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0 Complex Analysis Is Cool!

We know a lot about R, the set of real numbers. It has some very cool structures. For
example, it has an algebraic structure called Field. That means, we have an addition
operation (+) and a multiplication operation (·), and they have some really nice properties.
They are:

(a) Associativity of addition and multiplication: For every a, b, c ∈ R

a+ (b+ c) = (a+ b) + c and a · (b · c) = (a · b) · c

(b) Commutativity of addition and multiplication: For every a, b ∈ R

a+ b = b+ a and a · b = b · a

(c) Additive and multiplicative identity: There exist two different elements 0 and
1 in R such that for every a ∈ R

a+ 0 = a and a · 1 = a

(d) Additive inverses: For every a ∈ R, there exists an element in R — denoted by
−a and called the additive inverse of a — such that

a+ (−a) = 0

(e) Multiplicative inverses: For every a 6= 0 ∈ R, there exists an element in R —
denoted by a−1 and called the multiplicative inverse of a — such that

a ·
(
a−1
)

= 1

(f) Distributivity of multiplication over addition: For every a, b, c ∈ R

a · (b+ c) = a · b+ a · c

R also has a geometric structure called Metric or Distance. Topologically speaking, it
has Smooth Manifold1 structure. For these rich structures, we can do Geometry and
Analysis on R. That’s all about Real Analysis.

§0.1 C is discovered or invented?

Real numbers were fine and people were happy. But then some madlad introduced some
crazy number i, whose square is −1. Histroically speaking, the “invention” (or discovery?)
of i is related with solutions of cubic equation. If x3 + px + q = 0 is a cubic equation,
then its real root is given by

3

√
−q

2
+

√
q2

4
+
p3

27
+

3

√
−q

2
−
√
q2

4
+
p3

27

1Ignore if you don’t know what that means.
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0 Complex Analysis Is Cool! 5

We know that an odd-degree polynomial must have at least one real root. So even if we
have q2

4
+ p3

27
< 0, the quantity stated above should yield some real number. That’s how

square root of negative numbers were discovered.
Introducing this little “imaginary” number lead to some seemingly crazy (and beautiful)
things. The space where all these crazy things happen is the set of complex numbers,
denoted by C. In our high school days, C was introduced as

C = {a+ ib : a, b ∈ R}

But actually you can define C in several different ways (depending on your purpose).
Here we shall use the notion that C is a 2-dimensional real vector space. That is C is

Source: https://twitter.com/9gag/status/1051322203533430784

isomorphic to R2.
C ∼= R2 as vector space

If we use the vector space notion, then we can define addition and scalar multiplication
on C. But vector spaces need not have multiplication. So we need a stronger structure.
Turns out we can actually make C a Field. Not just any ordinary field, C is an Algebraic
Field. Meaning, any polynomial with coefficients in C must have all its roots in C. But
it lacks some features. We know that R is an ordered field. That is

(a) For every a, b ∈ R, exactly one of the following is true: a > b or b < a or a = b

(b) If a < b, then for every c we have a+ c < b+ c

(c) If 0 < a, and 0 < b then 0 < ab

But C is not an ordered field.
Let’s go back to R2. Suppose we defined multiplication on it, and it’s a field now. We
wish to show that, there must exist some member z ∈ R2 such that z2 = −1.

Theorem 0.1.1

Suppose we defined multiplication on R2, and it’s a field now. Then there must exist
some member z ∈ R2 such that z2 = −1.

Proof. We shall construct such z. As R2 is a 2-dimensional vector space, it is spanned
by a basis set with 2 elements. Let the basis set be {1, e}. Here 1 basically means the
pair (1, 0).

5
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0 Complex Analysis Is Cool! 6

Take z ∈ R2 such that it’s not on the x-axis. It’s an element of the vector space, so it
can be written as a linear combination of the bases. That is,

z = x · 1 + y · e where x, y ∈ R and y 6= 0

Then we can calculate z2, using the identity (p+ q)2 = p2 + q2 + 2pq.

z2 = (x · 1 + y · e)2 = x2 · 1 + y2 · e2 + 2xy · e

e2 ∈ R2, so it can be written as a linear combination of the bases. Let e2 = a · 1 + b · e.
Plugging this, we get

z2 = x2 · 1 + y2 · e2 + 2xy · e
= x2 · 1 + ay2 · 1 + by2 · e + 2xy · e
=
(
x2 + ay2

)
· 1 +

(
by2 + 2xy

)
· e

Now, we choose x such that by2 + 2xy becomes 0. In other words, we choose x = −by
2

(we shall fix y later). So we have,

z2 =

((
−by

2

)2

+ ay2

)
· 1 + 0 · e =

(
a+

b2

4

)
y2 · 1

Claim — a+ b2

4
< 0.

Proof. Assume for the sake of contradiction that a+ b2

4
≥ 0. Then we have a notion

of square-root of non-negative real numbers. So let c =
√
a+ b2

4
. Now we have,

z2 = c2y2 · 1 =⇒ z2 − c2y2 · 12 = 0

=⇒ (z − cy · 1) (z + cy · 1) = 0

=⇒ z − cy · 1 = 0 or z + cy · 1 = 0

=⇒ z = cy · 1 or z = −cy · 1

They both contradict the assumption that z does not lie on the x-axis. �

So we have −
(
a+ b2

4

)
> 0. Let c =

√
−
(
a+ b2

4

)
. Taking y = 1

c
, we get

z2 = −c2 1

c2
= −1

as desired �

So if we really wish to give R2 a field structure, then we must have some i in our space
such that i2 = −1. However, apart from R2 no other Euclidean space Rn can be given
field structure (yeah this had been proven). For higher dimensions, the best we can have
is a skew field on R4. This is called the space of Quarternions. Other than commutativity,
it has all other properties of a Field. Also on R8, you can construct Octonions, but they
won’t have commutativity and associativity.
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0 Complex Analysis Is Cool! 7

§0.2 Some cool examples

Now that we have constructed the field of C, let’s witness some games that are being
played on this field.

Example 0.2.1

Consider this R→ R function:

f =

{
e−1/x x > 0

0 x ≤ 0

This function is smooth (meaning it’s infinitely differentiable, or C∞), but this is not
analytic. Because f (n) = 0 for every n. So the Taylor series about 0 gives us

f(0) +
∞∑
n=1

fn(0)

n!
xn = 0 6= f(x)

But this is not the case for functions with complex variables. Every smooth functions
on C is also analytic (Taylor expandable).

Example 0.2.2

Consider this R→ R function:

f(x) =

{
x2 sin

(
1
x

)
x 6= 0

0 x = 0

This function is once-differentiable on R, but the second derivative does not exist.
However, for functions with complex variables, if a function is once-differentiable
then it is infinitely differentiable.

