in (6.11) is a finite sum, since U, intersects only finitely many of the sets supp po. Now, it’s

easy to see that the finite number in the parenthesis is actually positive at p. Indeed, det [%} >0

at p, since the atlas is oriented. Furthermore, po(p) > 0 for at least one a € A. Hence.
Wp = ( positive number ) x (dml A A dxn) £0.
P

As p is an arbitrary point of M, the n-form w is nowhere vanishing on M.

(=) Suppose w is a C*° nowhere vanishing n-form on M. Given an atlas on M, we will use w to
modify the atlas so that it becomes oriented. Without loss of generality, assume that all the open sets
of the atlas are connected.

On a chart (U,z!, ... 2"),

w=fdz' Ao Ada” (6.12)

for a C'*° function f on U. Since w is nowhere-vanishing and f is continuous, f is either everywhere
positive or everywhere negative on U. If f > 0, we leave the chart as it is; if f < 0, we replace the
chart by (U, —zt 2% ,2™). After all the charts have been checked and replaced if necessary, we
have that on every chart (V,y!,...,y")

w=hdy' A Ady" (6.13)
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with h > 0. This can be seen to be an oriented atlas, since if (U,2!,...,2") and (V,y!,...,y") are
two charts, then on U NV

w=fdzt A---Adz" = hdyt A - Ady?, (6.14)
with f,h > 0. From (6.14),
dyl/\-~-/\dy”:%dxl/\--~/\dx”. (6.15)
By Lemma 5.5, o
dy' A--- Ady™ = det 83’.] dzt Ao Ada™. (6.16)
| Oz
Comparing (6.15) and (6.16), )
oy'| _f
det | ==>0 6.17
¢ [8%3_ h - ( )
on U NV. Hence, the modified atlas is oriented. |

Example 6.4 (Non-orientability of the open Mobius band). Let R be the rectangle
R:{(m,y)€R2|O§x§1, and —1<y<1}.
We define an equivalence relation ~ on R as follows:

0,y) ~(1,—y), (6.18)

for y € (—1,1). Then M = R/~ is the open Mobius band. We want to show that M is not orientable.

Consider the following open sets on M:
U={[z,ye M |0<z <1},

V:{[x,y]€M|x7é;}. (6.19)

(Here [x,y] represents the equivalence class containing the point (x,y) € R) Then we can define
homeomorphisms ¢ : U — ¢ (U) CR? and ¢ : V — ¢ (V) C R?:
¢ ([z,9]) = (,9),

b (le ) = { (6:20)

(z,y) ifx <
(r—1,-y) itz >

D= D=

Then {(U, ), (V,1)} forms an atlas on M. Consider (U, ¢) = (U, z!,2?%) and (V,9) = (V, 4}, 9?).
Assume for the sake of contradiction that M is orientable. Then there is a nowhere vanishing 2-form
w on M. Then on U,
w = fdz! Ada? (6.21)

for a C'°° nowhere vanishing function f on U. Since U is connected, f is either positive, or negative.
Similarly, on V,
w = gdy' A dy?, (6.22)

99



6 Orientation 60

for a C'°° nowhere vanishing function g on V. Since V is connected, g is either positive, or negative.
OnUNYV,

w=gdy' Ady? = g det [gizl dz! A dz?, (6.23)
using Lemma 5.5. Comparing (6.21) and (6.23), we get
oy’
= g det : 6.24
f=gde l(%,] (6.24)

on UNV. Since f and g are either positive everywhere on U NV or negative everywhere on U NV,

o %
det | 22| =1 (6.25)
ort g
is also either positive everywhere on U NV or negative everywhere on U N V. Let us now compute
Ay
det [ Bmi}'

oyt o (r o'@ZJ) O((r'oy)op™t) 0(wo@_1)i

ox o ord B ori ’ (6.26)
where 7 are coordinates of R?. Let A, B, C be the following open rectangles in R?:
1 1 1
A=(0,-) x(~=1,1), B=(=,1) x(=1,1), C=(—-=,0) x (=1,1).
2 2 2
Then p (UNV)=AUB,»(UNV)=AUC. popt: AUB — AUC is then
Lop? if (rl,r?) €A
ow ! rl,r2 = (T 7 ) ! ’ ’ 6.27
(1/1 ¥ ) ( ) (7“1 _ 1’_7‘2) if (1"1,7“2) cB. ( )
(o] -1 ¢
So its Jacobian determinant det [6(%72)] is
10
i det on A,
(o gpfl) B 0 1
ori B 1 0
det on B
0 —1
1 A
- on (6.28)
-1 on B.
So g7y; is1on e 1 (A) CUNV,and —1 on o~ (B) C UNV. But we have previously shown that
det [ggz} = 5 is either positive everywhere on U NV or negative everywhere on U NV. Thus we arrive

at a contradiction! Hence, no nowhere vanishing 2-form on the open Md&bius band M exists.
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7 Manifolds with Boundary

The prototype of a manifold with boundary is the closed upper half plane
H" = {(ml,...,az”) eR" | z" 20},

with the subspace topology inherited from R™.

(H™)°

> OH"

H") = {(z!,...,2") € R" | 2 > 0} is called the interior of H"; and OH" = {(z*,...,2") € R" | 2"
is called the boundary of H".

§7.1 Invariance of Domain

Definition 7.1. Let S C R™ be an arbitrary subset (not necessarily open). A function f : S — R™
is smooth at a point p € S if there exists a neighborhood U of p in R", and a C* function
f U — R™ such that f fonUNS. The function f: S — R™ is said to be smooth on §' if it
is smooth at each point p € S.

Lemma 7.1

A function f : S — R™ with § C R" is C*° if and only if there exists an open set U C R"
containing S and a C'*° function f : U — R™ such that f‘s =B

Proof. (<) Suppose there is an open set U C R" containing S, and a C*° function f U — R™ such
that f | = f. Then for each p € S, there is a open neighborhood of p, which is U itself, and a C*

function f U — R™ such that f and f agre on U NS. In other words, f: S — R™is C* at p € S.
Since p € S was chosen arbitrarily, f : S — R™ is C°° everywhere on S.

=) Suppose f :.5 — R is C*°. Then for each p € S, there is a neighborhood U, C R" and a C'*®
(=) g P
function F, : U, — R™ such that F}, = f at U, N S. Take

U=|JU, CR"
peES

Then U is an open subset of R™ that contains S. Since it is an open subset of an Euclidean space,

it is a manifold; and {Up} .5 is an open cover of U. Therefore, there is a partition of unity {pp} g

subordinate to the open cover {Up} 5. Now we define f:U—=R™ as

f: Zﬂpr' (7.1)

peES
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Given any ¢ € S, there is a neighborhood V; of ¢ in U that intersects only finitely many supp p,’s.
Therefore, on V;, the sum in (7.1) becomes a finite sum. Furthermore, as a finite sum and product of
smooth functions, fis smooth on V. Therefore, f: U — R™ is smooth.

Now we need to verify that fagrees with f on S. Let’s take any ¢ € S. For ¢ € U, since F,, = f
at U, NS, we have

() = f(q)- (7.2)
And for ¢ € U, q € supp pp, since supp p, C U,. Therefore,

1= py(q) = > pp (q) = > pp (q) . (7.3)

peS p€eS such that gesupp pp p€eS such that geU,

As a result,

F@) =Y pp(a) Fp(q) = > pp (@) Fp (q)

peES p€ES such that qeU,

= > o (q) f (q)

p€ES such that ¢qeU,

= ( > Pp (Q)> f ()

p€ES such that geU,

=f(9). (7.4)

Therefore, ﬂ =17 |

Remark 7.1. With the definition above, it now makes sense to speak about an arbitray set S C R"
being diffeomorphic to some set 7' C R™. This will be the case if and only if there are smooth

maps (in the sense above) f:S - T C R™ and g: T — S C R” that are inverses to each other.
.

Theorem 7.2

Let U C R™ be an open subset, S C R™ an arbitrary subset, and f : U — S a diffeomorphism.
Then S is open in R"™.

The diffeomorphism between U ans S forces S to be open in R™. Given that f : U — S is a
diffeomorphism, we only know that an open subset of U is mapped to an open subset of S under f.
Since U is open in itself, f (U) = S is also open in S. We can’t immediately conclude that f (U) = S
is open in R™. Besides, it’s crucial that both U and S are subsets of the same Euclidean space R™.
For example, there is a diffeomorphism between the open interval (0,1) C R and the open segment
S = (0,1) x {0} in R2. But S is not open in R2.

U=(01)cR S =(0,1) x {0} C R?

Proof of Theorem 7.2. Let f (p) € S be an arbitrary point in S, with p € U. Note that any point in
S can be reached this way as f is onto. Since f: U — S is a diffeomorphism, f~!: S — U is smooth
with S being an arbitrary subset. By Lemma 7.1, there exist an open set V C R" containing S and a
C® function g : V" — R" such that g]S = fL
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AN B -
g agrees f~' on f(U) = S. Therefore, go f =1y : U — U C R™. Given p € U, by the chain rule, one
has
g*,f(p) o f*,p = ]lTpU : TpU — TpU, (75)

the identity map on the tangent space T,U. So g, r(p is the left inverse of f. . The existence of left
inverse implies injectivity, so fip @ TpU — Ty, V is injective. Since U and V' are open subsets of
the same Euclidean space, they have the same dimension as manifolds. So T,U and T,V have the
same dimension as vector spaces. Now, f.p : TpU — Ty,)V is an injective linear map between vector
spaces of same dimension. So fi,: T,U — Tf(p)V is invertible.

Now we recall inverse function theorem:

A C*® map F : N — M between two manifolds of same dimension is locally invertible at
p € N (i.e. p has a neighborhood U on which F|,, : U — F(U) is a diffeomorphism) if and
only if the differential F} j, : T,N — T, M is an isomorphism of vector spaces.

We have that f., : T,U — T,V is an isomorphism of vector spaces. Hence, by inverse function
theorem, f : U — V is locally invertible at p. This means that there are open neighborhoods U, of
p € U and Vy,) of f(p) € V such that

f’Up 2Up = Vi)

is a diffeomorphism. Then it follows that

f(p) € Vi = f(Up) C f(U)=5. (7.6)
For every f(p) € S, we can find an neighborhood Vy(,) > f(p) open in R™ (Vj(,) is open in V, V' is
open in R"; hence Vy(, is open in R™) that is contained in S. Therefore, S is open in R™. |

Proposition 7.3

Let U and V be open subsets of the upper half space H", and f : U — V be a diffeomorphism.
Then f maps interior points to interior points, and boundary points to boundary points.

Proof. Let p € U be an interior point. Then there is an open ball B in R" containing p, which is
contained in U. Restriction of a diffeomorphism to an open subset is still a diffeomorphism. Hence,

f!B :B— f(B)
is a diffeomorphism, with B being open in R™. By Theorem 7.2, f (B) is open in R™. Hence,
feef(B)CfU)=V CH"

f (B) is open in R", and it is contained in H". Therefore, f (B) C (H")°. In other words, f (p) € (H")°,
since f (p) € f(B). So f maps interior points to interior points.

If p is a boundary point in U N OH"™, then f~! (f (p)) = p is a boundary point. Since f~1:V — U
is a diffeomorphism, by the previous argument, f~! takes interior points to interior points. If f (p)
were an interior point, then f~! would have mapped it to an interior point. But f~! maps f (p) to a
boundary point. So f (p) cannot be an interior point. Therefore, f (p) is a boundary point. [ |

Remark 7.2. Replacing Euclidean spaces by manifolds throughout, one can prove in exactly the
same way the smooth invariance of domain for manifolds:

Suppose N and M are n-dimensional manifolds. Let U C N be open, and S C M be
any arbitrary subset. If there is a diffeomorphism F : U — S, then S is open in M.
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§7.2 Manifolds with Boundary

In the upper half space H", there are 2 types of open sets as seen in the following diagram:

A

In the left one, the set is disjoint from the boundary of H", while in the right one the open set
has nontrivial intersection with 0H". We say that a topological space M is locally H" if every point
p € M has a neighborhood U homeomorphic to an open subset of H".

Definition 7.2. A topological n-manifold with boundary is a second countable, Hausdorff
topological space that is locally H".

Let M be a topological n-manifold with boundary. For n > 2, a chart on M is defined to be a pair
(U, ¢) consisting of an open set U C M and a homeomorphism

p:U—=9oU)CH"

of U with an open subset ¢ (U) of H". A slight modification is necessary for the definition of a chart
in the case n = 1.

Note that H! = [0, 00) is the right half-line. We also need the left half line L = (—o0, 0] to model a
1-manifold with boundary locally. A chart (U, ) in dimension 1 consists of an open set U C M and a
homeomorphism ¢ of U with an open subset of H' or L'. With this slight modification of definition of
chart in dimension 1, it can be seen that if (U, b 22, ,2™) is a chart of an n-dimensional manifold
with boundary, then so is (U, —zl 22, ... ,2") for n > 1. A manifold with boundary has dimension
at least 1, since a manifold of dimension 0, being a discrete set of points, necessarily has empty

boundary.

Definition 7.3. A collection {(Ua, ¢a)}aca of charts is a C°° atlas for the topological manifold
M with boundary if

U Ua = M,
acA

and for any two charts (Uy, ¢a) and (Ug, ¢3), the transition map

00 05"+ 0o (Ua NUg) = @3 (Ua N Up)

is a diffeomorphism. A C°*° manifold with boundary is a topological manifold with boundary
together with a maximal C*° atlas.

A point p € M is called an interior point in some chart (U, ¢) if the point ¢ (p) is an interior point
of H", i.e. (p) € (H™)°. Similarly, p € M is a boundary point if ¢ (p) is a boundary point of H",
i.e. p(p) € OH". These concepts are independent of charts. Suppose (V1)) is another chart about p.
Then the diffeomorphism v o ¢! maps ¢ (p) to ¥ (p). By Proposition 7.3, ¢ (p) and v (p) are both
interior points, or both boundary points.

The set of all boundary points of M is denoted by M. On the contrary, the set of all interior
points of M is denoted by M°.
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In contrast to the geometric notion of the interior and boundary of a manifold, there is the topological
notion of the interior and boundary of a subset A of a topological space S. A point p € S is said to
be an interior point of A if there exists an open subset U C S such that

pelU CA.
The point p € S is an exterior point of A if there exists an open set U of S such that
pelU CA.

Finally p € S is a boundary point of A if every neighborhood of p contains both a point of A and a
point not in A. One denotes by intg(A), extg(A),bdg(A) the sets of interior, exterior and boundary
points of A in S, respectively. Clearly, the topological space S is the disjoint union

S = intg(A) U extg(A) U bdg(A). (7.7)

In the above diagram, p; € intg(A), p2 € extg(A), ps € bds(A).

In case the subset A C S is a manifold with boundary, we call intg(A) the topological interior and
bdg(A) the topological boundary of A, to distinguish them from the manifold interior A° and the
manifold boundary 0A.

Note that the topological interior and the topological boundary of a set depend on an ambient space,
while the manifold interior and the manifold boundary are both intrinsic.

Example 7.1 (Topological boundary vs. manifold boundary). Let A be the open unit disk in R?:
A={xeR| x| <1}.

Then its topological boundary bdgz A in R? is the unit circle, while A being a 2-dimensional manifold
(without boundary) has its manifold boundary to be the empty set &.

| | - R2 c R2

Now, consider B to be the closed unit disk in R?:
B={xecR | |x| <1}.