Source: Mathematical Mathematics Memes
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0 Complex Analysis Is Cool! 8

Example 0.2.3

Let f be the Weierstrass function. This function is continuous everywhere, but
differentiable nowhere. We construct the following function:

F (x) =

∫ x

0

f(t) dt

By the Fundamental Theorem of Calculas, F ′ = f . But F ′′ = f ′ does not exist.
However, such pathological functions does not exist in complex plane. Complex
differentiability is kinda like motivational speakers saying, “If you can do it once,
you can do it again.” (and hence recursively infinitely many times)

In complex analysis, C1 implies C∞, and C1 implies analyticity. Hence differentiable,
smooth, analytic mean the same thing in complex analysis. If you’re tired of finding
counterexamples in a real analysis class, complex analysis might be the place for you ;)
.

Example 0.2.4

Suppose we have a smooth function f : [0, 1]→ R, and you are given the value of
f(0) and f(1). Just from this little piece of information, can you find out the value
of f(x) for every x ∈ (0, 1)? If you did real analysis before, this question is likely to
sound nonsense. In real analysis sense, you can’t figure out f just from two boundary
values.
But in complex analysis, you can use Cauchy integral formula you can determine f
just from this little information (with some mild assumptions) :0

Example 0.2.5

If I ask you to give me an example of bounded differentiable function R→ R, you
have many options. Among all other nontrivial answers, f(x) = c seems to be a
naive choice, doesn’t it?
Well, Liouville’s theorem says that on complex plane, the only bunded differentiable
function is everywhere constant function :0

Example 0.2.6

Consider a function f : R → R that is non-constant and differentiable on R. An
example might be

f(x) = sin(x)

In this case, the range of f is [−1, 1]. This is just a tiny piece of R. In many cases,
the range of non-constant differentiable function is just a subset of R, not the whole
set R.
But for non-constant differentiable functions on C, the range is either the whole C, or
C excluding a singleton set. This result is known as Picard’s theorem. In particular,
one cannot construct a non-constant differentiable function f on C such that

range(f) = C \ {p, q} where p 6= q
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0 Complex Analysis Is Cool! 9

Example 0.2.7

Suppose you have an ugly looking set U . Despite being ugly, it’s a non-empty simply
connecteda open subset of the complex number plane. If you want to do some
geometry/analysis on this set, it’s gonna be super hard.
But there is a cool theorem in complex analysis, namely Riemann mapping the-
orem. This theorem suggests that there exists a biholomorphoc (bijective con-
tinuous map, whose inverse is also continuous) map from U to the unit disk
D := {z ∈ C : |x| < 1}.
Using this thoerem, one can do geometry/analysis on the unit disk D and then
convert the results back into the ugly looking set U .

aIf you don’t know what that means, you can just ignore for now.

Example 0.2.8

Maybe the most famous function of complex vairables is the Riemann Zeta function
ζ : C→ C. It is defined as follows:

ζ(s) =
∞∑
n=1

1

ns
when Re(s) > 1

Note that, this function is not defined on the whole C, it’s defined on a subset of
C. This function has some really cool properties. One of them is it’s holomorphic
(complex differentiable). It follows from the fact that, “If a sequence (fn)n∈N of
holomorphic funnctions uniformly converge to f , then f is also holomorphic.” (but
this is, in general, not true in real analysis) So we choose fn as follows:

fn(s) =
n∑
k=1

1

ks
and fn → ζ uniformly

The most interesting fact about this function is probably its roots. There is an
unsolved problem named Riemann hypothesis. The hypothesis suggests that, all the
non-trivial roots of ζ can be written as 1

2
+ ib. That is, the real part of any non-trivial

root is just 1
2
. This hypothesis gives a lot of informations about the density of prime

numbers. Many works in modern analytical number theory have been done assuming
Riemann hypothesis is true.

However, Riemann zeta function along with the Basel problem gives a very nice proof
of the infinitude of primes.

Theorem 0.2.1

There are infinitely many prime numbers.

Proof. Suppose P denotes the set of prime numbers. Assume for the sake of contradiction
that #(P) = k <∞. Let n be a positive integer. Then it can be written as prime power
factorization as follows:

n = pe11 p
e2

2 · · · p
ek
k =

∏
peii

where pi ∈ P and ei ∈ Z≥0. Then 1
ns

can be written as 1
ns

=
∏

1
p
eis
i

. This can be found in

9
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0 Complex Analysis Is Cool! 10

the quantity(
1 +

1

ps1
+

1

p2s
1

+ · · ·
)(

1 +
1

ps2
+

1

p2s
2

+ · · ·
)
· · ·
(

1 +
1

psk
+

1

p2s
k

+ · · ·
)

Also, this quantity contains every single 1
ns

, because all natural numbers are composed
of primes p1, p2, . . . , pk. Using this, we can rewrite the ζ-function.

ζ(s) = 1 +
1

2s
+

1

3s
+ · · · =

∞∑
n=1

1

ns

=

(
1 +

1

ps1
+

1

p2s
1

+ · · ·
)(

1 +
1

ps2
+

1

p2s
2

+ · · ·
)
· · ·
(

1 +
1

psk
+

1

p2s
k

+ · · ·
)

=
∏
p∈P

(
1 + p−s + p−2s + · · ·

)
=
∏
p∈P

1

1− p−s

=⇒ ζ(2) =
∏
p∈P

1

1− p−2

This is a finite product of rational numbers, hence rational. But the Basel problem
suggests us that ζ(2) = π2

6
, which is irrational. Contradiction! �
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1 Metric Space Crashcourse

There is a quote by Grant Sanderson that says, “Abstractness is the price of generality.”
I think this sums up pure mathematics in a nice way. Mathematicians tend to generalize
things so much that at some point things start to become abstract. Metrics are a
good example for this. At first, we have the notion of distance on R. Using that and
Pythagorian theorem, we can get the distance for R2. Then it can be generalized for any
Euclidean space Rn.
But what about some random set? A random set need not be consisting of elements from
Rn. So we don’t can’t calculate the distance between two elements there. That’s why we
need to generalize the notion of distance. The generalized distance is called Metric.

§1.1 Metric - The Generalized Distance

Now, what properties a distance function should have? Or what properties of a distance
function do we want? It should take two elements as input, and one real number as
output. From our intuition, the output should always be positive if we calculate the
distance of two different elements. Also, the distance should not depend on the order of
the inputs. The final thing we want in a distance function is triangle inequality. We shall
call any function obeying these properties a metric. Let’s look at the formal definition.