It is a 2-dimensional manifold with boundary, with its manifold boundary 9B being the unit circle.
The topological boundary bdg2 (B) of B in R? is also the unit circle and hence B and bd B coincide
with each other.
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Example 7.2 (Topological interior vs. manifold interior). Let S be the upper half-plane H?, and A
be the subset

A={(z,y) eH |y <1},

AY

> T
The topological interior intg2 (A) of A in H? is the set
intg (A) = {(z,9) € H* [ 0 <y < 1},
containing the z-axis.
AY AY
» T ool > T
Topological interior intgz(A) Manifold interior A°

On the other haand, the manifold interior A° of the 2-dimensional manifold with boundary A is the
set
Ac’:{(zzc,y)EIHI2 | 0<y<1},

not containing the z-axis.
Let us now consider the same set A, but now as a subset of R? instead of H?:

A={@yeR?|0<y<1}.
Then the topological interior intg2(A) of A in R? is the set
intg2(A) = {(w,y) cH?|0<y< 1},
which coincides with A°.

The boundary of a manifold with boundary

Let M be a manifold of dimension n with boundary OM. If (U, ¢) is a chart of M, we denote by

¢ = elynon

the restriction of the coordinate map ¢ to the boundary OM. Since ¢ maps boundary points to
boundary points,
¢ =l mon t UNOM — OH" =R 1.

Additionally, if (U, ) and (V, 1)) are two charts on M, then
Vo () e (UNVNOM) =y (UNVNIM)

is C°°. Thus, an atlas {(Ua, ¢a)}acq induces an atlas {(Ua NOM, ¢al,, maM)} A for OM, making
a «a

OM into a C'*™° manifold of dimension n — 1 (without boundary).
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§7.3 Tangent Vectors, Differential Forms, and Orientations

Let M be a manifold with boundary and p € M. Let us first understand what Cp°(M) is. Two C*
functions f : U — R and g : V' — R defined on neighborhoods U and V of p € M and are said to
be equivalent if f and g agree on some neighborhood W of p contained in U N V. It can easily be
verified that the relation defined above is an equivalence relation. Under this equivalence relation, a
germ of C'™° functions at p is an equivalence class of such functions. With the usual pointwise addition,
multiplication and scalar multiplication, the set CEO(M ) of germs of C'™° functions at p is an R-algebra.

The tangent space T,M at p is then defined to be the vector space of all point derivations on the
algebra Cp°(M) [Recall that a point derivation of Cp°(M) is a linear map D), : Cp°(M) — R obeying
Leibniz condition].

Let us now take the example where p € OH?.

0
ox
_ @’
dy D

9 , and a%‘p are both point derivations on Cp° (H2). The tangent space T,H? is represented by a

ox

2-dimensional vector space with origin at p and spanned by the tangent vectors a%‘ and 8%‘ . Since
P P

TpH2 is a vector space and a% , e’ p]H[Q, we have — (%‘p € H2.

The cotangent space T,y M to the point p € 9M of the manifold M with boundary M is defined
to be the dual of the tangent space T),M:

T*M = Hom (T,M,R). (7.8)

By taking the disjoint union of the cotangent spaces T; M for all points p € M, i.e. over all interior
and boundary points of M, one arrives at the cotangent bundle T*M of the manifold with boundary.
Define the vector bundle.

AR (M) = || AR (TpM) . (7.9)

PeM

Then a differential k-form on M is a section of the vector bundle A* (T*M). A differential k-form
is C™ if it is C™ as a section of the vector bundle A* (T*M). For example, dz A dy is a C>° 2-form
on H2.

An orientation on an n-dimensional manifold M with boundary is again a C°° nowhere vanishing
n-form on M. We’ve seen in Proposition 6.4 that the orientability of a manifold without boundary (or
equivalently the existence of a C'*® nowhere-vanishing top degree form by the definition of orientability
of a manifold) is equivalent to the existence of an oriented atlas. The same goes for manifold with
boundary.

In the proof of Proposition 6.4 for establishing the necessary and sufficient condition for the ori-
entability of a manifold without boundary, it was necessary to replace the chart (U,xl, ...,z") by
(U, —a!,...,2™). This would not be possible to carry out in the case n = 1 for manifold with bound-
ary if we had not allowed the left-half line L' as a local model in the definition of a chart on a
1-dimensional manifold with boundary. It would be better understood if we look at the following
example.

Example 7.3. The closed interval [0, 1] is a C° manifold with boundary. It has an atlas with 2
charts (U, ¢1) and (Us, ¢2), where Uy = [0,1), ¢1(x) = x, and Uz = (0, 1], ¢pa2(z) =1 — x.
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With dz as the orientation form, [0, 1] should be an oriented manifold with boundary. However,
{(U1,¢1), (Uz, p2)} is not an oriented atlas as the transition map

(¢2-00") (@) =1-a

has negative Jacobian determinant on ¢1(0,1) = (0, 1). If one flips the sign of ¢o, then {(Uy, ¢1) , (U2, —p2) }
becomes an oriented atlas as

(qbg-qﬁfl) (r)=x—-1

has positive Jacobian determinant on ¢1(0,1) = (0,1). It’s important to note that —¢s(r) = v — 1
maps Us = (0, 1] to (—1,0] being an open set of the left half-line L' = (—o0, 0]. If we had allowed only
H! as a local model for a 1-dimensional manifold with boundary, the closed interval [0, 1] wouldn’t
have an oriented atlas.

§7.4 Outward-Pointing Vector Fields

Definition 7.4. Let M be a manifold with boundary OM, and p € M. We say that a tangent
vector X, € T,M is inward-pointing if X, & T}, (OM ), and there are a positive real number ¢
and a curve ¢ : [0,e) — M such that ¢ (0) = p, ¢(0,e) € M°, and ¢ (0) = X,. A vector X, € T, M
is outward-pointing if — X, is inward-pointing.

For example, on the upper half-plane H?, the tangent vector a%’ is inward-pointing, and — a% is
P P

outward-pointing at p € OH?.

A vector field along OM is a map that assigns to each point p € M, a tangent vector X, € T,M
(as opposed to T,(OM)). We say that a vector field X along the boundary OM is outward-pointing
if for all p € OM, X, € T, M is outward-pointing.

In a coordinate neighborhood (U, zl, ... ,2™) of p in M, a vector field X along OM can be written
as a linear combination

i\ 0
Xq = Z(I (Q)axl

1

) (7.10)
q
for ¢ € 9M. The vector field X along M is said to be smooth at p € M if there exists a coordinate
neighborhood of p for which the functions a’ on M are C* at p; it is said to be smooth if it is smooth

at every point p.

Lemma 7.4
Let M be a manifold with boundary and let p € M. Suppose X, € T,,M is expressed as a linear
combination of basis vectors on a chart (U, zl, ... 2") as follows:

0

XP = Zai(p) Ot
i P

Then X, is outward pointing if and only if a"(p) < 0.

Proof. (=) Suppose X,, is outward pointing, i.e. Y, = —X, is inward pointing. Then Y, & T}, (OM)
and there is a curve c¢: [0,e) — M such that

c(0) =p, ¢ (0) =Y}, and c((0,¢)) € M".

Since (U, ) = (U,z!,...,2") is a chart in the manifold with boundary M, U is diffeomorphic with
an open subset of H" via . Therefore, ™ > 0 on U. Since p € OM, 2" (p) = 0. So if we take the

curve poc = (c',...,c"), where ¢! = 2% o ¢, we have ¢" (0) = 2"(p) = 0, and c"(t) > 0 for 0 < t < e.
Therefore,
¢ (0) = lim ) =c"(0) = lim & ®) > 0. (7.11)
t—0+ t t—o+ ¢
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If ¢ (0) =0, then ¢ (t) =0 for all 0 <t < € for some € < e. This would mean that

z" (c(t)) =0, (7.12)
i.e. ¢(t) € OM, which is not possible. Therefore, ¢" (0) > 0. Since ¢ (0) =Y, using Proposition 6.5.1
of DG,

7.13
ZC 8:1:’ (7.13)

Since Y, = —X,,, —a™ (p) = ¢" (0) > 0, i.e. a™(p) <O0.

(<) Let Y, = —X,. By hypothesis, —a" (p) > 0. We define o : R — R" as

a(t) = (~a' () -t 4P~ (p) -1+ PP —a" (p) - £ 477 (7.14)

where ¢ (p) = (p',...,p").
p € OM, so p" = 0. a(0) = ¢(p) € ¢(U). Since —a™(p) > 0, there exists € > 0 such that
a(t) € p(U) CH"™ for each 0 <t < e. So we define the curve ¢: [0,e) - U C M as

ct)=p (a(t)=p! (—al (p) -t +pt,—a®(p)-t+p° ..., —a" (p)- t) . (7.15)

Then clearly ¢(0) =p. For 0 <t <e, —a™(p) -t >0, so a(t) € (H")°. As a result, c(t) € U° C M°.
Furthermore, ¢’ (0) is glven by

g CZ 8:)0’

=1

Zd t—l—p)(o) 9

= oxt
= _ Z 81‘2 = —X,. (7.16)
p
Therefore, —X, is inward pointing, i.e. X, is outward pointing. |

Proposition 7.5
On a manifold M with boundary OM, there is a smooth outward-pointing vector field along M .

Proof. Let {(Ua,zl, 22 "l

ayPordar P

) }aea be an atlas for the manifold M. Let {pa},cq be a partition of

unity subordinate to the open cover {Uy},c4. On each U,, we take the vector field — n, and then
we attach them using the partition of unity:

0

Now we show that X is an outward pointing vector field. First, we are going to show that X is smooth.
Given any q € M, there is a coordinate open set U that intersects only finitely many supp p,’s due to
the local finiteness of {supp pa},. Now, on the chart (U, b ),

0
_gpa 695” = Zpaz 81‘" 83:2 = —ZZPa&En I (718)

=1 «

Here we swapped the order of summation, because they are finite sums. gin is smooth, since the

charts are C'°°-compatible. p, are also smooth. Therefore, X is smooth on U. In particular, X is
smooth at ¢. Since ¢ € M was arbitrary, X is smooth on all of M.
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Now we are going to show that X, is outward-pointing for each p € OM. There is a coordi-
nate neighborhood V' of p that intersects only finitely many supp p,’s due to the local finiteness of

{supp pa},. Suppose (V, Y. ,y") be a coordinate chart. Since — agn is an outward pointing
alp
vector in T}, (V N U,), if we write
0 LI

_ =S"d (p , 7.19
Oz, ;a()aylp (719

we would have all (p) < 0. Now, X, is

7 Z a
S IS W) SEAFAES 95 YR UL AL B
o =1 « p

Here we swapped the order of summation, because they are finite sums. p, (p) > 0, and it is positive

for at least one « since ) p, = 1. Therefore, the coefficient of yn’ in (7.20) is
P

> pa(p)al (p), (7.21)

which is negative, since a} (p) < 0 for each . Hence, X, is outward pointing by Lemma 7.4. |

§7.5 Interior Multiplication

If 8 is a k-covector on a vector space V, and v € V, for k > 2, the interior multiplication or
contraction of 5 with v is the (k — 1)-covector ¢y defined by

(tvB) (Vo ..., vE) = B (V, Ve, ..., Vk), (7.22)

with vo,..., vy € V. When  is a 1-covector, then ¢/ is supposed to be a constant real number (i.e.
a 0-covector). This is defined by

B =p(v)eR. (7.23)

Finally, when £ is a 0-covector on V' (i.e. a constant real number), we define
Ly =0. (7.24)

Interior multiplication on a manifold is defined pointaise. If X is a smooth vector field on M and
w € QF(M), then txw € QF1(M), defined by

(txw), = tx,Wp. (7.25)

The right side of (7.25) makes sense according to (7.22), (7.23), and (7.24). Indeed, for (k — 1) many
tangent vectors X2, ... ,Xz]f with k£ > 2, (7.25) can be recast into the following using (7.22) as

(exw), (X2, XE) = (x,wp) (X2, XE) = wp (X, X2, X)) (7.26)

If X, X2, ..., X" are k-many smooth vector fields on M, then the RHS of (7.26) is {w (X, X2, ... ,Xk)} (p)
while the LHS of (7.26) is {(wa) <X2, . ,Xkﬂ (p). Therefore, for k > 2, one has

(Lxw) (XQ,...,X’f) = w (X,XQ,...,X"“), (7.27)

for (k—1) many C* vector fields X2,..., X* on M. Now, since w is a smooth k-form, for any smooth
vector fields X, X2,.... X* on M, w (X,XQ, . ,Xk> is a smooth function on M. As a result, for any

C™ vector fields X2,..., X%, (1xw) (XQ, e 7X’“) is a smooth function on M. Therefore, txw is a
smooth (k — 1)-form on M.
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Proposition 7.6

For 1-covectors a!, ..., a* on a vector space V and v € V,
k . . _
Ly (al/\---/\ak) :Z(—l)’_loﬁ(v)al A---Nat A--- Ao,
i=1

where the caret ~on the i-th covector o’ means that o' is omitted from the wedge product.

Proof. Consider k > 2. For any va,...,vp € V,

[LV (al/\"-/\ak)] (Vo,...,vk) = (al/\--~/\ak> (V,va,...,Vg)

a;(v) Oé;(VQ) a;(vk)
@) @) ()
ak'(v) Oék('VQ) o/“('vk)
k
= > (=) al(v) det [o! (v))] 1 <izpip
i=1 25j<k

k —
= Z(—l)i_lai(v) (al AN Aot A-- A o/"’) (vo,...,vi). (7.28)

=1
Therefore,
k
Ly (al ARV ak) = Z(—l)iflai(v) oA A A Ak (7.29)
i=1
Iftk=1,
w(0f) =al (v) = (-1l (v). (7.30)
So, the equality holds for k = 1 as well. [ |
Lemma 7.7

The interior multiplication ¢xw of a smooth k-form w on M with a smooth vector field X on M
has the following properties:

(i) tpxw = fixw;
(i) tx (fw) = fixw;
for f € C>(M).

Proof. (i) Suppose k > 2. For any p € M, and any XS, .. ,X;f,
k k
(Lwa)p (XP?’ N ,Xp) = (Lf(p)Xpwp) (XP?’ N ,Xp>
— o (F0)X, X2, XE)
= f(p)wp (XP7X57 e ;X];)

= f(p) (txw), (Xp, X2,... ,X;:) . (7.31)
Since p € M is arbitrary, we have
vpxw = fixw. (7.32)
Now consider the case k = 1.
(trxw), = wp (f (p) Xp) = [ (p) [w (X)], = (f txw),,- (7.33)
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Therefore, for £k = 1 as well, since p € M is arbitrary,
Lixw = fixw. (7.34)
(ii) Again, let us first consider the case k > 2. For any p € M, and any Xﬁ, e ,X;j,
(ex(fw)), (X7, X5) = (ix, (FP)wp)) (X2, X))
= f(p)wp (X5, X2, XF)
= f(p) (1xw), (Xps X2, X . (7.35)

Since p € M is arbitrary, we have
tx (fw) = fixw. (7.36)

Now consider the case & = 1.

(ex (fw)p = tx, (f (P)wp) = f (p) wp (Xp) = [ (p) [w (X)), = (f exw), - (7.37)

Therefore, for k = 1 as well, since p € M is arbitrary,

tx (fw) = fixw. (7.38)

§7.6 Boundary Orientation

Now, we show that the boundary of an orientable manifold M with boundary is an orientable manifold
without boundary.

Proposition 7.8

Let M be an orientable n-manifold with boundary dM. If w is an orientation form on M and
X is a smooth outward-pointing vector field along OM, then ¢ xw is a smooth nowhere vanishing
(n — 1) form on OM. Hence, M is orientable.

Proof. Since w is smooth on M, w is also smooth on M. By hypothesis, X is smooth on OM.
Hence, the contraction ¢ xw is also smooth on 0M. We will now prove by contradiction that ¢xw is
nowhere-vanishing on OM. Suppose. txw vanishes at some p € M. It means that

(exw), (X5, X571 =0, (7.39)

for any X;,...,ngl € T,(0M). Let Y;,...,anfl be a basis for T,(0M). Since X is a smooth
outward-pointing vector field along OM, X,, & T), (OM). Now,

dim T,M = dim T, (OM) + 1,

since M is a manifold of dimension n—1 (without boundary). Since X, ¢ T,(OM) and Y,}, ..., Y,
is a basis for T),(0M), one finds that X, Y;}, o ,Y;,”_l is a basis for T),M. Hence,

wp (Xp,Ypl, o Y;l—l) = (1xw), (X;, o X;}—l) =0. (7.40)
Now, by Lemma 6.1, since X, Y;)’ e Yp"*1 forms a basis for T,,M,
wp (Z;, . .,Zg) -0, (7.41)

for all Z;, ooy Zy € TyM. In other words, w, =0 on T, M, a contradiction. |
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Example 7.4 (The boundary orientation on 0H™). An orientation form for the standard orientation

on the upper half-space H" is w = dz' A ---da™. A smooth outward pointing vector field on OH" is

—%. By Proposition 7.8, an orientation form on OH" is given by the contraction

t_ o (W)=1t__o (dm1 AREE dmn) . (7.42)

T oz
Using Proposition 7.6 and Lemma 7.7(i), we get

n

L_L(w)z—Z(—l)i_l [dmi (%)] dz' A Adzi A - Ada”

i=1

= (-1)"dz' A~ Ada™L (7.43)

The n = 1 case needs a separate treatment. Recall that for a 1-covector 5 on a vector space V, and
any vector v € V, the interior multiplication of 8 with v is defined as

B = B(V) €R.

Now, for H! = [0,00), OH! = {0}. Fix the orientation 1-form dz corresponding to the orientation
directed from left to right. An outward pointing vector field on OH! = {0} is given by —%. By
Proposition 7.8, an orientation form on OH!' is given by the contraction

Lo (dz) = —1. (7.44)

Let us now consider the case n = 2.

OH? =R
By (7.43), the boundary orientation on H? = R is given by the contraction

s, (d:vl A dx2) = da'.. (7.45)

x

Now consider n = 3.
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7 Manifolds with Boundary 74

Here the manifold is H® with boundary OH® = R?, the 2'-22 plane (correspondint to 23 = 0). Accord-
ing to (7.43), the boundary orientation on OH? = R? is given by the 2-form

(=1)% da! A da? = —da! A da?. (7.46)
This yields the anti-clockwise orientation on the z'-z? plane.

Example 7.5. Consider the closed interval [0,1] in R. One has 9[0,1] = {0,1}. Also consider the
orientation 1-form dz on [0, 1] corresponding to the standard orientation directed from left to right.

0

0
ox ox
0 1

A |

Ny,
>

At the right boundary point 1, an outward pointing vector field reads %. Hence, by Proposition 7.8,
the boundary orientation at 1 is given by

(dz) = 1. (7.47)

Lo
oz

On the other hand, at the left boundary point 0, an outward pointing vector field reads —%. Hence,
by Proposition 7.8, the boundary orientation at 0 is given by the contraction

t_ o (dz) = —1. (7.48)

oz

Example 7.6. Let M be the cylinder S* x [0,1] with the counterclockise orientation when viewed
from the exterior. Let us determine the boundary orientation on Cy = S x {0} and C; = S* x {1}.

Cy

U

O
R RER
\—)/CO

The counterclock arise orientation on M is given by the orientation form w = df A dt. An outward-
pointing vector field on Cj is given by —%, so that the relevant contraction of w with —% reads

0 _
Lo (dOAdE) = —= (dt) (—=1)*"* df = do. (7.49)
ot ot
Hence, the boundary orientation on Cj is given by the 1-form dé.
Now, to determine the boundary orientation on C; = S* x {1}, let us compute the contraction of w

on with an outward-pointing vector field % on C1 :

Lo (A Adt) = 0 (dt) (=1)*! dg = —do. (7.50)

b ot
So the boundary orientation on 4 is given by the 1-form —df. Therefore, on Cjy, the orientation

is given by the counterclockwise orientation and on C, the orientation is given by the clockwise
orientation viewed from the top.

74



7 Manifolds with Boundary 75
4 I
Remark 7.3. Recall the nowhere-vanishing 1 form on S' from Example 5.2:
& U, = e st 0
0= { . ) . = # 0}, (7.51)
- on Uy = {(z,y) € S' | y #0}.
If we go back to polar coordinates, i.e. x = cosf and y = sin @, then
dy d(sinf) cosfdd
— = = =df 7.52
T cos 6 cos 6 ’ (7.52)
dz d (cos ) —sinfdf
T =— = d#. 7.53
Y sin sin 0 ( )
Therefore, this nowhere vanishing 1-form w is, in fact, d6.
. J
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8 Integration on Manifolds

§8.1 Riemann Integral Review

Let us first recall the subject of Riemann integration over a closed rectangle in Euclidean space R"
A closed rectangle in R"™ is a cartesian product

R= [al,bl] X ... % [a",b"]

of closed intervals in R with a’,b’ € R. Let f be a bounded function f : R — R defined on a closed
rectangle R. The volume vol(R) of the closed rectangle is defined to be

vol (R) =[] (bs — as). (8.1)
i=1

A partition of the closed interval [a, b] is a set of real numbers {py,

ie.

.., Pn} arranged in ascending order,

a=py<p1<...<pp=2»

(8.2)
A partition of the rectangle R is a collection P = {P,..., P,} such that each P; is a partition of
[a’,b"]. In other words. each P; is an increasing sequence of real numbers

al=ph<pi<..... <ph=b (8.3)
fori=1,2,......

n This way, the partition P of the closed rectangle R divides it into closed subrect-
angles, which we denote by R;. On possible partition of a closed rectangle [a',b!] x [a?, %] is pictured
below in R? :

b2 ¢

a

bl

A partition P’ = {P],..., P/} of the same rectangle R is called a refinement of the partition P =
., Py} of Rif P, C P/ for each i = 1,2,...,n. For example, the following partition of [al,b!] x

[a?,b?] is a refinement of the partition shown above. (The original partition P is drawn in black, while
the new lines arising in the refined partition are drawn in red.)
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8 Integration on Manifolds 7

b2 ¢

al bl

We immediately see that each subrectangle R; of P is subdivided into subrectangles R;-k of the
refinement P’. It’s now time to define the lower and upper sum of the bounded function f: R — R
wirh respect to the partition P:

L(f,P):= inf f ) vol (R;), (8.4)
%j: (Rj ) A
U(f,P):= Z <sup f) vol (R;) . (8.5)
R; \
It’s clear that for any partition P,
L(f,P)<U(f,P). (8.6)

Now, suppose P’ is a refinement of the partition P. Then each subrectangle R; of P is subdivided into

subrectangles R’ of the refinement P'. Furthermore, vol (R;) = 3, vol ( ) Now, since R} C Rj,
one has
inf f <inf f and sup f > sup f. (8.7)
R, Ry, R; Rl

Now, from (8.4),

L(£.P) =3 (int £) vol ()

R; 'Y

<3 <1nf f) >~ vol (Rj)

RJ
<y (g/lf f) vol (Rjy,) = L (f,P').
R, \'ik
In other words,
L(f,P)<L(fP). (8.8)
Similarly,
U(f,P)>U(f.P). (8.9)

Any two partitions P and P’ of the rectangle R have a common refinement Q = {Q1,...,Q,} with
Qi = P, U P!. Then by (8.8) and (8.9),

L(f,P)<L(fQ)<U(£,Q) <U(f.F).

Therefore, for any two partitions P and P,

L(f.P)<U(f,P). (8.10)
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8 Integration on Manifolds 78

From (8.10), one sees that U (f, P') is an upper bound of L (f, P) for any partition P of the rectangle
R. As a result,

sgpL(f, P)<U(f,P). (8.11)

Again, from (8.11), one sees that supp L (f, P) is a lower bound of U (f, P') for any partition P’ of
the rectangle R. Hence,
sup L (f, P) < i]IDI/fU (f,P). (8.12)
P

The supremum of the lower-sum L (f, P) as P varies over all paritions of the rectangle is called the
lower integral, and is denoted by

/ SupL (f,P) (8.13)

On the contrary, the infimum of the upper-sum U (f, P) as P varies over all paritions of the rectangle
is called the upper integral, and is denoted by

/ f=1infU(f,P). (8.14)
R P

/ng /Rf. (8.15)

Definition 8.1 (Riemann integrability). Let R be a closed rectangle in R™. A bounded function
f : R — R is said to be Riemann integrable if IRf = [pf. In this case, the Riemann
integral of f is this common value, usually denoted by

Using these notations (8.12) reads

/ f(x) dztda?---dam
R

1

where z*, ..., z" are the standard coordinates on R".

Definition 8.2. If f : A C R” — R, then the extension of f by zero is the function f : R — R
such that
- f(z) ifzeA,
0 if x ¢ A.

If f is a bounded function on a bounded set A, then one encloses A in a closed rectangle R C R".
The the Riemann integral of f: A — R over A is defined to be

/ f(x) dztdz?. .- da"™ = / f(x) dz'dz?- - - dz", (8.16)
A R
provided the RHS exists, i.e. the extension f of f by zero is Riemann integrable over the closed

rectangle R enclosing A. The volume vol A of a subset A C R" is defined to be the integral
[41dztda? .- dz™ if the integral exists.

Integrability conditions

Definition 8.3. A set A C R" is said to have measure zero if for every € > 0, there is a countable
collection of closed rectangles {R;}:-; such that A C J;2; R; and

Z vol (R;) < e
i=1
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8 Integration on Manifolds 79

Theorem 8.1 (Lebesgue’s theorem)

A bounded function f: A — R on a bounded subset A C R" is Riemann integrable if and only if
the set Disc (7) of discontinuities of the extended function f has measure zero.

Proposition 8.2

If a continuous function f : U — R defined on an open subset U of R"™ has compact support, then
f is Riemann integrable on U.

Proof. f:U — R is continuous. On U \ supp f, f is zero. Since f is continuous on supp f C U, and
supp f is compact (by hypothesis), f is bounded on supp f. Also, f is zero on U \ supp f. Hence,
f : U — Ris a bounded continuous function on the open subset U C R". We claim that the extension
f:R™ = R is continuous.

By the definition of extension of a function by zero, f agrees witt f on U, and hence f is continuous
on U. It remains to show that f is continuous on the complement R"™ \ U of U. Since supp f C U, if
p ¢ U, then P ¢ supp f.

supp f being a compact subset of R" is closed and bounded. Hence. R™ \ supp f is open and
p € R™ \ supp f. Therefore, there exist an open ball B such that

p € B CR"\supp f,

i.e. an open ball containing p and disjoint from supp f. On this open ball B containing p, f = 0.
Therefore, f is
_ if U
f () ifzel, (8.17)
0 ifegU.
On B\ U, fis clearly 0 . Since BNU Nsupp f = &, and on BN U, f and f agree with other, one
must have, f = 0 on BNU. Hence, on B, f = 0. This implies that f is continuous at p € U. We,
therefore, have, f to be continuous on the whole of R”.
Note that f, defined by (8.17) is also the zero extension of f |Supp ;i supp f — R with supp f

being a bounded subset of R". Now, we are all good to apply Lebesgue’s theorem by which f|

supp f
supp f — R is Riemann integravle integrable. Since f is zero on U \supp f, f : U — R is also Riemann
integrable. |

Definition 8.4 (Domain of integration). A subset A C R" is called a domain of integration if it
is bounded and its topological boundary bd A is a set of measure zero.

Familiar plane figures, such as triangles, rectangles, disks are all domains of integration in R2.

Proposition 8.3

Every bounded continuous function f defined on a domain of integration A in R™ is Riemann
integrable over A.

Proof. Let f:R™ — R be the extension of f by zero, ie.,

(x):{f(a:) ifz e A,

0 if o ¢ U. (8.18)
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8 Integration on Manifolds 80

Since f is continuous on A by hypothesis, A is necessarily continuous in the open set int(A). One also
observes that if p is an exterior point of A, i.e., if p € R™ \ A, being an open set, there is an open set
U C R” such that

peUCR"\ A

Since UNA =@, f =0 on U. Hence, f is continuous at p. One, thus, verifies that f is continuous at
all interior and exterior points of A. Therefore, the set Disc (7) of discontinuities of f is a subset of
bd (A), a set of measure zero. By Lebergues’ theorem, f is Riemann integrable on A. |

§8.2 Integral of an n-form on R”

Definition 8.5. Let w = f (x) dz' A --- Adz” be a C* n-form on an open subset U C R", with
standard coordinates x!,...,2". Its integral over a subset A C U is defined to be the Riemann
integral of f(x)

/Aw:/Af(X) dzt A~ Ada™ ::/Af(x) det - dz®, (8.19)

if the Riemann integral exists.

If f is a bounded continuous function on a domain of integration A in R™, then the integral [, fda! A
-+ Ada"™ exists by Proposition 8.3.

Let us now see how the integral of an n-form w = fda' A --- A da” on an open subset U C R”
transform under change of variables. A change of variables on U C R" is given by a diffeomorphism

T:VCR"—-UCR".

Let z!',..., 2™ be the standard coordinates on U and y',...,y" the standard coordinates on V. One,
therefore, has {a‘zl e % (o) to be a basis of T,)R"™ while {aayl SRR % p} is a basis

of T,R". for p € V. Now, the differential DT'(p) : T,R" — Tp,)R"™ at p € V is represented by the
following n x n matrix:

1 1 1
Gr) G - G ()
OT2()y T2 ... 92,

o o oyn

DT(p) = | % ! !
o) Y= - G

The deterimant of the matrix DT is precisely the Jacobian determinant denoted by det(J(T)), i.e.
det (J(T')) = det(DT), that arises in the change of variable formula for integration in multivariable
calculus:

/fdxlmda:":/ (f o T)|det (DT)| dy" - - - dy™, (8.20)
U 1%

with f: U C R" — R being a bounded continuous function and foT : V C R” — R. Here, we assume
that U and V' are both connected. By Lemma 5.5, one has

%

AT A -+ dT™ = det [M
oyl

] dyt Ao Ady™, (8.21)

where T" = ' o T = T* (') is the i-th component of T.. Hence, for T : V C R® — U C R" and w
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8 Integration on Manifolds 81

being an n-form on U,

/T*w:/T*(fdazl/\---/\da:”)
\%4 |4
= | (T*f)T*dz’ A--- ANT*da"

(FoT) d(T"a!) A--- Ad(T72")
(foT)dT' A---AdAT"

(foT) det(J(T))dy* A--- Ady™. (8.22)

I

Using (8.20),
/ w= / fdzt- .- dz" :/ (foT)|det J(T)| dy' - --dy™. (8.23)
U U v
Since (8.22) and (8.23) differ by the sign of det(J(7")), one has

/VT*w = :I:/Uw, (8.24)

depending on whether the Jacobian determinant det (J(7")) is positive or negative. By Proposition 6.3,
a diffeomorphism 7' : V C R® — U € R” is orientation-preserving if and only if its Jacobian determi-
nant

det J (T') = det [(?Ti]

oyl

is everywhere positive on V. Equation (8.24) tells us that the integral of differential form w is not
necessarily invariant under an arbitrary diffeomorphism 7' : V' — U. The integral of a differential
form w is only invariant ([, T*w = [;;w) if and only if the diffeomorphism T": V' — U is orientation
preserving.