Definition 1.1.1 (Metric). Let X be a non-empty set. Then a metric on X is a map
d : X ×X → R which satisfies the following:

(i) (Non-negativity) For every p, q ∈ X, d(p, q) ≥ 0; d(p, q) = 0 iff p = q.

(ii) (Symmetry) For every p, q ∈ X, d(p, q) = d(q, p).

(iii) (Triangle inequality) For every p, q, r ∈ X, d(p, q) + d(q, r) ≥ d(p, r).

Oftentimes we encounter some distance functions d that obey all the properties of
metric, except they might give us d(p, q) = 0 even if p 6= q. Such functions are called
pseudo-metric. Alright, let’s see some examples of metrics.

Example 1.1.1

On R, we define d(x, y) = |x− y|. This satisfies non-negativity, symmetry and
triangle inequality. So this is a metric.
Similarly, we can define a metric on Rn using the standard Euclidean norm.

d(x,y) := ‖x− y‖ =

√√√√ n∑
i=1

|xi − yi|2

It’s easy to check that this has the desired properties of a metric.

11



1 Metric Space Crashcourse 12

Definition 1.1.2 (Metric Space). A metric space (X, d) consists of a non-empty set
X together with a metric d on X.

We shall often say, “X is a metric space” in short. But there is always a metric d
associated with X, which we recall when necessary.

§1.2 Open and Closed sets

We can extend the notion of open and closed sets to any metric spaces. For that, we
need the definitions of Open and Closed balls first.

Definition 1.2.1 (Open Balls and Closed Balls). Let M be a metric space, x ∈ M ,
r > 0.

Open ball of radius r around x is Br(x) := {y ∈M : d(x, y) < r}
Closed ball of radius r around x is Br(x) := {y ∈M : d(x, y) ≤ r}

Now we can define open sets.

Definition 1.2.2 (Open Sets). Let M be a metric space. We shall call a subset
S ⊆M open if for every point x ∈ S, there is some r > 0 such that Br(x) ⊆ S.

Example 1.2.1

If you look at R, all open intervals are open. If you take any union of them, the
resulting set will be an open set.
In fact, there is a famous lemma that, any open set in R can be expressed as a
countable union of disjoint open intervals.

Topologically, closed sets are defined to be the complement of open sets. But there are
some alternate equivalent definitions. We shall define closed sets by limit points.

Definition 1.2.3 (Limit Points). Let X be a metric space and E ⊆ X be a nonempty
subset of X. Then p ∈ X is a limit point of E if for every ε > 0, Bε(p) contains at
least one point of E (other than p).

Example 1.2.2

Any real number is a limit point of Q. Same goes for R \Q. Because if we take any
open interval centered at a real number, it is bound to contain some other rational
and irrational numbers, no matter how small the interval is.

Example 1.2.3

Z and N do not have any limit points in R. For any integer n, if we take 0 < ε < 1
then Bε(n) does not contain any integer other than n itself. If we take some non-
integer x, then we can choose 0 < ε < min {|x− bxc| , |x− dxe|}. In this way Bε(x)
does not contain any integer.

12



1 Metric Space Crashcourse 13

Definition 1.2.4 (Closed Sets). Let M be a metric space. We shall call a subset
S ⊆M closed if S contains all its limit points.

Definition 1.2.5 (Perfect Set). A set is called perfect if each point of the set is a
limit point.

Example 1.2.4

Consider the set

S =

{
1

n
: n ∈ N

}
This is not a closed set in R. Because 0 is a limit point of S, but 0 6∈ S. If we
consider S ∪ {0}, then it’s a closed set.

Example 1.2.5

The singleton set {1} is a closed set in R. Because it has no limit points, so the set
of all limit points is ∅. And ∅ ⊆ {1}.

Example 1.2.6

N and Z are also closed in R. Because they have no limit points.

Example 1.2.7

Q is not closed in R. Because any real number is a limit point of Q, but Q does not
contain any irrational real numbers. In a similar manner, one can show that R \Q is
also not closed in R.

There is an opposite notion of limit point. It’s called isolated point.

Definition 1.2.6 (Isolated Point). Let X be a metric space and E ⊆ X be a nonempty
subset of X. Then p ∈ X is a isolated point of E if it’s not a limit point. That is,
there exists ε > 0 such that

(E ∩Bε(p)) \ {p} = ∅

Definition 1.2.7 (Dense Set). Let M be a metric space and E ⊆M be a subset. We
shall call E is dense in M if every point of M is a limit point of E.

Example 1.2.8

We have seen before that any real number is a limit point of both Q and R \ Q.
Therefore, both Q and R \Q are dense in R.

13



1 Metric Space Crashcourse 14

§1.3 Compactness

Definition 1.3.1 (Open Cover). Let (X, d) be a metric space. An open cover of a set
E ⊆ X is a collection of open sets {Uα : α ∈ I} such that

E ⊆
⋃
α∈I

Uα

Definition 1.3.2 (Subcover). A subcover of an open cover is just a subcollection of
it that covers the set.

Definition 1.3.3 (Compact Set). A set M ⊆ X is called compact if every open cover
of M in X has a finite subcover.

Example 1.3.1

The singleton set {1} is compact. Because you can cover it with only one open set.
By a similar argument, every finite set is compact.

Example 1.3.2

The set S =
{

1
n

: n ∈ N
}

is not compact. Because one can construct a cover of this
set that does not have any finite subcover. For example,

Un = B

(
1

n
, rn

)
where 0 < rn < min

{
1

n− 1
− 1

n
,

1

n
− 1

n+ 1

}
Every Un contains exactly one element from S, so there does not exist any finite
subcover. However, if we take S ∪ {0} then it becomes compact. Because 0 is the
limit of the sequence an = 1

n
, so any open neighborhood of 0 would contain all but

finitely many points. Therefore we can cover the all the points with a finite cover.

Example 1.3.3

N is not compact in R. If we take Un =
(
n− 1

2
, n+ 1

2

)
, each Un contains exactly one

element from N. As a result, no finite collection would cover the whole N.

So you can guess that compactness has something to do with closedness. Also intuitively,
an unbounded set should not be compact.

Proposition 1.3.1

Compact subsets of a metric space are closed.

Proof. Assume the contrary. Let (X, d) be a metric space and M be a compact subset
of X and M is not closed. Thet means there exists a limit point x of M that is not in
M . We consider the collection

Un = X \B (x, 1/n) =

{
y ∈ X : d(x, y) >

1

n

}
14



1 Metric Space Crashcourse 15

Let p ∈M , and r = d(x, p). Then there exists some n such that r > 1
n
. Therefore p ∈ Un.

As a result M is contained in
⋃
Un.