§8.3 Integral of a differential form over a manifold

Our approach to integration over a general manifold has the following distinguishing features:
(a) The manifold must be oriented.
(b) On a manifold of dimension n, one can only integrate n-forms, not functions (which are 0-forms).
(¢) The n-forms must have compact support.

Let M be an oriented manifold of dimension n, with an oriented atlas {(Usx,¥a)}oca giving the
orientation of M. If w € QF(M), then

suppw={peM |w,#0}=clyy({pe M | wy, #0}). (8.25)

Lemma 8.4

If (U, ¢) is a chart in a manifold M (of dimension n) and w is an n-form on U,

supp [(90’1)*00} = ¢ (suppw).
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Proof. Here ¢ : U — ¢ (U) is a diffeomorphism. In particular, it is a homeomorphism. Therefore.
7 (Z) = ¢ (A). Now,

supp [(!) ]

{a= o (U) | [(wl)*w 70}
¥

({PGUI s #0)

o(frevl ) ulyg #0}). (8.26)

Now, [(Lpfl)*w} e Ak (T* o (U )) It is 0 if and only if it yields 0 when applied to any basis
¢ (p) o(p)

vectors. Therefore,
©(p)

(67 =0 = () 4L (5

1
= Wol(y(p)) <<S0 )*#,(p) orin

9
" Orik

>—0f0rallf—(i1,~--aik)

)=
©(p)

for all I = (il,...,ik)

»(p)

. 0
o (7).

9 ) : :
— w0 (8.27)

Now using (8.26), we get

supp [(¢71) ]

(T )

= (P eUTw #0})
= ¢ (suppw) . (8.28)
|
Lemma 8.5
If w,7 € Q* (M), then
(a) supp (w+ 7) C suppw U supp .
(b) supp (w A7) C suppw Nsupp 7.
Proof. (a) If (w+7), # 0, then wy, # 0 or 7, # 0. Therefore,
[peM| (W+7),#0} C{peM |w,#0}U{pe M| #0}. (8.29)
Taking closure on both sides, and using the fact that AU B = AU B, we get
{peM| (w+7),#£0} CpeM[w, Z0JU{pe M7, £ 0}. (8.30)
In other words,
supp (w + 7) C suppw U supp 7. (8.31)
(b) If (wAT), # 0, then wy # 0 and 7, # 0. Therefore,
{peM| (Wnr),#0} C{peM|w#0}N{peM|n#0}, (8.32)
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Taking closure on both sides, and using the fact that AN B C AN B, we get

{peM| (w/\r)p#O} C{peMw, 20} N{pe M |7, # 0} (8.33)

In other words,
supp (w A7) C suppw Nsupp 7. (8.34)
|

Let QF(M) denote the vector space of C™ k-forms with compact support on M. Suppose (U, ¢) is a
chart in the atlas {(Ua, ¢a)}aca-
If w e QF(U) is an n-form with compact support on U, since ¢ being a diffeomorphism is continuous,

¢ (suppw) is compact in ¢(U). Then by Lemma 8.4, supp [(cp_l)* w} is compact in ¢ (U) C R™. We

fo o ) =

If (U, %) is another chart in the oriented atlas with the same open set U, then po =1 : (U) — o(U)
is an orientation preserving diffeomorphism (i.e. with positive Jacobian determinant), so it preserves
integral of n-form on open subset of R™. Therefore,

Loy &) 0= [, (o) [(#7)

define the integral of w on U by

- [l oo ()
L[ o)
_ /w(U) (07w, (8.36)

proving the chart independence of the definition (8.35). By the linearity of integral on R™ and linearity

of pullback, if w, 7 € QI (U), then
/(w+T):/w+/T. (8.37)
U U U

Now, let w € Q' (M). Choose a partition of unity {p,}, subordinate to the open cover {U,},. From
the definition of partition of unity {supp pa},, is locally finite. Let p € suppw. There is a neighborhood
W, of p in M that intersects only finitely many of the sets supp p, (from the local finiteness of the set
{supp pa}, ). The collection {W,, | p € suppw} obviously covers supp w. Since supp w is compact, there
is a finite subcover of {W), | p € suppw} of suppw. Let us denote this subcover by {W,,,..., W), }.
In other words,

m
suppw C | Wy, (8.38)
i=1
Since each W), intersects finitely many supp p, in {supp pa },,, supp w must intersect only finitely many
supp po. By Lemma 8.5(b),
supp (paw) C supp pa N supp w. (8.39)

Thus for all but finitely many «, supp (pow) is empty, i.e., pow = 0. Therefore, Y pow is a finite
sum, and

Z P = W, (8.40)

since >, pa = 1. By (8.39), supp (paw) C suppw, i.e. supp (paw) is a closed subset of a compact
set suppw. Hence, supp (pow) is compact. As a result, pow is an n-form compactly supported in the
chart U,, because

supp (paw) C supp pq Nsuppw C supp po C U,. (8.41)
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Hence, the integral fUa paw is defined, using (8.35). Therefore, we can define the inyehral of w over

M to be the finite sum
/ w = Z/ Paw. (8.42)
M =~ JU.

(This is a finite sum, because p,w is a nonzero form on U, for only finitely many «) Now, for the
integral (8.42) to be well-defined, we must show that [, w is independent of the choices of oriented atlas
and partition of unity. Let {(V3,v3)} 4.5 be another oriented atlas specifying the same orientation
as that of {(Ua; pa)taca- Suppose {xg}zcp be a partition of unity subordinate to the open cover
{VB}ﬂGB' Then

) R (CULET)

are two new atlases of M specifying the same orientation on M. Then one has
S o= paY xaw, (8.43)
a JUa a JUa B

since } 5 xp = 1. Now, the sum 5 xpw is, in fact, a finite sum, because ypw is a nonzero form on
V3 for only finitely many 3. Therefore, we can take the sum in front of the integral.

%: /Ua paw = @; /U paxpw (8.44)

Now,
supp (paxs) € supp pa Nsupp xs € Ua N V3. (8.45)

Using (8.45), we can rewrite (8.44) as
QW = o X BW. 8.46
g/Uap Za:%:/aﬂvﬁp v (5:40)

Similarly,

% /Vﬂ Xpw = ;Zﬂ: / XBPoaw- (8.47)

VgﬂUa

In (8.46) and (8.47), we can actually interchange the o and [ sums, since they are finite sums.

Therefore, we can conclude that
Paw = / X/W. (8.48)
X=X,

Therefore, the definition of the integral of a compactly supported smooth n-form on M given by
(8.42) is independent of the choices of oriented atlas and the partition of unity subordinate to that
atlas.

Proposition 8.6

Let w be an n-form with compact support on an oriented manifold M of dimension n. If —M is
the same manifold with the opposite orientation, then

[Mw = —/Mw. (8.49)

Proof. By the definition an integral (8.35) and (8.10), it is enough to show that for every chart
(U, ) = (U,2',2%,...,2") in the oriented atlas {(Us, ¢a)},,, [we're dropping subscript « for notational
clarity] and differential form 7 € Q2(U), if (U, p) = (U, —2t,22,...,2") is the chart with the opposite

orientation, then
/gw) (571) r= —/go(U) (¢7) = (8.50)
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Let r!,..., 7" be the standard coordinates on R”. Then one has
g =rlopand r' =zl o p L. (8.51)

When one is dealing with the chart (U, ¢), (8.51) still remains true for i = 2,3,...,n. Only the formula
for ¢ = 1, changes by a sign.

—rl=rlogandr! = —zlog,
o amd st ol 2
for i = 2,3,...,n. Now suppose,
r=fdz' A- A d2”
on U. Then
(@*1)*7 = (@*1)* (fdat Aeeendam)
- (fo@‘l) d(xlo@_l) /\---/\d(l‘”o@_l)
S (fog,z—l) dr' A Adr™ (8.53)
Similarly,
(¢)) 7= (foe ) drtn - ndr (8.54)

Now take the map po@ ! : ¢ (U) — ¢ (U). Take (a',...,a™) € ¢ (U). Let us compute (1’ o p o g~ 1) (al,...

For i =1,
(rropog) (al. . am) = (a' 0 p7t) (a'...,a")
= —rl (al, . ,a") = —al. (8.55)
Fori=23,...,n
(Fowod™) (a....a") = (0 7") (', a")
= (al, ,a”) =a'. (8.56)

Therefore,
(g@ o 6‘1> (al, a, ... ,a") = <fa1, a?,. .. ,a”) : (8.57)

So, the Jacobian matrix of ¢ o $~! will be a diagonal matrix, with entries —1,1,...,1. Hence,
det J (pot)| = |-1] = 1. (8.58)
Therefore,
~—1 -1 1
o / fog™)dr-
fn &) 7= Ly (1277
= fop™)o(pog™)|detJ (po@ t)|drt---dr"
Loy (Foe) o ) det 7 (0057
= / (f o 1) drt-.
w(U)
= —/sD(U) i
Therefore, (8.50) holds. By the linearity of integration, this proves (8.49). [ |

In practical computation, the definition of integral of an n-form over an oriented n-manifold using
partition of unity is not very useful. To calculate explicitly integrals over an oriented n-manifold M,
it’s best to consider integrals over a parametrized set.
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8 Integration on Manifolds 86

Definition 8.6 (Paramtrized set). A parametrized set in an oriented n-manifold M is a subset
A C M together with a C* map F : D — M from a compact domain of integration D C R™ to
M such that A = F(D) and F restricts to an orientation preserving diffeomorphism from int(D)
to F(int D). Note that by smooth invariance of domain for manifolds (Remark 7.2), F'(int D) is
an open subset of M. The C°*° map F' : D — A is called a parametrization of A.

If A C M is a parametrized set with parametrization /' : D — A and w is a C*° n-form on M, not
necessarily with compact support, then we define [, w to be [, F*w.

/Aw::/DF*w. (8.59)

One can show that this definition is parametrization independent. Indeed, if there is a C* map
F: D — M from a compact domain of integration D C R™ to M such that A = F(D) and F restricts

to an orientation preserving diffeomorphism from int (f)) to F (int 5), them

/~ﬁ*w:/ F*w.
D D

It can be seen by showing that there is a smooth map G : D — D which restricts to an orientation
preserving diffeomorphism from int (D) to int (D), such that

FoG=F. (8.60)

Then by Theorem 5.7, _
F* = G*o F*. (8.61)

Then by the definition of integration over parametrized set,

/D Frw = /5 G* (F*w) = /5 F*w. (8.62)

It’s important to note that [, F*w and f5 F*w are equal and do not differ by a sign is because

G : D — D restricts to an orientation preserving diffecomorphism from int(D) to G(int(D)) = int D.

In case the parametrized set A = F/(D) C M is a manifold, then [, w = [ gn F*w and the definition
(8:35) Jyw = Jswcrn (1) w coincide by looking at the smooth maps F : D C R" — F(D) = A
and ¢~ ! : ¢(U) C R” — U. In the former case D C R" is taken to be compact so that we don’t want
w to be compactly supported in this case while in the latter case we have ¢(U) C R" to be open or
in other words U to be open so that in this case we required w to be compactly supported inside the
open subset U of M.

The theory of integration using parametrizing sets is computationally handy. We refer the interested
reader to the treatment in Analysis on Manifolds by James Munkres (there again Munkres used
parametrized open sets in contrast to the compact set A = F(D) we used and hence Munkres needed
the n-form w to be compactly supported inside the parametrized open set). We try to content ourselves
with an example.

Example 8.1 (Integral over a sphere). Given unit vectors i, j and k along the z-axis, y-axis and
z-axis, respectively, the vector (x,y,z) from the origin (0,0,0) to the point (z,y,z) is nothing but
xi+ yj + zk. Then we take

=22 g2+ 22 = |[(,y, 2| = o+ g + K| (8.63)

The set of all points in R? obeying ||(z,y, 2)|| = 7 for a given positive real r is the sphere of radius r
centered at the origin (0,0,0). Let us denote by ¢ the angle (x,y, z) makes with the positive z-axis,
and denote by 6 the angle that the vector (z,y) makes with the positive x-axis.
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8 Integration on Manifolds 87
z
x
Let S? be the unit sphere in R3 (r = 1). Let w be the 2-form on S? given by
% if x #0,
w= % if y #0, (8.64)
dendyf 2 £ 0.
We want to calculate [qo w.
¥
A
T
F
%
0 2 =0
In this problem, the compact domain D C R? of integration is given by
D={(0,9) R | 0<0<2m,0<p<m}. (8.65)

Here, S? C R3 is the parametrized set which happens to be a 2-dimensional manifold, and the

parametrization is the smooth map F : D — S? given by

F (0, ¢) = (sinpcos @, sin psin b, cos p) = (z,y,2) € S C R>.

(8.66)

Here z,y, z are 3 coordinate functions (0-forms) on S2, so that the pullbacks F*x, F*y and F*z under

the smooth map F' given by are expected to be functions in D. Indeed,

F*z =x0F =sinpcosf,
F*y=yoF =sinysinb,
F*z=z0F = cos.

Thus, we have

(cosf) = —sinf de.

87

= d (singpcos @) = cos pcosfdp — sin O sin p db.
F*(dy) = d(F*y) = d (sinpsinf) = cos ¢ sin 6 dp + sin ¢ cos 0 d6.
=d

(8.67)

(8.68)
(8.69)
(8.70)
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Now, for z # 0,
- F*dy AN F*dz  (cosgsin@de + sin g cosfdf) A (—sin 6 db)
N F*x N sin ¢ cos 6
in? 6 cosfdyp A df
_ 7 0cosPep A AV _ G gdp A db.
sin ¢ cos 6
For y # 0,
- F*dz A F*dx (—sinfdf) A (cos @ cos dp — sin 0 sin ¢ do)
N F*y n sin ¢ sin 6
. 2 .
_ sin <p'sm9'dgp/\d9 _ sinfdy A do.
sin p sin 0
For z # 0,
- F*dz A F*dy  (cospcosfdy — sinfsin o df) A (cos psin 6 dy + sin ¢ cos 6 d6)
. F*z N cos ¢
_ (singcosy cos? 6 + sin ¢ cos psin? ) dp A d
B oS
_ sin ¢ cos pdp A df — sinfdip A do.
COs ¢
Therefore,
F*w =sinfdp A db, (8.71)

everywhere. Now using the definition of integral over a parametrized set,

2r  pm
/ w:/ F*w:/ / sin pdey df
S2 D 0 0

po=m
= 27 [— cos ¢] ‘ = 4m, (8.72)

which is the surface area of the unit sphere S*.