Since x is a limit point, Un contains at least one point in M . If we consider only a finite
collection of open sets from {Un}, it would not cover the whole M . Therefore, M does
not stay compact. Contradiction. �

Proposition 1.3.2

Closed subsets of a compact set are compact.

Proof. Let M be a compact set and K ⊆ M be closed. We need to show that K is
compact. K is closed, so M \K is open. We choose any open cover {Uα} of K. Then
we have,

M ⊆ (M \K) ∪
(⋃

Uα

)
Since M is compact, this open cover of M must have a finite subcover. This finite subcover
contains a finite collection of {Uα}, and this finite collection covers K. Therefore, K is
compact. �

Corollary 1.3.3

Suppose F is compact and K is closed in a metric space. Then F ∩K is compact.

Proof. Trivial. �

Theorem 1.3.4

Suppose {Kα} is a collection of compact sets in a metric space such that every finite
intersection of sets from this collection is nonempty. Then

⋂
Kα is nonempty.

Theorem 1.3.5 (Heine-Borel)

A set S ⊆ Rn is compact if and only if it’s closed and bounded.

15



2 Algebra on Complex Numbers

We defined C to be the field extension of R2. We showed in Chapter 0 that there must
exist some z such that z2 = −1. We denote that number by i. In that way we can write
every complex number as a + ib, where a and b are real numbers. Now addition and
multiplication can be defined on C.

§2.1 Basic Arithmetic

Suppose z = a+ ib is a complex number. Then we say a to be the Real part of z and
denote it by Re(z); and we say b to be the Imaginary part of z and denote it by Im(z).
Now we can define addition and multiplication on C.

Definition 2.1.1. Let z = a+ ib and w = c+ id be two complex numbers. Then we
define addition and multiplication of these two complex numbers as follows:

z + w = (a+ c) + i(b+ d)

zw = (ac− bd) + i(ad+ bc)

We choose 0 + 0i as the additive identity, and 1 + 0i as the multiplicative identity. Then
we can also define subtraction (additive inverse) and division (multiplicative inverse).

−z = (−a) + i(−b) and z−1 =
1

a+ ib
=

a− ib
(a+ ib)(a− ib)

=
a

a+ b2
− i b

a2 + b2

To see they are inverses indeed,

z + (−z) = (a+ ib) + ((−a) + i(−b)) = 0 + 0i

zz−1 = (a+ ib)

(
a− ib

(a+ ib)(a− ib)
=

a

a+ b2
− i b

a2 + b2

)
=

(
a2

a2 + b2
− b(−b)
a2 + b2

)
+ i

(
a(−b)
a2 + b2

+
ab

a2 + b2

)
= 1 + 0i

It’s easy to check that these definitions are consistent with the other field axioms.
It’s often useful to think about the conjugation of a complex number, which is nothing
but negating the imaginary part.

Definition 2.1.2 (Complex Conjugate). Let z = a+ ib be a complex number. Then
it’s conjugate — denoted by z — is defined as follows:

z = a− ib

Proposition 2.1.1 (Properties of Conjugate)

16



2 Algebra on Complex Numbers 17

Let z1 and z2 be complex numbers. Then

z1 + z2 = z1 + z2 , z1 − z2 = z1 − z2 , z1 · z2 = z1 · z2 , z1/z2 = z1/z2

Proof. Trivial. �

§2.2 Geometric Interpretation of Complex Numbers

Since C is the extension of R2, we can actually express each complex number as a point
in the 2-dimensional plane. The complex number a + ib will be denoted by the point
(a, b). The points on the x-axis are of the form t+ 0i, so they are essentially real numbers.
And similarly, the points on the y-axis have real part 0. That’s why the x-axis is called
the Real axis, and the y-axis is called the Imaginary axis. Then this plane is called
the Complex Plane.

Real axis

Imaginary axis

1−1

i

−i

−4

−4i

−3

−3i

−2

−2i

2

2i

3

3i

4

4i

2 + 3i

−4 + 2i

Figure 2.1: The Complex Plane

The distance from the origin to the point is said to be the modulud of the complex
number.

Definition 2.2.1 (Modulus). Let z = a+ ib be a complex number. Then its modulus
or magnitude — denoted by |z| — is defined by

|z| :=
√
a2 + b2

It’s easy to check that zz = |z|2

Theorem 2.2.1

z1 and z2 are two complex numbers, then

|z1|+ |z2| ≥ |z1 + z2|

Proof. One can easily prove it with long and tedious calculation. But there is a visual
solution that uses the triangle inequality from Euclidean geometry.
Let z1 = a+ ib, z2 = c+ id. Let A and B denote the points (a, b) and c, d respectively,
and O is the origin. It’s clear that |z1| = OA and |z2| = OB. Let C be the point

17



2 Algebra on Complex Numbers 18

denoting the complex number z1 + z2. Then C will have coordinates (a+ c, b+ d). Also,
|z1 + z2| = OC. It’s easy to check that OACB forms a parallelogram.

Real axis

Imaginary axis

A(a, b)

B(c, d)

O(0, 0)

C(a+ c, b+ d)

Figure 2.2: Triangle Inequality

Since OACB is a parallelogram, OA = BC. We take the triangle OBC and apply
triangle inequality on it.

OB +BC ≥ OC =⇒ |z2|+ |z1| ≥ |z1 + z2|

Hence, we are done. �

§2.3 Polar Coordinates

Cartesian coordinate and polar coordinate comes hand in hand. We’ve seen before that
the complex number z = x + iy can be expressed on the cartesian plane by the point
(x, y). The distance from the origin to this point is called the modulus of z. If we join
the origin and the point x, y, this segment creates some angle with the positive real axis.
This angle is called argument of z.

Definition 2.3.1 (Argument). Let z = x + iy be a complex number, and |z| = r.
Then it’s argument arg z is a real number θ for which x = r cos θ and y = r sin θ are
satisfied. The principal argument — denoted by Arg z — is an argument that lies in
[0, 2π).

Let z = x+ iy, r = |z|, θ = arg(z). So

z = r cos θ + i r sin θ = r (cos θ + i sin θ)

This gives us a geometric interpretation for complex multiplication.

Proposition 2.3.1

|z1z2| = |z1| |z2| and Arg (z1z2) = Arg (z1) + Arg(z2), where the sum is taken modulo
2π.

18



2 Algebra on Complex Numbers 19

Proof. Let r1 = |z1| , θ1 = Arg (z1) and r2 = |z2| , θ2 = Arg (z2).

z1z2 = r1 (cos θ1 + i sin θ1) r2 (cos θ2 + i sin θ2)

= r1r2 (cos θ1 cos θ2 − sin θ1 sin θ2 + i sin θ1 cos θ2 + i cos θ1 sin θ2)

= r1r2

(
cos (θ1 + θ2) + i sin (θ1 + θ2)

)
Therefore, |z1z2| = r1r2 = |z1| |z2|, and Arg (z1z2) = (θ1 + θ2) = Arg (z1) + Arg (z2). �

This means, when you multiply one complex number by another, you’re basically scaling
the length and then rotating it.