§8.4 Stokes’ Theorem

Theorem 8.7 (Stokes’ Theorem)

Let M be an oriented smooth n-manifold with boundary, and let w be a compactly supported

smooth (n — 1)-form on M. Then
/ dw = / w. (8.73)
M oM

OM is a smooth (n — 1)-manifold without any boundary as we’ve sen in the previous lectures. There
is an indued orientation on OM. The (n — 1) form w appearing on the right side of (8.73) is to be
interpreted as ¢},,;w, where

LaM:aM%M

is the canonical inclusion of the boundary M into the n-manifold M. If 0M = &, then the right side
is to be interpreted as zero. When M is 1-dimensional, the right hand integral is just a finite sum in
the following sense:
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8 Integration on Manifolds 89

Integration over a zero-dimensional manifold

A compact oriented manifold of dimension 0 is a finite collection of points, each point oriented by +1
or —1 We write this fact as

T S
M=>"pi—> g (8.74)
i=1 j=1

which means that each element of the collection {p1, po, ..., p,} has orientation +1 while each element
of the collection {q1,q2,...,qs} has orientation —1. The object that is to be integrated over this
oriented 0-dimensions manifold M is a O-form f : M — R. The integral of this O-form is defined to
be the sum

[ 1= 13 @) (8.75)
M i=1 j=1
We need the following result to prove Stokes’ Theorem.

Lemma 8.8

Suppose M is a smooth manifold with or without boundary and S C M is an immersed subman-
ifold with or without boundary. Let ¢ : S — M be the relevant inclusion. Then

d(flg) = (df).

Furthermore, the pullback of df to S is zero if and only if f is constant on each component of S.

Proof. f|g = fot:S — R. Therefore,
d(f|s):d(fOL):d(L*f):L*(df). (8.76)

The pullback of df to S is ¢* (df), which is equal to d ( il S) as we have just proved. This will be zero
if and only if d (f|S) = 0.
Let g = f] g- We need to show that dg = 0 if and only if g is constant on each component of S.

Suppose g is constant on each component of S. Let (U, zt ... ,2™) be a (connected) chart on S. Then
on U,

dg = - dz' = 0. 8.77

g ; axz x ( )

So dg = 0 on all of S, since U was an arbitrary connected coordinate open set.

Conversely, suppose dg = 0. Let (U, ¢) = (U, z',...,2™) be a (connected) chart on S. Then on U,

0=dg= ; 38; da. (8.78)
This gives us that
8852. — 0, (8.79)
for each i = 1,...,m. Then we get
2 (gog) =0 (8.80)

L is constant on

on ¢ (U). Since ¢ (U) is a connected open subset of R, we can conclude that g o ¢~
¢ (U). As a result, g is constant on U.

Let V' be another connected coordinate open subset of S, belonging to the same connected compo-
nent of S as U, such that U NV # & (if there doesn’t exist such V', then U is a connected component
of S). Using the same argument as above, we conclude that g is constant on V' as well. Since the
constants must agree on U NV, we must have g to be constant on U U V. Continuing like this, we
conclude that g is constant on the connected component that contains U. Therefore, g is constant on

each connected compoent of S. |
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8 Integration on Manifolds 90

Proof of Stokes’ Theorem. We begin with the special case when M is the upper half-space H" itself,
for n > 1. Since w is a compactly supported (n — 1)-form in H", there is a real number K > 0 such
that suppw is contained in the rectangle

R=[-K K| x---x[-K,K] x[0,K].

We can write w using the standard coordinates of H" as
n —_—
w=Y widz' A---Adat A Ada”, (8.81)
where, as before, the caret stands for omission. Hence we have

dwi/\dxl/\---/\dxi/\---/\dx”

:M: I M:

= Ok 409 A dad Ao AT A - A da”
=i oxJ
" Ow; — "
:Za de' Adzt A Adazt A Ada™ (8.82)

s
Il
—

Here in the j-sum, the i # j terms will vanish since daz* A dz/ = 0 for k # j. In order to reinstate
the first da’ in its original position (where the caret occurs), it has to be pushed through the wedge
product (i — 1)-times and hence (8.82) reduces to

dw—;(—l)i_lgﬁdxl/\---/\dxi/\---/\dx". (8.83)
Therefore,
/ dw:zn:(—l)ifl O dz' Ao Ada”
n — R 0x'
" Ow;
z 1 2 n
— - da™. 8.84
Z; / / /K 333’ ! ( )

The contribution of the terms with ¢ # n in this sum are:
K rK K .
/ / / 8w?dx1...dxn
o J-xk Jog Oz
K K K K .
0 —-K -K
=0

since we can choose K large enough so that w = 0 when 2! = K. As a result,

dw—— nl/ / /Kawn 'dxn
H» K Ox™
= (_1)n—1/ / [wn (x)]iZj{ dzt .. dgen !
-K -K

0 [ [ o )T e sse)

again by choosing K large enough so that w = 0 when z" = K.
Let us now compute [y, w

(8.85)

n—1 1 T4 n
w = ezt 0)det Ae s Adat A - Ada”. 8.87
/8Hn Z/maHn ) ( )
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On OH™, ™ = 0, i.e. " is constant on OH". Therefore, by Lemma 8.8,

o (da) = d (2" ) = 0, (8.88)

where ¢ : OH" — H" is the inclusion map. Hence, in (8.87), for the sum over all i, only the term
corresponding to ¢ = n survives with dz” being omitted in that term. Therefore,

/ w = Wn, (xl, - ,:r”_l,()) dz' Ao Ada™ L (8.89)
OH™ RNOH"™

By Example 7.4, the induced orientation on H" is given by the (n — 1)-form (—1)" da! A--- Adz™ L.
Using this orientation, (8.89) reads

K K
/ w= (—1)"/ / Wn, (:z;l, . ,x"fl,O) dzt - da™ 1t (8.90)
OH"™ -K -K

Comparing (8.86) and (8.90), we get

dw = / w. (8.91)
H" OH"

Now we consider the special case when M = H' or L!. Let f be a smooth compactly supported 0-form
on H!. Since f is compactly supported, there exists some K > 0 such that supp f C [0, K]. Now,

F 1y

df = =-d (8.92)

So we have
K 9
f g
/ /Hl*Ad /0 5p 4z =1 (K) = f(0) = —f(0), (8.93)

since we can choose K large enough so that f (K) = 0. Now, the canonical orientation form dx on H!
induces an orientation on OH' = {0}, which is —1 (by Example 7.4). Therefore, by the definition of
integral of 0-forms on 0-dimensional manifold,

| f=-r0). (8.94)
OH!

Comparing (8.93) and (8.94), we get
df = f (8.95)
H OH1
Now consider M = L!'. The canonical orientation form on L' is dz. A smooth outward pointing
vector field on LL! is 8%. Therefore, the canoncial boundary orientation on L' = {0} is given by the
contraction
Lo (dz), (8.96)

ox

by Proposition 7.8. Since ¢y = 5 (v) € R, we have

0
Lo (dz) = dz (8:6) 1. (8.97)
Since f is compactly supported, there exists some K > 0 such that supp f C [-K,0]. Now,
of 1.
df = (91: (8.98)
So we have of 0 of
[oar=[ Gonde= [ Sdar=7©)-s(K)=10). (5.99)

since we can choose K large enough so that f (—K) = 0. Since the orientation on L' = {0} is +1,
by the definition of integral of 0-forms on 0-dimensional manifold,

f=1(0). (8.100)

oLt
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Comparing (8.99) and (8.100), we get

df = I (8.101)
L! AL
Next we consider the special case M = R". Since w is a compactly supported (n — 1)-form on R",
there exists some K > 0 such that suppw C R = [-K, K]". Then we write

szwidxl/\'--/\(Ta;/\---/\dm". (8.102)
Then

Z CAdai A Ada?

1:1

- z 1 awl ) n

=> (- dzt A---Adat Ao Ada™ (8.103)

=1
Therefore,

Z Ydzt A A da”
R Ox'

i=1

.

" ow;
1 1 7 1. n
g / /K D dz dz". (8.104)

=1

Let us now compute the integrals:

K K 9§
/ / aw?dxl...dxn
_K _K Ox*

- /K /K wi (2)]%=8 e dat - dat - da”

-K -K
=0, (8.105)

since we can choose K large enough so that w = 0 when 2! = +£K. Therefore,
dw = 0. (8.106)
R’ﬂ

Since R™ has empty boundary, i.e. OR"” = &

/E)Rnw:/ngO. (8.107)

dw = / w. (8.108)
R"L BR"L

So we have proved Stokes’ Theorem for the special cases M = H" L' R™. Now let M be an arbi-
trary smooth manifold with boundary OM. Choose an atlas {(Ua, ¢a)},, for M in which each U, is
diffeomorphic to either R™ or H" (or L' in dimension 1) via an orientation preserving diffeomorphism.
This is possible since any open disk is diffeomorphic to R™ and any half-disk containing its boundary
diameter is diffeomorphic to H" (or L! in dimension 1). For instance, the open ball

Hence,

B={xecR"| |x| <1} (8.109)

is diffeomorphic to R™ via the map F' : B — R" defined as
1
F (x) = ——X (8.110)
1— x|
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If this map is not orientation preserving, we just take the map F = (—F', F2 ... F"). Then the first

orFi " oFi|"
row of {8751} ~ is the negative of the first row of [%] ~, and all the other rows stay the same.
1,j= 3,j=1
Therefore,
oF]" aFi]"
det [ ] = —det [ ] . (8.111)
oxrd | . oxd | .
3,j=1 3,j=1

So F is orientation preserving. In the same way, the half-disk containing its boundary diameter BNH"
is diffeomorphic to H" (or IL') via an orientation preserving diffeomorphism.

Let {pa}, be a C* partition of unity subordinate to {U,}. From (8.41), supp pow C U,. Further-
more, by (8.39), supp (paw) C suppw, i.e. supp (paw) is a closed subset of a compact set supp w. Hence,
supp (paw) is compact. In other words, p,w has compact support in U,. Furthermore, w = Y, paw
is, in fact, a finite sum, as proven earlier.

Since Stokes’ Theorem holds for R" and H" (and L!), it holds for all the charts U, in our atlas,
with each U, being diffeomorphic to R™ or H” (or ') and preserving orientation. Furthermore,
oM NU, = 0U,. Therefore,

w= w
S = 20

= Z/ Paw [> 4 Paw is a finite sum]
— Jom

= Z/ Pa [supp(paw) € Ua]
— Jou,

= d (paw) [Stokes” Theorem for U,]
a JUa

=% [ dipaw) [supp d (o) € supp(pacs) € U]

=/ d (Z paw> [> 4 Paw is a finite sum]
M (03

Therefore, for any manifold M,

dw:/ w. (8.112)
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9 de Rham Cohomology

§9.1 Definitions

A differential form w on a manifold M is said to be closed if dw = 0, and exact if w = d7 for some
form 7 of one degree less. Let us denote by Z* (M) the vector space of all closed k-forms on M, and by
B¥ (M) the vector space of all exact k-forms on M. Since the exterior derivative operator d satisfies
d? =0, BX (M) is a subspace of Z* (M). The quotient vector space

HY (M) =2~

measures the extent to which closed k-forms fail to be exact, and is called the de Rham cohomology
of M in degree k.

The quotient vector space construction introduces an equivalence relation on Z* (M ): two closed
k-forms on M are said to be equivalent if they differ by an exact k-form. In other words, w’ ~ w in
ZF (M) if and only if w’ —w € B* (M), i.e.

W' —w=dr, (9.1)

for some 7 € Q=1 (M). The equivalence class of a closed form w is called its cohomology class, and
is denoted by [w]. When (9.1) holds, we say that w and w’ are cohomologous.

Proposition 9.1

If the manifold M has r connected components, then its de Rham cohomology in degree 0 is
HY(M) =R". An element of H°(M) is specified by an ordered r tuple of real numbers, each real
number representing a constant function on a connected component of M.

Proof. Since there are no nonzero exact 0-forms (smooth functions),
HY(M) = Z°(M) = {closed 0-forms }. (9.2)

suppose f is a closed O-form on M, i.e. f € C°°(M) such that df = 0. On any chart (U,z!,...,z%),

dfz;aj; dz’. (9.3)

Thus df = 0 if and only if all the partial derivatives g jz vanish identically on U. This implies that
f is locally constant on U. It means that closed 0-forms on M are the locally constant functions on
M. Such a function has to be constant on each connected component of M. If M has r connected
components, then such a locally constant function is represented by an ordered r tuple of real numbers.

In other words, Z°(M) = R". [ |

Proposition 9.2
On a manifold M of dimension 7, the de Rham cohomology H*(M) vanishes for k > n.

Proof. Given p € M, the tangent space T,M is a vector space of dimension n. If w is a k-form on
M, then w, € Ay, (T,M), a k-covector or an alternating k-linear function on the vector space T),M.
By Corollary 1.17, if k > n, then Ay (T,M) = 0. Hence, for k > n, the only k-form is just the zero
form. |
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9 de Rham Cohomology 95

Example 9.1 (de Rham cohomology of the real line R). Since the real line R is connected, by
Proposition 9.1, H°(R) = R. By Proposition 9.2, H*(R) = 0 for k > 2. It remains to find H'(R).
There are no nonzero 2-forms on R. Any 1-form on R can be expressed as w = fdx, where

f € C*(R). One then has

dw = % dz Adx = 0. (9.4)
In other words, every 1-form on R is closed. Now, a 1-form w = fdx on R is exact if and only if there
is a C'* function g on R such that

w=fdr=dg = ¢ dz, (9.5)

where ¢’ is the calculus derivative of g with respect to z. Such a function g is simply an anti derivative
of f. By fundamental theorem of calculus, one indeed finds from the following

o@) = | ") dt, (9.6)

that ¢’ (r) = f (). Hence, every 1-form w = f dz on R is exact. Hence, Z'(R) = B’(R), resulting in

HY(R) = = 0. (9.7)

One, therefore, has

R for k=
{ or k=0, (9.8)

0 for k£ > 1.

Example 9.2 (de Rham cohomology of a circle). Let S* be the circle in the 2-y place. Since S is con-
nected, by Proposition 9.1, H° (S 1) = R. Since S! is a one-dimensional manifold, by Proposition 9.2,
H* (S') =0 for k > 2. Now we need to compute H! (S!).

Let us first consider the map h : R — S' defined by

h(t) = (cost,sint) . (9.9)

Let i : [0,27] — R be the inclusion map. Restriction of the domain of h : R — S! is obtained by the
following composition F' = hoi : [0,27] — S 1 which is a parametrization of the circle. In Example 5.2,
we found a nowhere vanishing 1-form w = —ydz + 2 dy on S*. Now,
h* (—ydz + xzdy) = — (h*y) d (h*x) + (h*z) d (h*y)

= —sintd (cost) + costd (sint)

= sin?tdt + cos? t dt = dt. (9.10)
So h*w = dt. Now,

Frow=(hoi)"w=1i"h*w=1"(dt) = dt. (9.11)

F :[0,27] — S! is a parametrization of S* = F ([0, 27]), with [0, 27] being the compact domain of

integration in R. Therefore,
2m
/ w= / Frw= dt = 2. (9.12)
st [0,27] 0

Note that S' is a 1-dimensional smooth manifold. If there were any non-closed 1-form on S, its
exterior derivative would be nonzero, resulting in a nontrivial 2-form on S'. But there is no nontrivial
2-form on S! as it is a 1-dimension manifold. Hence, Q! (S1) = Z! (S1). Now, consider the following
linear map

0 Q! (sl) =zt (Sl) — R,
o — (O

Sl

95
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By (9.12), ¢(w) = 27 # 0. Choose any nonzero r € R and take the one form 5-w € Q! (S'). With
these choices made, one immediately finds that

% (rw) =r, (9.13)
2
by linearity of . In other words, for every r € R, there exists an element in Q' (S'), namely ~w,

such that ¢ (5=w) = r. Hence, ¢ : Z' (S') — R is surjective.
Now, suppose 3 € B! (S§!). Hence, there exists f € C° (S!) such that 3 = df. Then

//%i/df: f:/fzo, (9.14)
S1 St os1 %]
So ¢ (B) = 0, and as a result, 8 € Kerp. Hence, B! (S) C Ker¢. Let us now prove that Ker¢ C
Bt (S1).