Now, what’s the attribute of a number that gets added when you multiply? The
simplest such example one can think of is exponent. That is, ea · eb = ea+b. Euler showed
that, argument of complex number really works like exponents.

Proposition 2.3.2 (Euler’s formula)

eiθ = cos θ + i sin θ

Proof. Complex exponent is defined by the Mclaurin series for ex.

ex = 1 + x+
x2

2!
+
x3

3!
+ · · · =

∞∑
n=0

xn

n!

Substituting x = iθ,

eiθ =
∞∑
n=0

(iθ)n

n!

=
∞∑
k=0

(iθ)2k

(2k)!
+
∞∑
k=0

(iθ)2k+1

(2k + 1)!

=
∞∑
k=0

(−1)k
(θ)2k

(2k)!
+ i

∞∑
k=0

(−1)k
(θ)2k+1

(2k + 1)!

= cos θ + i sin θ

�

Corollary 2.3.3 (De Moivre’s Theorem)

(cos θ + i sin θ)n = cos (nθ) + i sin (nθ)

De Moivre proved it way before Euler’s formula, and that proof is a bit complicated. But
this is just a simple exercise using Euler’s formula.

§2.3.i Branch of Argument

On definition 2.3.1 we defined the principal argument Arg(z) to be the unique argument
that lies in [0, 2π). However, this is not the only way to define the arg function. We know
that, if θ is an argument of a complex number z, then so is θ+ 2nπ for n ∈ Z. Depending
on our need, we can take any interval of length 2π, with one side closed and the other
side open, and define argument function that gives output on that “half-open-half-closed”
interval. This is called branch of argument.

19



2 Algebra on Complex Numbers 20

For example, suppose we are defining argument on the branch (−π, π]. In that case,

arg(−i) = −π
2
, and arg

(√
2

2
− i

√
2

2

)
= −π

4
. Or we could have defined it on the branch[

π
4
, 9π

4

)
.

This idea is extremely useful when we work with complex logarithm. We’ve seen that,
if z is a complex number,

z = |z| ei arg(z)

If we take log on both sides,

log(z) = log (|z|) + log
(
ei arg(z)

)
log (|z|) + i arg(z)

Depending on what range of logarithm we are seeking, we choose branch of argument
accordingly.

§2.4 Exponentiation and Roots

Euler’s formula gives us a way to define exponents and roots in C. Suppose z = x+ iy is
a complex number. Then we have

ez = ex+iy = ex eiy = ex (cos y + i sin y)

Also, the modulus of ez is ex, and the argument of ez is y.
Now we want to find the n-th roots of a complex number c. Algebraically this means

solving the equation
zn = c

Let c = Reiφ and z = reiθ. We need to find r and θ.

zn =
(
reiθ
)n

= rnei(nθ)

=⇒ Reiφ = rnei(nθ)

=⇒ r = R1/n and nθ = φ+ 2kπ , where k ∈ Z

=⇒ r = R1/n and θ ∈
{
φ

n
+

2kπ

n
: k ∈ Z

}
In this way one can easily compute the n-th roots of a complex number c. However,
when c = 1 the roots are called roots of unity. When c = 1, we have R = 1 and φ = 0.
Therefore, r = 1, and

θ ∈
{

2kπ

n
: 0 ≤ k ≤ n− 1

}
So all the n-th roots of unity are of the form ei

2kπ
n . So it is evident that the roots will lie

evenly on the unit circle. Figure 2.3 contains an example with n = 5.

§2.5 Matrix Representation of Complex Numbers

Let Rθ be the rotation of the plane R2 that rotates with an angle of θ. By definition, it
is a linear map. So, how can we write the map explicitly?

20



2 Algebra on Complex Numbers 21

Real axis

Imaginary axis

Figure 2.3: 5-th roots of unity on unit circle

First of all, the question doesn’t make any sense if we don’t have any basis. So we
need a basis for R2. Let’s just take the usual basis B = {e1 = (1, 0) , e2 = (0, 1)}. Then

Rθ ((x, y)) = Rθ (x (1, 0) + y (0, 1)) = xRθ ((1, 0)) + yRθ ((0, 1))

= x (cos θ, sin θ) + y (− sin θ, cos θ) =

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
= (x cos θ − y sin θ, x sin θ + y cos θ)

Observe that, each such rotation Rθ can be presented by multiplication of a complex
number zθ ∈ C, where zθ = cos θ + i sin θ. Because

zθ (x+ iy) = (cos θ + i sin θ) (x+ iy) = (x cos θ − y sin θ) + i (x sin θ + y cos θ)

Note that, Rθ ◦ Rφ = Rφ ◦ Rθ. Each Rθ represents multiplication by a 2 × 2 matrix.
Usually matrix multiplication is not commutative. But why does it happen here?

The answer lies in complex plane. Rθ is associated with multiplication by a complex
number zθ. Since C is a field, multiplication is commutative. That’s why Rθ◦Rφ = Rφ◦Rθ

happens.
The set of all such Rθ forms a group, it is denoted by SO(2). The set {z ∈ C : |z| = 1}

forms a group denoted by S1. Then S1 is isomorphic to SO(2). An explicit isomorphism
is

cos θ + i sin θ 7→
[
cos θ − sin θ
sin θ cos θ

]
Abusing notation, let Rθ be the same 2× 2 matrix that represents the linear map.

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
= cos θ

[
1 0
0 1

]
+ sin θ

[
0 −1
1 0

]
= cos θ 1 + sin θ i

These 1 and i behave like 1, i ∈ C (because i2 = −1, and 1 is the multiplicative identity).
This is another way of convincing yourself that zθ and Rθ are basically the same.

If we forget about the condition |z| = 1,[
a −b
b a

]
= a

[
1 0
0 1

]
+ b

[
0 −1
1 0

]
= a 1 + b i

21



2 Algebra on Complex Numbers 22

So, there is a one-to-one correspondence between C and the set of all 2× 2 real matrices

of the form

[
a −b
b a

]
.