Since w = —ydx + zdy is a nowhere vanishing smooth 1-form on S', any 1-form a € Q! (S') can

be written as o = fw, with f € C* (S1). Now suppose o = fw € Kerp. Also, let f =h*f = foh e
C* (R). From (9.9) one easily finds that h (¢ +27) = h(t), i.e. h is periodic with period 27. Hence,

fltt2m) =f(h(t+2m)=f(h(t)=F@E). (9.15)

Therefore, f is also periodic of period 27. Then

— /0 T dt. (9.16)

Lemma 9.3
Suppose f € C* (R) is a periodic function of period 2w and fo%f(u) du = 0. Then fdt = dg

for a C*° periodic function g of period 27 on R.
Proof. Define g € Q°(R) by
t
g(t) = /0 F(u) du. (9.17)

By the fundamental theorem of calculus, § = f. Since by hypothesis f02 " f(u) du = 0, and f is 27
periodic, one has

gt+2nm) = /OH%T flu)du = /027r fu)du + :HW f(u)du (9.18)
t+om t "
= [ Ty du = / F(u) du = g(1), (9.19)
T 0

proving that g is indeed periodic of period 27 on R. Moreover,

dg=79dt = fdt. (9.20)
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Proposition 9.4

For k = 0, 1, under the pullback map A* : Q* (Sl) — Q*(R), smooth k-forms on S! are identified
with smooth periodic k-forms of period 27 on R.

Proof. If f € Q0 (S1), then since h : R — S! is periodic of period 27, the pullback h*f = foh € Q°(R)
is periodic of period 2.

Conversely, suppose f € Q°(R) is periodic of period 2w. Let p = h(ty) € S*. Then let (V1) be
a chart around p, with V' being a small open circular arc, and 1 takes (cosx,sinx) to . Then with
respect to the canonical basis on TR and TpSl, the matrix representation of h, ¢, : Ty, — TpS1 is
given by (using Proposition 6.2.5 of DG1)

222 (1) = . (9.21)

Therefore, h ¢, : Ty, — 1,51 is an isomorphism of vector spaces. As a result, by the Inverse Function
Theorem, h is a local diffeomorphism. In other words, for every p € S*, there is a neighborhood U of
p where s : U — (a,b) C R is the smooth inverse of h|(a b

Then we define f = fos on U. To show that f is well-defined, let s; and sz be two inverses of h
over U. By the periodic properties of sine and cosine, s; = sg + 2mn for some n € Z. Because fis
periodic of period 27, we have f o sy = f o s9. This proves that f is well-defined on U. Moreover,

f=fost=foh=n*f onh }U). (9.22)

As p varies over S', we obtain a well-defined C* function f on S! such that f = h*f. Thus, the
image of h* : Q0 (S1) — QO(R) consists precisely of the C* periodic functions of period 27 on R.

As for 1-forms, note that Q' (S') = Q° (S!) w, where w = —ydz +z dy, and Q' (R) = Q°(R)dt. The
pullback h* : Q! (S1) — QY(R) is given by h*(fw) = (h*f)dt, so the image of h* : Q! (S1) — QY(R)
consists of C*° periodic 1-forms of period 27. [ |

Now let g the periodic function of period 27 on R as in Lemma 9.3. One then has g € im h* for k = 0.
Hence, there is a O function g on S* such that h*g = g. Then
dg=d(h*g) =h"(dg). (9.23)
On the other hand,
fdt=n*(f) h* (w) = h* (fw) = h*a. (9.24)
Then from (9.20), (9.23), (9.24), one has
h* (dg) = h*a. (9.25)
Now we claim that h* : Q! (S1) — Q! (R) is injective. Let 7 = jw € Ker h*, where j € C*° (S!). Then
h*t = h*jdt. Since 7 € Ker h*, we must have h*j = 0. In other words, for any t € R,
0= (h%))(t) =j (h (). (9.26)
Since h : R — S! is surjective, j = 0 on S'. Hence, 7 = jw = 0, proving the injectivity of
h*: Qb (S1) — QY (R). Now, using (9.25) and the injectivity of h*, we get
a =dg. (9.27)
As a result, we get o € B! (S1). Therefore, Ker ¢ C B! (S'). Earlier we proved B! (S1) C Ker . So

we have

B! (Sl) = Ker . (9.28)

Now, ¢ : Z! (S') — R is a surjective linear map with kernel B! (S!). Therefore, by the first isomor-

phism theorem,
Zl (Sl) _ Zl (Sl>

BL (S Ker ¢

I

R. (9.29)

So we have
R for k=0,1

(9.30)
0 for k > 2.
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§9.2 Diffeomorphism Invariance

Lemma 9.5

The pullback map F* : Q* (M) — Q* (N) of the smooth map F': N — M sends closed forms to
closed forms, and sends exact forms to exact forms.

Proof. Suppose w € Q* (M) is closed. By the commutativity of F* with d,
dF*w = F* (dw) = 0. (9.31)
Hence, F*w is also closed. Next suppose w = dr7 is exact. Then
Frw=F*"(dr)=dF*r (9.32)
Hence, F*w is exact. |

If we restrict ourselves to k-forms only, then F* sends Z* (M) to Z* (N), and B¥(M) to B¥(N), and
k
thus induces a linear map of quotient spaces, denoted by (F#) :

()" S~ vy () =

k
This map (F #) : H* (M) — H* (N) is a map in cohomology, called the pullback map in cohomology.

From Remark 5.2, we know that the pullback map F* : Q*(M) — Q* (V) corresponding to the
smooth map F' : N — M is associated with a contravariant functor from the category Man of
manifolds and smooth maps to the category GrAlg of graded algebras and graded algebra homomor-
phisms. The functorial properties (Theorem 5.7) of F* on differential forms induce the same functorial

k
properties for the induced map (F #) in cohomology.

Theorem 9.6
The following holds:

k
(a) If 1oy : M — M is the identity map, then ((]IM)#) : H*(M) — HF(M) is also the identity
map on the vector space H*(M).

(b) If F: N - M and G : M — P are smooth snaps of manifolds, then

(@om#) = (#)"e (c*)]

k
Proof. We are going to use Theorem 5.7. Given a smooth map F': N — M, the linear map (F#) :
H*(M) — H¥(N) is defined as

(F#)" ] = [Fa]. (9.33)
(a) Let [w] € H*(M). Then
(@a)#) " ] = (L) ] = L] (9.34)
Therefore, i
((1n)*)" = Tpecany - (9.35)
(b) Suppose [w] € H*(P). Then
(G o F)#) ] = [(G o F) o] = [(F* 0 G*)u] = [F*G"ul. (9.36)
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On the other hand,

(F#) o (¢#) 1wl = (F#)" 6"l = [F*G"a]. (9.37)

Therefore,
(o) = (F#) o (c#)". (9.38)
m

k
From Theorem 9.6, it immediately follows that (H F(-), (F # ) > is a contravariant functor from the

category Man of smooth manifolds and smooth maps to the category Vectg of real vector spaces and
linear maps.
Now, if F' is an isomorphism in the former category, i.e. a diffeomorphism in the category Man,

k k
then (F#) will be an isomorphism in the latter category. In other words, (F#> : H¥ (M) — H* (N)
will be an isomorphism of vector spaces.

§9.3 The Ring Structure on de Rham Cohomology

The wedge product A of differential forms endows the vector space Q* (M) with a product structure
in cohomology: if [w] € H* (M) and [r] € H' (M), then we definee

WA[T] =[wAT]. (9.39)
For the product in (9.39) to be well-defined, we need to check the following:
(i) The wedge product w A T is a closed form.

(ii) The class [w A 7] is independent of the choice of the representative for [w] or [7]. In other words,
we need to show that (w + da) A (7 + df) is cohomologous to w A 7. This would prove that

w+da] A[r+df] =[(w+da) A(T+dB)] = [wAT]=[w] AlT].

We have
(wH+da) A (t+df) =wAT+wAdB+daAT+daAdp. (9.40)

Using the antiderivation property of d, we have
dwAB)=dwA B+ (-D*wArds = (-1)*wAds, (9.41)
since w is closed. Therefore, w A df is an exact form. In a similar manner,
d(aA(r+dB) =daA(t+dB) + (~1)* LaAd(r +dB) = da A (1 + dB). (9.42)

Hence, a A (7 4 dp) is also exact. Therefore, (w + da) A (7 + d3) is cohomologous to w A 7. Hence, A
is well-defined.
Now, if M is a manifold of dimension n, we set

H* (M) = é H* (M). (9.43)
k=0

(9.43) means that an element of H* (M) is uniquely a finite formal sum of cohomology classes in
H¥(M) as k varies:
a=oag+ -+ an, (9.44)

with ap € H¥(M). Now, one can easily verify that with the formal addition and wedge product,
H* (M) satisfies all the properties of a ring. We call this ring the cohomology ring of M.
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A ring (A, +, x) is graded if it can be written as a direct sum A = @7, A*¥ so that the ring
multiplication x sends A* x A! to A¥*!. A graded ring A = @7°, A" is said to be anticommutative
if for all a € A* and b € A,

axb=(—1Dbxa. (9.45)

Since the wedge product of differential forms is defined pointwise, i.e. for w, 7 € Q*(M),
(w /\T)p = wp A Tp,

we have w A 7 = (=1)" 7 A w whenever w € QF(M) and 7 € Q/(M). This way, H*(M) also becomes
an anticommutative graded ring. Indeed, for [w] € H* (M) and [r] € H' (M),

WA =lwAT] = [(-D)¥r Al
= (DM Aw] = (DM [ A W] (9.46)

This way H*(M) becomes an anticommutative graded ring. Since H*(M) is also a real vector space,
it is, in fact, an anticommutative graded algebra over R.
Suppose F': N — M is a smooth map of manifolds. Since F* (w A7) = F*wAF*7 for w, 7 € Q* (M),
the linear map
F# . H* (M) — H*(N),

is a ring homomorphism. Then (H (=) ,F#) becomes a contravariant functor from the category
of smooth manifolds and smooth maps to the category of anticommutative graded rings and ring
homomorphisms. If F': N — M is an isomorphism in the former category, i.e. if F: N — M is a
diffeomorphism, then it is an isomorphism in the latter category as well, i.e. F# : H*(M) — H*(N)
is a ring isomorphism.
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Definition 10.1 (Cochain complex). A cochain complex C is a collection of vector spaces {Ck}kez

together with a sequence of linear maps dj, : C* — C*

d_1 d d
CO 0 Cl 1 C2

RIS

such that for all k£ € Z,
dpodi_1 =0. (10.1)

We call the linear maps in the collection {dj}, ., the differentials of the cochain complex C.

The vector space Q*(M) of differential forms on a manifold M together with the exterior derivative d
is a cochain complex, called the de Rham complex of M :

00— OOM) —4— o (m) —4— 02(M) —4 5 BWM) ——— -

)

and d od = 0. Many of the results on the de Rham cohomology of a manifold depend not on the
topological properties of the manifold but on the algebraic properties of the de Rham complex. To
better study de Ream cohomology, it is useful to isolate these algebraic properties that we do in this
chapter.

§10.1 Exact Sequences

Definition 10.2 (Exact sequence). A sequence of homomorphism of vector spaces A i> B4 Cis
said to be exact at B if im f = Kerg. A sequence of homomorphisms

A0 fo Al fi A2 P o Jn An

that is exact at every term except the first and the last term is called an exact sequence. A
fiver term exact sequence of the form

0 A B C 0

is said to be short exact.

-
Remark 10.1. When A = 0 in the three-term exact sequence A i> B4 C,ie. 0 i> B Cis
exact if and only if Ker g =im f = 0, so that ¢ is injective.

Similarly, when C' = 0 in the three-term exact sequence A I3 8, C,ie. A Iy B %0 s exact
if and only if im f = Ker g = B, so that f is surjective.

Proposition 10.1

Suppose A i> B % (' is an exact sequence. Then

(i) the map f is surjective if and only if g is the zero map;

(ii) the map g is injective if and only if f is the zero map.
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Proof. (i) Since the sequence is exact, we have im f = Kerg. f: A — B is surjective if and only if
im f = B. Therefore, the surjectivity of f is equivalent to Ker g = B. Ker g = B means it takes
all of B to 0 € C, i.e. g is the zero map.

(i) g : B — C is injective if and only if Kerg = 0. Therefore, the injectivity of g is equivalent to
im f = 0. im f = 0 means it takes all of A to 0 € B, i.e. f is the zero map.
|

Proposition 10.2
The following hold:

(i) The 4-term sequence

0 At . B 0

is exact if and only if f : A — B is an isomorphism.

(ii) If the following

A—1 B © 0
is an exact sequence of vector spaces, then there is a linear isomorphism

B

im f°

C = Coker f :=

Proof. (i) Suppose that the 4-term sequence

0— a1 g9 .

is exact. Then by Proposition 10.1, by the exactness of 0 — A i> B, we get f is injective. Again,
using Proposition 10.1 and the exactness of A i> B — 0, f is surjective. Therefore, f is bijective.
The inverse of a bijective linear map is also linear. Hence, f is an isomorphism.

Conversely, suppose f : A — B is an isomorphism of vector spaces. Hence, f is injective and
surjective. Since f is injective, we have

Kerf=0=im (0 — A4). (10.2)
Again, f is surjective, so
im f =B =Ker(B—0). (10.3)
Therefore, the 4-term sequence
0 A—L B 0
is exact.
(ii) Suppose the 4-term sequence
0 A—L B9 40

is an exact sequence of vector spaces. By Proposition 10.1, g is surjective. By exactness of this
sequence at B, im f = Kerg. Now, applying the first isomorphism theorem for the surjective
linear map g : B — C, we get an an isomorphism

B B

C=img= Kerg = " = Coker f. (10.4)

102



10 The Long Exact Sequence of Cohomology 103

§10.2 Cohomology of cochain complexes

Recall that a cochain complex C is a collection of vector spaces {Ck}kez together with a sequence of
linear maps d, : C* — C*

_ di—1 dp,
N Ck 1 Ck k Ck+1

such that for all k € Z, d o di,_1 = 0. This implies that
im dk—l - Ker dk. (10.5)

One can, therefore, form the quotient vector space

Ker dk
H*(C) := i (10.6)

which is called the k-th cohomology vector space of the cochain complex C. It is a measure of the
extent to which the cochain complex C fails to he exact at C*. Elements of the vector space C* are
called cochains of degree k or k-cochains. A k-cochain in Kerdy is called a k-cocycle; a k-cochain in
imd,_1 is called a k-coboundary. The equivalence, class [c] €€ H¥(C) of a k-cocycle ¢ € Kerdy, is
called its cohomology class. We denote these 2 subspaces of C*¥ by Z¥(C) (subspace of k-cocycles) and
by B*(C) (subspace of k-coboundaries).