In this correspondence, the square of the norm corresponds to determinant of the
matrix, because ∣∣∣∣a −bb a

∣∣∣∣ = a2 + b2 = |a+ ib|2

And the multiplicative inverse of a complex number corresponds to the inverse matrix,
since

(a+ ib)−1 =
a− ib
a2 + b2

,

[
a −b
b a

]−1

=
1

a2 + b2

[
a b
−b a

]

§2.6 Quaternions

In the previous section, we represented complex numbers with 2× 2 real matrices.

a+ ib←→
[
a −b
b a

]
What if we allow the entries to be complex numbers? If we take the set H of all 2× 2
complex matrices of the form [

z1 −z2

z2 z1

]
,

then H forms an abelian group under matrix addition. Also H \ {0} forms a group under
matrix multiplication (multiplication is, in general, not commutative). So H is not a
field. This H is called the set of all quaternions.

If q ∈ H,

q =

[
a+ id −b− ic
b− ic a− id

]
= a 1 + b i + c j + d k

where 1 =

[
1 0
0 1

]
, i =

[
0 −1
1 0

]
, j =

[
0 −i
−i 0

]
, k =

[
i 0
0 −i

]
Verify that i2 = j2 = k2 = −1 and ij = k, jk = i,ki = j. Also, we can define the norm as
follows:

det q = a2 + b2 + c2 + d2 =: |q|2

Furthermore, we can define the conjugate of q:

q = a 1 + b i + c j + d k =⇒ q = a 1− b i− c j− d k

Using the corresponding matrix inverse, one can verify that

q−1 =
1

a2 + b2 + c2 + d2
(a 1− b i− c j− d k)

This gives us the identity qq = qq = |q|2. But the conjugate of product is different from
what we can expect.

q1q2 = q2 q1

Likewise unit complex numbers, the set of all unit quaternions form a group uner
multiplication. It is denoted by S3.

S3 = {q ∈ H : |q| = 1}

We will see later that this S3 helps us understand rotations in R3.
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2 Algebra on Complex Numbers 23

§2.7 Rotations

Let v, w ∈ C, then for any u ∈ S1 we have

|v − w| = |vu− wu|

This means, multiplication by u is an isometry (distance preserving map). Also, note
that this isometry fixes the origin. There is a unique such isometry in R2, it’s a rotation.

Similarly, for any u,w ∈ R4,

|u− w| = |uq − wq| for q ∈ S3.

We can explain rotation in R3 similarly, but we need to be a bit tricky.
If a quaternion has 0 as the coefficient of 1, we shall call it a “pure imaginary”

quaternion. We can consider R3 to be the set of all pure imaginary quaternions.

R3 = Ri + Rj + Rj

If u = u1i + u2j + u3j and v = v1i + v2j + v3j are two pure imaginary quaternions, the
product of them has a nice representation. Let u · v be the dot product of the vectors u
and v. Likewise, u× v is the cross product. The quaternion product is uv. Then

uv = − (u · v) 1 + (u× v)

This shows that, uv ∈ R3 iff u · v = 0, which is equivalent to u and v being perpendicular.
For unit u, u × u = 0 gives us u2 = − (u · u) = −1. Thus we get, x2 + 1 = 0 has
uncountably many solutions in quaternions. This is a counterexample of fundamental
theorem of algebra (FTA). In general, since H is not a field, FTA does not hold in
H.

Theorem 2.7.1

Let t = cos θ + u sin θ, where u is a pure imaginary quaternion (u ∈ R3). Consider
the map f : H→ H given by

q 7→ tqt−1.

Then f rotates R3 = Ri + Rj + Rj through angle 2θ about u.

Sketch of proof. If r ∈ R, then
f (r) = trt−1 = r

So f preserves the real line. Now choose a unit vector v with v ⊥ u. Then

w = u× v = uv.

So {u, v, w} forms a basis. Then show that

tvt−1 = v cos 2θ − w sin 2θ and twt−1 = v sin 2θ + w cos 2θ

Also, f preserves all point on the line through u. So using these, one can easily conclude
the result. �

This is a ground-breaking result in game development and computer graphics. Previously
game engines used to use Euler angles to portray rotation. But that leads to some
inconveniences, such as Gimbal lock. Rather, this method just requires multiplication
by two quaternions. This is not only computationally efficient, but also free from
all sorts of ambiguity. More about that in th following 3blue1brown video: https:

//youtu.be/zjMuIxRvygQ
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3 Differentiation

As a vector space C is isomorphic to R2. One can think of the ordered pair (x, y) as a
way of representing the complex number x+ iy. But the notion of linear map is not the
same in C and R2. In C, the underlying field for the vector space is C. On the other
hand, the underlying field for the vector space R2 is R.

Recall the definition of linear maps. A linear map preserves the notion of vector
addition and scalar multiplication between vector spaces. In other words, a map T
between vector spaces is called linear if for every vector v1, v2 and scalar c,

T (v1 + v2) = T (v1) + T (v2) and T (cv1) = cT (v1)

Using this, we can define linear map in C.

Definition 3.0.1 (Linear Map). A map T : C → C is called R-linear if for every
z, w ∈ C and c ∈ R

T (z + w) = T (z) + T (w) and T (cz) = cT (z)

We call the map C-linear if this equation is satisfies for every c ∈ C too.

Proposition 3.0.1

Let T : C→ C be R-linear. Then it’s C-linear if and only if T (iz) = iT (z) for every
z ∈ C.

Proof. (⇒) Assume T is C-linear. Then we choose c = i and T (iz) = iT (z) follows
immediately.

(⇐) Now assume T (iz) = iT (z) for every z ∈ C. We need to show that T (cz) = cT (z)
for every c, z ∈ C. Let c = a+ ib where a, b ∈ R.

T (cz) = T ((a+ ib)z) = T (az + ibz)

= T (az) + T (ibz) = aT (z) + bT (iz)

= aT (z) + ibT (z) = (a+ ib)T (z) = cT (z)

So T is a C-linear map. �

In general, for any real vector space V , if we want to make it complex vector space, the
only thing that determines the C-vector space is iej; where ej is a basis. In other words,
how the scalar i acts on the vector space.

Lemma 3.0.2

If T : C→ C is a C-linear map, then T (z) = cz for some fixed c ∈ C.

Proof. Let c = T (1). T (z) = T (z · 1) = z · T (1) = cz. �

24



3 Differentiation 25

§3.1 Differentiability

Complex differentiability is very much similar to differentiability in R.

Definition 3.1.1 (Differentiable Function). Suppose V is an open subset of C and
z ∈ C. We call a function f : V → C differentiable at z0 if the following limit
exists:

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

The limit can also be written in the following way:

lim
h→0

f(z0 + h)− f(z0)

h

We often denote this differentiability by C-differentiable. Here we need to address the
significance of V being open. Since V is open, given z0 ∈ V we can find a open ball
B (z0, r) ⊆ V . That is z0 +h ∈ V whenever |h| < r. So while computing the limit, z0 +h
is free to approach z0 from any direction as h→ 0. If we get two different values of the
limit while approaching h→ 0 via two different directions, then the limit does not exist.