Example 10.1. In the de Rham complex of a manifold M, a cocylce is a closed form and a coboundary
is an exact form.

Definition 10.3 (Cochain map). If A and B are 2 cochain complexes with differentials {dﬁ}kez and

{df }kez’ respectively. A cochain map ¢ : A — B is a collection of linear maps ¢y, : A¥ — B*

such that
di 0 ok = pr11 0 df. (10.7)

In other words, the following diagram commutes:

dit, dgt
. Ak—l Ak Ak+1
Prk—1 Pk Prk+1
. Bk-1 Bk Bk+1
iy di

Observe that a cochain map ¢ : A — B takes cocycles to cocycles and coboundaries to coboundaries.
Consider the following commutative diagram:

1 po 4 k1
o AFT A ARt
Prk—1 Pk Pk+1 (10-8)
. Bk-1 Bk Bk+1
dB dB
k—1 k

(i) For a € Z¥(A), dfta = 0. Then by the commutativity of the right hand square in (10.8),

df (o (a)) = i1 (dita) = 0. (10.9)

Therefore, ¢y, (a) € Kerdf = Z* (B). In other words, the cochain map ¢ : A — B takes cocycles
to cocycles.

103



10 The Long Exact Sequence of Cohomology 104

(ii) Suppose a € B*(A). Then a = d{* ;a’ for some a’ € A*~!. Then by the commutativity of the
left hand square in (10.8),

on (0) = or (df10") = df_y (prrd). (10.10)

Therefore, ¢, (a) € imdf | = B¥(B). In other words, the cochain map ¢ : A — B takes
coboundaries to coboundaries.

Hence, we see that the coochain map ¢ : A — B naturally induces a linear map in cohomology:

(") H* (A) — H* (B),

] lox (a)]. (101

Example 10.2. For a smooth map F': N — M between manifolds, the pullback map F* : Q* (M) —
Q*(N) on differential forms is a cochain map, because F* commutes with d. By the discussion above,

k
there is an induced map (F #) : H*(M) — H¥(N) in cohomology.

§10.3 Zig-Zag Lemma

A sequence of cochain complexes

0— s A—+ BT e,

is short exact if 7 and j are cochain maps, and for each k,

0 Ak ™ pk Tk ok 0

is a short exact sequence of vector spaces. In other words, the following is a commutative diagram
with exact rows, for each k:

0 Ak+1 kt1 Bk+1 Jk+1 Ok+1 0

A B s (10.12)

k k k

0 Ak : BF . Cck 0

K Jk

Given a short exact sequence as above, we can constricy a linear map
(d)y : H" (C) — H*' (A),

called the connecting homomorphism as follows: consider the short exact sequences in dimensions
k and k + 1 associated with the short exact sequence 0 — A — B — C — 0 of cochain complexes:

0 —— AR+l iz B+l L CkHl —— 0
dgt dB d (10.13)
0 AF . Bk . c* 0
1k Jk

We start with [c] € H¥ (C), for some ¢ € Kerd{ C C*. By the exactness of the bottom row, we have
that jj is surjective. So there is some b € B such that jj (b) = c. By the commutativity of the right
square,

jisr (dFb) = df (k) = df (c) = 0. (10.14)
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Therefore, d5b € Ker ji1 = imij11. So dBb =iy, (a) for some a € A**1. Now consider the diagram
(10.13) for k + 1 in place of k.
Tg42 Bk+2 Jk+2

0 —— AFF2 Ck2 ——— 0

A as,, &, (10.15)
0 — Ak+l SN Bk+1 SN Ck+1 -
ik+1 jk+1
Now,
s (010) = 01 na) = oy (458) =0 (10.16)

So d“k“Ha € Kerigyo. But ig o is injective by the exactness of the top row of (10.15). Therefore,

it 1a = 0. (10.17)
So we define
(d)lc] = [a]. (10.18)

The recipe for defining the connecting homomorphism (d*), is best summarized by the following
Zig-Zag diagram:

i
LA dfb

B
dk

b — s ¢
Note that there were choices involved in this definition. We chose the cocycle ¢ to represent the
cohomology class [¢]. One could’ve chosen a cohomologous cocycle ¢’ representing the same cohomology
class [c]. Furthermore, we chose an element b € B¥ such that j; (b) = ¢ holds. Since jj, is surjective,
and not necessarily injective, the choice for b is not unique. So we need to show that this definition of
(d*), : H*(C) — H*! (A) is well-defined.
Let [c] = [¢]. Then
c—c =dy_1", (10.19)

for some ¢/ € C*~1. As before, we choose some b’ € B* such that jj (b') = ¢, and then finally
dBb = igy1 (a’). We need to show that [a] = [a/].
Tt 1 RBk+1 Jk+1

0 ——— AFFH —— M — 0

dgt g dy;
0 Ak : BF . Cck 0
Tk Jk
A
dkfl dffl di7 1

0 _— fik_l ‘4€44449 lgk—l ‘4344449 (7k_1 _— O
k—1 k—1

Since jj_1 is surjective, there exists b” € B! such that jp_; () = ¢’. Then
g (b= = dfib") = i (0) = i (V) — g (dF_11")

= j1 (b) — g (V) — dS_1 (jr—11")
=c—c —dp_1" =0. (10.20)
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As a result, b— b — dB b € Ker jp = imiy. So
b—b —db b =iy (d") (10.21)
for some a” € A*. Now,
. dA// _dB‘ //_dB b_b/_dB !
ikt1 (dpa”) = di (ixa”) = di k—1

= (b) =i} (V') = 11 (@) = igs1 (@)
=ipt1 (a—d). (10.22)

Since 411 is injective, we have
a—d =did". (10.23)

In other words, [a] = [d/], i.e. (d*), is well-defined.
It’s easy to show that (d*), is linear. Given [c],[¢] € H*(C) and a € R, [c] + a[¢] = [c+ ac].
Suppose ¢ = ji (b), ¢ = ji (b'); and dBb = iy (a), dF = i1 (a’). Then
(d*),. [c) = [a], and (d*), [] = [d']. (10.24)
Now, by the linearity of jg,
Je (b +ab’) = ji (b) + o (V) = ¢+ ad. (10.25)

Furthermore, using the linearity of df and ig1,

i1 (a+ad') = igy (a) + aipyy (a) = dEb+ adPt = df (b + ob). (10.26)
Therefore,
(d*), [c+ad] = [a+ad] =[a] + a[d]. (10.27)
In other words,
(@) ([e] + e [']) = (d)y [e] + o (d7), [e]. (10.28)

Hence, (d*), is a linear map.

Theorem 10.3 (The Zig-Zag Lemma)

Given a short exact sequence of cochain complexes

0o— A+ B I ¢ 0,

one has a long exact sequence in cohomology:

HETL(A) @) -

(@)
5\ k
HRA) — T mRB) i HO) (10.29)
J
(d*)kfl
2 H1(0),

)

where (z*)k ad (]*)k are the maps in cohomology induced from the cochain maps ¢ and j; and
(d*) is the connecting homomorphism defined earlier.
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Proof. To prove this theorem, one needs to check the exactness of the above sequence (10.29) at
H*(A), H*(B) and H*(C) for each k. We shall make use of the following commutative diagram with

exact rows:

; .
00— AR+l L phil M okl

dy! di dg
0 Ak B Cck 0 (10.30)
i Jk
i, @, «

0 _— [1k_1 ‘4;44449 lgk—l ‘4344449 (jk_l _— O
k—1 k—1

Exactness at H*(A): Let [a] € Ker (i*),.
() la] = [ix (a)] = [0] € H* (B). (10.31)

In other words,
i (a) = dB b, (10.32)

for some b € B*~1. Let ¢ = ji_1 (b). Then
a1 () = df_1 (i1 (8) = jx (A1) = Jix (i (a)) = 0, (10.33)

since ji 0 i = 0. Therefore, ¢ € Kerd§ |, i.e. [c] € H*"1(C). b € B*! is such that jy_1 (b) = c.
Furthermore, d¥ b = iy, (a).

ar—%— dB b

B
dk—l

b Jk—1 c
Therefore, [a] = (d*),_; [¢]. In other words,
Ker (¢"), Cim (d*),_, . (10.34)

Now suppose [a] € im (d*),_,, i.e. [a] = (d),_,[c] for some [c] € H*1(C). Then ¢ = jj_1 (b) for
some b € B¥"1 and iy (a) = d?_,b. Now,

_ Ker df

(i*)* [a] = [ix (@)] = |dF_b] = [0] € H* (B) = ——-. (10.35)
imdp_,
Therefore, [a] € Ker (*)*. So
im (d*),_, € Ker (i"), . (10.36)
As a result of (10.34) and (10.36), we have
Ker (¢"),, = im (d*),_ . (10.37)

So (10.29) is exact at H* (A).
Exactness at H* (B): Given [a] € H* (A),
()" 0 (i)" [a] = ()" [ix (@)] = [k (ik (@))] = 0, (10.38)

since ji o i = 0. Therefore,
im (i*)" C Ker (j*)" . (10.39)
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Now, suppose [b] € Ker (*)F. Then

(%) [b] = [jxb] = [0] € H* (C). (10.40)
So we have
gk (0) = d§_;c (10.41)
for some ¢ € C*~1. Since j,_; is surjective, we have
c=jr—1 (V) (10.42)

for some b’ € B¥~!. Then
I (b - df_ﬂ)/) = Jk (b) — Jk (df_&/)
= di_jc—dj_y (jr-1b)
=dS jc—dS_jc=0. (10.43)

So b — df_lb’ € Ker ji = im iy, i.e. b— df_lb’ = i), (a) for some a € A*. Now,

ki1 (dfta) = df (ixa) = df (b—df_p') = dfb =0, (10.44)
since [b] € H* (B). Now, ixy1 is injective. As a result, dila = 0. Now,
()" [a] = [ix (a)] = [b—df_¥] = [8], (10.45)
i.e. [b] €im (i*)". So
Ker () C im (%)~ . (10.46)
As a result of (10.39) and (10.46), we have
Ker () = im (%) . (10.47)

Hence, (10.29) is exact at H* (B).
Exactness at H* (C): First we prove that im (j*)* C Ker (d*),,. For [b] € H* (B), we have
(), (G)* [B]) = () Lk (0] (10.48)

In the recipe for defining (d*), : H* (C) — H"**!(A), we can choose the element b € B* that maps
to ji(b). Then dfb € B*t1. Since [b] is a k-th cohomology class, b € Ker df. Therefore, dfb =0.
Following the Zig-Zag diagram,

0, gBp =0

B
dk

by (b),

we see that since g1 (0) = 0 = dPb, by the definition of (d*)*, we must have

(d)" [ji ()] = 0. (10.49)
Therefore, (7*)* [b] € Ker (d*) i» broving the inclusion
im (%) C Ker (d*), . (10.50)
Now, let [c] € Ker (d*), € H* (C). Then
(d*), [c] = [a] = 0. (10.51)
So a is a (k + 1)-coboundary, i.e.
a=did, (10.52)

for some a' € A*. The calculation for (d*), [c] can be representative by the following Zig-Zag diagram:
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i
dBa’ = a " dBb

A
df ds

a’ b— s = ji(b)

Here b is an element in B¥ such that ji(b) = ¢, and i1 (a) = dBb. o’ € A* i) A¥ — B*. So both
i (a/) and b are in B¥. Now,
& (b~ ix () = & — df (i ()
= dfb — iy (df'd))
= dBb — g1 (a) = 0. (10.53)
Therefore, b — iy, (a') € Kerd®, i.e. b— iy, (a') is cocycle in B¥. Now,

g (b—ix (a')) = ji (b) — ji (ix (a')) = ji (b) = ¢, (10.54)

since jj, o i = 0 by the exactness of 0 — A LN ;L RE LNy BN} Therefore, b — i, (a’) is a cocycle in
B* that gets mapped to ¢ under ji. Therefore,

el = [k (b= ik ()] = G [b— ik (a)] (10.55)
So [c] € im (%)*. As a result,
Ker (d*),, C im ()" . (10.56)
Combining (10.50) and (10.56), we have
im (75)F = Ker (d*), , (10.57)
proving the exactness of (10.29) at H* (C). [ |
N

-
Corollary 10.4 (The Snake Lemma)

A commutative diagram with exact rows

0 Al B! ct 0
« B Y
0 A0 BY O 0

induces a long exact sequence

cokay ——— cokf —— coky —— 0

0 — Kera —— Kerf§ —— Kery
- J

Proof. Let A, B, C be the following cochain complexes:

A 0 A0 a Al 0
B 0 B ., p 0
C 0 co —2 ot 0
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So, the given commutative diagram with exact rows is a short exact sequence of cochain complexes:

0 A B C

Therefore, by The Zig-Zag Lemma, there is a long exact sequence at the cohomology level:

Hk:—i—l(A) - .

HF(A) ——— H*(B) ———— H*(C)

. —— H*1(0)

Notice that, for k # 0,1
H* (A) = H" (B) = H* (C) = 0,

since the cochain groups are trivial for k # 0,1. For k = 0,

H°(A) = K
(4) im (0 — A9) e
Ker 3
0 _
H(B) im (0 — BY) Ker ,
Ker~y
H° =K
(©) im (0 — C9) e
For k=1,
1 1
Hl(.A):Ker(_A — 0) :.A — coka,
im o im o
Ker (B! —+0) B!
1 _ _ _
H" (B) = i _imB_COkﬁ’
1 1
HI(C):KGT(_C —0) _ 'A _ cok.
im -~y im -y

So (10.58) becomes

cokaw —— cok fj ——— cok~y

0 Kera —— Kerf§ ——— Kery

where the dots represent trivial vector spaces (containing only the zero vector).

§10.4 The Mayer—Vietoris Sequence

(10.58)

(10.59)

(10.60)
(10.61)

(10.62)

(10.63)

(10.64)

(10.65)

Let {U,V} be an open cover of a manifold M, and let iy : U < M, iy (p) = p, be the inclusion map.

Then the pullback
(i) = O (M) — QF (U)

is the restriction map that restricts the domain of a k-form on M to U (Example 4.3). In other words,

(i)pw = wlps

110
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for w € QF (M). Similarly,
(1) w = wly, (10.67)

In fact, there are 4 relevant inclusion maps forming a commutative diagram:
U

Ju iy

UNVy UOv=veiv Gy = 0
v

These inclusions induce the following commutative diagram of vector spaces:

Q8 (U)
(o), (i5),

QU NV) Qk(M)
(), (i),
QM (V)
Similarly as (10.67), (j;), and (j;,), also restricts the domain of the smooth k-form. In other words,
(j;})kw:w‘UmV and (j{‘/)kT:T|U0V. (10.68)
We then define the following linear maps between vector spaces:
ip  QF (M) = Q¥ (U) @ Q¥ (V) and ji, : Q¥ (U) @ QF (V) - Q¥ (U N V),
defined by
ir (o) = ((i5) 0, (i) o) = (ol 0l )5 (10.69)
gk (@, 7) = (V)e T = G0k w = Tlyay = @lyny- (10.70)

If U NV is empty, then we define Q¥ (U N V) = 0, and in this case j; : Q¥ (U) @ QF (V) — Q¥ (U N V)
is simply the zero map. We call i the restriction map and j; the difference map. The exterior
derivative d on Q*(U) & Q*(V) is given by

d(w,7) = (dyw,dy7), (10.71)

for w € QF (U) and 7 € Q%(V), where dyy and dy are exterior derivative operators on the open subsets
U and V, respectively. We can interpret QF(U) @ QF(V) as QF (U LV, where U UV is the disjoint
union of U and V.