Since C ∼= R2, we can compare C-differentiability with R2-differentiability. Recall that,
if V is an open subset of R2, then a function f : V → R2 is said to be differentiable at
z ∈ V if there exists an R linear map T : R2 → R2 such that

f(z + h) = f(z) + Th+ o(h) as h→ 0

In this case, the operator T is known as the Frechet derivative of f at z. It’s also written
as Df(z). Here o(h) basically means the error term, that satisfies o(0) = 0 and

lim
h→0

‖o(h)‖
‖h‖

= 0

For now we shall call such a function R-differentiable. Using the limiting property of
o(h), we can rewrite R-differentiability as follows:

‖f(z + h)− f(z)− Th‖
‖h‖

→ 0 as h→ 0

Proposition 3.1.1

Suppose V is a open subset of C, f : V → C and z ∈ V . Then f is C-differentiable
at z ∈ V if and only if f is R-differentiable at z and the map Df(z) is complex
linear.

Proof. (⇒) Assume f is C-differentiable at z.

f ′(z) = lim
h→0

f(z + h)− f(z)

h
=⇒ f(z + h) = f(z) + f ′(z)h+ o(h) as h→ 0

The map Df(z)(h) = f ′(z)h is clearly C-linear, so it is also R-linear. As a result f is
R-differentiable.
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3 Differentiation 26

(⇐) Now assume f is R-differentiable at z, with Df(z) being a C-linear map. By
Lemma 3.0.2 , Df(z)(h) = ch for some c ∈ C. Therefore, by the R-differentiability
condition,

f(z + h) = f(z) +Df(z) (h) + o(h) as h→ 0

=⇒ f(z + h) = f(z) + ch+ o(h) as h→ 0

=⇒ c = lim
h→0

f(z + h)− f(z)

h

So the limit exists and f is C-differentiable at z. �

§3.1.i Cauchy Riemann Equations

Let f : V → C, where V ⊆ C is open. We write f = u+ iv, where u = Re(f) : R2 → R
and v = Im(f) : R2 → R. We define the partial derivatives of u and v in the usual way:

ux =
∂u

∂x
, uy =

∂u

∂y
and vx =

∂v

∂x
, vy =

∂v

∂y

Then the Cauchy-Riemann equations, or CR equations in short, are

ux = vy and uy = −vx (3.1)

Proposition 3.1.2

Let V ⊆ C be open. f : V → C and z ∈ V . Then f is C-differentiable at z if and
only if f is R-differentiable at z and the CR equations hold at z.

Proof. f is R-differentiable at z, so Df(z) represents a R-linear map described by the
2× 2 matrix

Df(z) ∼
[
ux uy
vx vy

]
By Proposition 3.1.1, we only need to verify that Df(z) being a C-linear map is equivalent
to satisfying CR equations at z. Also by Proposition 3.0.1, Df(z) being a C-linear
map is equivalent to Df(z) (ic) = i Df(z) (c). So it’s enough for us to show that
Df(z) (ic) = i Df(z) (c) is equivalent to satisfying CR equations. Let c = x1 + iy1.
We’ve seen earlier that, multiplication by i has the same effect as multiplicatio by[

0 −1
1 0

]
. Therefore,

Df(z) (ic) = i Df(z) (c) ⇐⇒
[
ux uy
vx vy

] [
0 −1
1 0

] [
x1

y1

]
=

[
0 −1
1 0

] [
ux uy
vx vy

] [
x1

y1

]
⇐⇒

[
ux uy
vx vy

] [
0 −1
1 0

]
=

[
0 −1
1 0

] [
ux uy
vx vy

]
⇐⇒

[
uy −ux
vy −vx

]
=

[
−vx −vy
ux uy

]
⇐⇒ ux = vy and uy = −vx

So we are done! �
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Corollary 3.1.3

Let V ⊆ C be open. f : V → C and z ∈ V . If f is C-differentiable at z, then CR
equations are satisfied at z.

This corollary shows us that CR equations are a necessary condition for differentiability.
However, it is NOT a sufficient condition.

Example 3.1.1

Consider the function

f(x+ iy) =

{
0 if x = 0 or y = 0

1 otherwise

In this case, v is always 0; u = 0 if x = 0 or y = 0 and u = 1 otherwise. So we have

ux = uy = vx = vy = 0

But f is not differentiable at 0. Because the limit limh→0
f(h)−f(0)

h
fails to exist. To

prove this, one can just approach h→ 0 via x-axis and the identity line x = y. The
former one gives the limit 0, while the latter one yields 1.

Corollary 3.1.4

Let V ⊆ C be open. f : V → C and z ∈ V . Then f is C-differentiable at z if and
only if the partial derivatives ux, uy, vx, vy are continuous at z and the CR equations
hold at z.

Proof. From Calculus of several variables, we know that having continuous first order
partial derivatives is equivalent to being R-differentiable. Then by Proposition 3.1.2, we
are done! �

Proposition 3.1.5

If f : V → C is C-differentiable at z0 ∈ V , then f is continuous at z0.

Proof. We wish to prove that lim
z→z0
|f(z)− f (z0)| = 0.

lim
z→z0
|f(z)− f (z0)| =

(
lim
z→z0

|f(z)− f (z0)|
|z − z0|

)(
lim
z→z0
|z − z0|

)
= |f ′ (z0)| · 0 = 0

So f is continuous at z0. �

Definition 3.1.2 (Holomorphic Function). We call a function f : C → C holomor-
phic at z0 ∈ C if it is differentiable at all points in a neighborhood of z0. We call f
holomorphic on a set V if it is differentiable at all points of V .

Holomorphicity is clearly a stronger condition than differentiability. There are functions
that are differentiable at a point, but not differentiable at any neighborhood of that
point.
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Example 3.1.2

Consider the function f(z) = |z|2 = x2 + y2. f is differentiable on z = 0, but not at
any neighborhood of 0 (check this using CR equations).

Proposition 3.1.6 (Chain Rule)

Let f and g be holomorphic on G and Ω respectively and suppose f(G) ⊆ Ω. Then
g ◦ f is holomorphic on G and

(g ◦ f)′ (z) = g′ (f(z)) f ′(z)

for all z ∈ G.

Proof. Since f and g are differentiable on G and Ω respectively,

f(z+h) = f(z)+f ′(z)h+o(h) and g(w+h) = g(w)+g′(w)h+o(h) for z ∈ G, w ∈ Ω

Let z0 ∈ G. Wre wish to compute (g ◦ f)′ (z0).