Proposition 10.5

Both the restriction map 75 and the difference map j; commute with exterior derivatives, i.e. {i}
and {ji} are cochain maps.

Proof. Consider the pullback maps (if;), : Q¥(M) — Q¥(U) and (i},), : Q¥(M) — QF¥(V). Since
exterior derivative commutes with pullback, the following diagrams commute:
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QF (M) _@ QFU) QF (M) e Qk (V)
ot
QML (M) m QML) QML (M) m QFL(V)
In other words,
du o (if) = (if)s 0 d, and dy o (if), = (i} )4 0 d. (10.72)

Now, for o € QF (M),

(a o Zk) o = d((if)y 0, (iF), 0)
(

Therefore, B
doip =igy1od. (10.73)

Again, from the commutativity of pullback with exterior derivative operator, we have the following
commutative diagrams:

Ok (U) _ U QFU N V) Ok (V) Go), QFU N V)
dU‘ ‘dUmV dv‘ ‘dUmV
QN U) ——— QLU NnV) QLY ——— QU NV)
(J;})k-u (j{ﬁ/)k+1
In other words,
duav © (i) = () ky1 © dus and dynv o (v ) = (31 )41 © dv- (10.74)
Now, for (w,7) € QF (U) @ QF (V),
(dunv o i) (w, 7) = duav (v ) T — () w)
=dunv (jv)y, 7 — dunv () w
= (v ) g1 dvT — (307 ) g1 dow
= Ji (dyw, dy)
= (jkod) (@, 7).
Therefore, _
dunv o jk = jr o d. (10.75)
|
Proposition 10.6
For each k£ > 0, the sequence
0 —— QFM) —2%— QF(U) & QF (V) —2— QU NV) —— 0 (10.76)
is exact.
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Proof. The above sequence can easily be seen to be exact at QF(M) by noticing that Keriz = 0.
Indeed, if

ir (o) = (ol 0l,) = (0,0, (10.77)

then 0 =0 on U UV = M. Therefore, Keri; = 0.
Now we are going to prove that imij, = Ker ji. Let’s take (w,7) € Kerj, C Q¥ (U) @ QF (V). Then

0=jr (W, 7) =7l = “0pay (10.78)
So w and 7 agree on U NV. So we can define o € QF (M) as
if pe U,
op=4" P (10.79)
Tp ifpeV.
o is well-defined since w and 7 agree on U N'V. Then we have
ix (o) = (U’U’U’V) = (w, 7). (10.80)
So (w,T) € im iy, proving
Ker j C imiy,. (10.81)
On the other hand, for any o € QF(M),
Jr (ko) = Jk (J|U’J’V) - (U’v) vy — (J’U) lvew = luay = lyay =0 (10.82)
Therefore,
im ik - Kerjk. (10.83)
From (10.81) and (10.83), we have
im ik = Kerjk. (10.84)

Now we are only left to prove that jj : Q% (U) @ QF (V) — QF (U N V) is surjective. Let {py, pv} be
a partition of unity subordinate to the open cover {U, V'} of M. Suppose w € Q¥ (U N V). Then we
define wy € QF(U) and wy € QF(V) as follows:

Unv, Unv,
wU::{pr on ’ wV::{pr on ’ (10.85)

0 on U\ (UNV). 0 on V\({UNV).

wy is called the extension by zero of pyw from UNV to U; and similarly, wy is called the extension
by zero of pyw from U NV to V. We now need to show that wy and wy are smooth.

Clearly, wy is smooth on UNV. Suppose ¢ € U\(UNV) = U\V. Since supp py C V, g € U\supp py .
Since supp py is closed, U \ supp py is open. So we can find a coordinate neighborhood (W, ) about
q such that W C U \ supp py. Now, since W is disjoint from py, wy = 0 on W. Therefore, wy is
smooth on W. In particular, wy is smooth at ¢ € U\ (U N V). Since g € U \ (U NV) is arbitrary, wy
is smooth on all of U \ (U N V). Therefore, wy is smooth. Similarly, wy is also smooth.

Now, since wy and wy are smooth, wy € QF(U) and wy € QF(V). Now,

Jk (—wp,wy) = wV\UQV + wU|UﬂV = pyw + pyw = w. (10.86)

Therefore, ji is surjective. Hence, (10.76) is a short exact sequence. |

Lemma 10.7
The k-th cohomology vector space of U UV is isomorphic to H*(U) @ H*(V).

Proof. The cochain complex Q* (U) & Q*(V) is
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s QFL(U) @ QFL(V) L O () @ R (V) — s QL) @ QFFL(V) —— -
k-th cohomology vector space of the cochain complex Q* (U) & Q*(V) is

Kerd
HrULV)= 2%k (10.87)
imdg_q

For w € QF (U) and 7 € QF(V), dy (w,7) = ((dy), w, (dy), 7). So

(w,7) € Kerd), <= (dy),w = (dy),7=0
<= w € Ker(dy), and 7 € Ker (dy),
— (w,7) € Ker (dy), ® Ker (dy), .

Therefore, N
Kerd;, = Ker (dU)k @ Ker (dV)k; (10.88)

Again,

(w,7) € imdp_, < (w,7) =di_1 (e, 3) for some (a,B) € Q"1 (U) & Q1 (V)
— w=(dy),_,«and 7 = (dy),_, B, for some o € Q"1 (U), g€ Q1 (V)
< weim(dy),_; and 7 € im (dy),_,

— (w,7) €im(dy),_; ®im(dy),_; -
Therefore, B
imdg_1 =im (dy),_, ®im (dy),_; - (10.89)
As a result, B
Kerd,  Ker(dy); ® Ker (dy),
imdy_; ~im(dy)y_y ®im (dy),_;

Hk (U L V) — (10.90)

Let us now consider the surjective linear map ¢ : Ker (dy), @ Ker (dy), — H*({U) ® H*(V) defined
by
¥ (w, ) = (W], [7]) - (10.91)

Now,

(w,7) € Keryp <= [w] =[0] € H*(U) and [r] = [0] € H*(V)
— w=dpaand 7 = dyf, for some o € Q*1(U), e pe (V)
— (w,7) €im(dv),_y ®im (dv);_; -

Therefore, Kert¢ = im (dy),_; @ im (dy),_;. Hence, by the first isomorphism theorem, we have the
following isomorphism of vector spaces:
Ker (dy), @ Ker (dv),, Ker (dy);, @ Ker (dv),,

k k — ~ _
HY*(U)® H*(V) =im = Ker o = (), Him(dy), (10.92)

So H* (U UV) is isomorphic to H*(U) @ H*(V). [ ]

Theorem 10.8 (The Mayer—Vietoris Sequence)

Let U and V be open subsets of M such that U UV = M. Then there is a long exact sequence
in cohomology:

. —— H*M) — H*U)® H*(V) — H*UNV) — H*Y(M) — ...

called the Mayer—Vietoris sequence.
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I
Proof. By Proposition 10.6, we have a short exact sequence of cochain complexes:

00— QM) —— Q*(U) @ (V) —L— QU NV) — 0. (10.93)

Then by The Zig-Zag Lemma, (10.93) induces a long exact sequence in cohomology:

]Yk+1(A{) @#)k+1
(a#),
H(M) Sl M HYU) & HHV) ———— H'UNV) (10.94)

]

In this sequence (10.94), (z#)k and (j#)k are induced from i) and jy:
(#) 101 = i @) = ([o] . [o11]). (10.95)
()" (@, 17) = U (@71 = [l = @lony] - (10.96)

k
The connecting homomorphism (d#) c H(UNV) — H1 (M) is cooked up in 3 steps using the
same recipe as we did in § 10.3.

OFHL(M) 2 QR () @ QFHL(V)

| ‘

QMU @ QR (V) —L—— QR U N V)

s (—dvév,dvév) I,

0
H[ [dUﬂV

(—&v,&v) —2—» ¢

(i) We start with a closed k-form & € QF (U N V) and using a partition of unity {py, py'} subordinate
to the open cover {U,V'}, one can extend py by zero from U NV to a k-form & on V, and
extend py € by zero from U NV to a k-form &y on U. Then

3k (=&v,&v) = &vlyny +E&ulyay = PuS + v =& (10.97)
(ii) Since {ji} is a cochain map, the following square commutes:

QRFL(U) @ QFFL(V) 2, R LU AT

d dunv

QR @ QF(V) ——— QFUNV)

Jk
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Hence,
Jes1 (—dvéy,dvéy) = (jk-i-l o H) (—&u,&v) = (dunv o Jk) (—Eu, &v)
=dynv§ = 0.

(iii) So (—dy&y,dv&y) € Ker jgi1 = imigi1. Therefore, —dy&y on U and dy &y on V patch together
to yield a global (k + 1)-form o € Q¥+ (M) such that

ikt (@) = (—duvéy, dvév) . (10.98)
Since {i} is a chain map, the following square commutes:

OF2(M) 2 b +2() @ QFH2(V)

So we have
ik+2 (da) = d (igr1a) = d (—~dpéy, dvéy) = (0,0).

Since ig,o is injective, da = 0, i.e. a € Q¥ (M) is also a closed form. So we define
k
(a#)"[] = [a] € B (M), (10.99)

Since QF(M) = 0 for k < 0, The Mayer—Vietoris Sequence starts with

0 —— HY(M) —— H(U)® H' (V) —— H'UNV) —— H(M) ——— ---

Proposition 10.9
In The Mayer—Vietoris Sequence, if U, V', and U NV are connected and nonempty, then

(i) M is connected, and
(i#)° (7#)°
00— BHOM) SCAPEN

H(U) @ HO(V) HUNV) —— 0

is exact;

(ii) we may start The Mayer—Vietoris Sequence with

@,

0 —— H' (M) HY(U)e® HY(V) (]L)l HY(UNV) ﬂ H2(M) — ---

Proof. (i) The connectedness of M follows from the connectedness of U and V and that U and V/
are not disjoint using point set topological argument. But let us try to deduce it using The
Mayer—Vietoris Sequence.

On a nonempty connected open set, the de Rham cohomology in dimension 0 is simply the vector
space of constant functions (Proposition 9.1). The constant functions are characterized by real
numbers. Additionally, if u € R represents a constant function on U, then on UNV/, it is the same

0
constant function u, i.e. ul, ,, = u'. Therefore, the map (j#) HY(U)e HO(V) - HO(UNV)
is given by

(j ) (u,0) = |y = Uy = v — U (10.100)

0
Clearly, (j#) is surjective.

'Here we are abusing the notation by denoting the constant function and its value, which is a real number, by the same
symbol u.
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0 —— HY(M) ﬂ HO(U)® HO(V) (Ji)i H(UNV) (‘i)i HY(M) — -

0 0
Surjectivity of (]#> implies that im (]#> = HY(U NV). Exactness of the Mayer-Vietoris
sequence above implies
0 0
Ker (d%)" = im (j#) = HO(U N V). (10.101)

0
So (d#) : HY(UNV) — HY(M) is the zero map. Thusm the Mayer—Vietoris sequence starts
with
(i*)° (7#)° (a#)"

00— H(M) — 5 R&R

R 0 (10.102)

The above sequence is short exact, sice the Mayer—Vietoris sequence is exact. Exactness at H(M)

0 0
implies Ker (z#> =0, i.e. (z#) is injective. Therefore, by the first isomorphism theorem,

im (i#>0 ~ HOM) _ po (M). (10.103)

im (i#)o = Ker (j#) . (10.104)
(j#>0 (u,v) (u,v) = v — u, so

0
Ker (]#) ={(u,v) ER®R |v—u=0} ={(u,u) e ROR} = R. (10.105)

Therefore, combining (10.103), (10.104) and (10.105), we get

0

H® (M) = imim (%) = Ker (j#)o ~R. (10.106)

So HY(M) = R, i.e. M is connected.

0
(ii) We have deduced earlier that (d#) : HO(U NV) — HY(M) is the zero map. Thus, in the
Mayer—Vietoris sequence, the sequence of the following two maps
()" (*)’
— H'(M) ——

HO(UNV) oY U)e HY(V)

may be replaced by

0 —— HY(M) ﬂ HY U)o HY(V)

without affecting exactness. In other words, no information of the Mayer—Vietoris sequence is
lost if we have

(i#)°

0 —— HY(M) ——— H(U)® H(V) ﬂ

HUNV) —— 0
to be short exact, and we have a long exact sequence as follows:
(#)' (@*)’ (a#)'
0 — H'(M) —— H'({U)o H\(V) —% H'UNV) —% H*(M) —— ---
|

Example 10.3 (Cohomology of circle using Mayer—Vietoris sequence). Let S! be the circle in R?,

$'={xer?| x| =1}.
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Sl

Since S! is connected, by Proposition 9.1, H? (S) = R. Since S! is a one-dimensional manifold, by
Proposition 9.2, H* (S1) = 0 for k > 2. Now we want to compute H'! (S') using The Mayer—Vietoris
Sequence. We cover S by open sets U and V as follows:

U |4

U and V are open arcs on the circle S'. Their intersection is the following (disjoint) union of two
open arcs A and B:

A

B

Open arcs are diffeomorphic to open intervals on R, which are diffeomorphic to the whole R. Therefore,
by diffeomorphism invariance,

HY(U)=H' (V)2 H' (A) =2 H' (B) = H'(R) =0. (10.107)
As a result,
HY'(UNV)=H'(AuB)= H'(A)@ H'(B) =0. (10.108)
Furthermore,
HY' (U)ye H' (V) =0. (10.109)
In dimension 0, since open arcs are diffeomorphic to R,
HY(U)=2H (V)2 H(A) =2 H'(B) 2 H°(R) = R. (10.110)
As a result,
H'(UNV)=H"(AUB)~H°(A)® H*(B)=R®R. (10.111)
Furthermore,
H'(U)®e H (V) =R®R. (10.112)

So, the Mayer—Vietoris sequence
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1(aql (i*)’ 1 1
H'(SY) —— H' U)o H' (V) —————

(a#)°

becomes
()" ) o @
0 —— R——R®R —— RPR ——~ H (S)*>O. (10.113)

By the rank-nullity theorem, if f : V; — V5 is a linear map between finite dimensional vector spaces,
then
dim V; = rank f + nullity f = dimim f + dim Ker f. (10.114)

0 0 0
Since (10.113) is exact, (z#) is injective. So dim Ker (z#> — 0. Hence, dimim (Z#) — dimR = 1.

As a result,
dim Ker (j#)o = dimim (z‘#>0 =1. (10.115)

So we have o .
dimim (j#) = dim (R @ R) — dim Ker (j#) " = 1. (10.116)
0 0 0 0
Since Ker (d#> = im (j#) , we have dim Ker (d#) = 1. By the exactness of (10.113), (d#) is
surjective. Hence,

dim H' ($') = dimim (d#)o = dim (R & R) — dim Ker (d#)o = 1. (10.117)

So H! (S') = R. Therefore,

R fork=0,1
{ o ’ (10.118)

0 for k > 2.
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