(g ◦ f)′ (z0) = lim
h→0

g (f (z0 + h))− g (f(z0))

h

= lim
h→0

g (f (z0) + f ′ (z0)h+ o(h))− g (f(z0))

h

= lim
h→0

g (f (z0)) + g′ (f (z0)) (f ′ (z0)h+ o(h)) + o (f ′ (z0)h+ o(h))− g (f(z0))

h

= g′ (f (z0)) lim
h→0

f ′ (z0)h+ o(h)

h
+ lim

h→0

o (f ′ (z0)h+ o(h))

h
= g′ (f (z0)) f ′ (z0)

as desired. �

§3.2 Wirtinger Derivative Operators

Definition 3.2.1 (Wirtinger Derivative). Let f : V → C be a fucntion. The Wirtinger
derivatives are defined as the following linear partial differential operators:

∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)

Previously we considered f to be a function of x and y and we partially differentiated
with respect to x and y to get Cauchy-Riemann equations. Now we are basically
considering f to be a function of z and z̄. There is a catch though. Unline x and y, z
and z̄ are not really independent. So the partial derivative doesn’t make any sense. But
this newly defined operators kinda “behave like” partial derivatives.

This operators are very useful. If f is differentiable, then ∂f
∂z

is exactly equal to f ′(z).

Also, Cauchy-Riemann equations can be rewritten using this notation ∂f
∂z̄

= 0.
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∂f

∂z
=

1

2

(
∂f

∂x
− i∂f

∂y

)
=

1

2

(
∂(u+ iv)

∂x
− i∂(u+ iv)

∂y

)
=

1

2

(
ux + ivx − iuy − i2vy

)
=

1

2
(ux + ivx − iuy + vy)

= ux + ivx = f ′(z)

∂f

∂z̄
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
=

1

2

(
∂(u+ iv)

∂x
+ i

∂(u+ iv)

∂y

)
=

1

2

(
ux + ivx + iuy + i2vy

)
=

1

2
((ux − vy) + i (uy + vx))

= 0

Sometimes it’s much more convenient to check ∂f
∂z̄

= 0 than checking Cauchy-Riemann
equations. Even though z and z are not independent variables, the Wirtinger derivatives
treat them like independent variables. It’s easy to check that

∂z

∂z
= 1 and

∂z

∂z
= 0 ,

∂z

∂z
= 1 and

∂z

∂z
= 0

That’s why Wirtinger derivatives behave like partial derivatives.
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4 Power Series

What do we mean when we say
∑∞

n=1 xn converges, where xn ∈ X for some space X?
Note that this question makes absolutely no sense when X is an arbitrary space, say
random topological space. Because the operation of addition might not be defined in an
arbitrary space. This is not the only reason; we can’t talk about convergence untill we
have a topological space.

But the good news is, our space C is a super nice guy. Meaning C is a 2-dimensional
real vector space, so we have a notion of addition here. Moreover, there is a notion of
norm (modulus); with help of this norm we can make C a metric space. So we can just
relax and talk about convergence here.

Definition 4.0.1 (Convergence and Absolute convergence). If an ∈ C for every n ≥ 0,
then the series

∑
an converges to z iff for every ε > 0, there is an integrer N such

that ∣∣∣∣∣
m∑
n=0

an − z

∣∣∣∣∣ < ε whenever m ≥ N

The series
∑
an converges absolutely if

∑
|an| converges.

Lemma 4.0.1

C is complete, i.e, every Cauchy sequence in C has a limit in C.

Proof. Let zn = xn + iyn be a Cauchy sequence, with xn, yn ∈ R. We claim that both xn
and yn are Cauchy sequences in R. Let ε > 0. Since zn is Cauchy, we can find k,m ∈ N
such that |zm − zk| < ε. Now,

ε2 > |zm − zk|2 = |xm − xk|2 + |ym − yk|2 =⇒ |xm − xk|2 ≤ ε2 =⇒ |xm − xk| ≤ ε

Hence xn is a Cauchy sequence in R. Similarly yn is also a Cauchy sequence in R. Since
R is complete, xn → x and yn → y. Therefore,

zn = xn + iyn → x+ iy ∈ C

So C is complete. �

Proposition 4.0.2

If
∑
an converges absolutely, then

∑
an converges.

Proof. Let ε > 0 and zn = a0 + a1 + · · · + an. Since
∑
|an| converges, there exists a

positive integer N such that
∑∞

n=N |an| < ε. Now, for m > k ≥ N ,

|zm − zk| =

∣∣∣∣∣
m∑

n=k+1

an

∣∣∣∣∣ ≤
m∑

n=k+1

|an| ≤
∞∑
n=N

|an| < ε

So (zn)∞n=0 is a Cauchy sequence. Since C is complete, this sequence has a limit in C.
Hence

∑
an converges. �
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§4.1 Power Series

Definition 4.1.1 (Power Series). A power series is a series of the form
∞∑
n=0

an (z − a)n,

where an, a ∈ C

Let’s talk about its convergence. This power series has a beautiful property. For the sake

of simplicity, let’s assume a = 0. Then our power series is
∞∑
n=0

anz
n.

Proposition 4.1.1

Suppose there exists w ∈ C such that
∑∞

n=0 anw
n converges. Then for any z ∈ C

with |z| < |w|,
∑∞

n=0 anz
n converges.

Proof. We claim that
∑∞

n=0 anz
n converges absolutely. Notice that the sequence xk =∑k

n=0 |anzn| is monotonically increasing. So it converges if and only if it is bounded.
Hence we only need to prove that

∑∞
n=0 |anzn| is bounded.

Since
∑∞

n=0 anw
n converges, there exists a real number M such that |anwn| ≤M for

every n. Now,

∞∑
n=0

|anzn| =
∞∑
n=0

|anwn|
∣∣∣ z
w

∣∣∣n ≤ ∞∑
n=0

M

(
|z|
|w|

)n
= M

∞∑
n=0

(
|z|
|w|

)n
By the given condition, |z||w| < 1. So

∑∞
n=0

(
|z|
|w|

)n
is a convergent geometric series. Hence∑∞

n=0 |anzn| is bounded, and we are done. �

Observe that,
∑∞

n=0 anw
n convergent is a much stronger condition than |anwn| ≤ M .

Because, convergence of
∑∞

n=0 anw
n automatically implies |anwn| ≤M ; but the converse

is not always true. For example,
∣∣ 1
n

∣∣ ≤ 1 for all n, but
∑

1
n

diverges. However, this
weaker condition of |anwn| ≤M is enough for us to prove Proposition 4.1.1.

Now, what’s the moral of Proposition 4.1.1? It gives us an intuitive idea about the
concept of “radius of convergence”. If there exists a point on which the power series
converges, then the series converges on a disk. Later we will see that radius of convergence
is the radius of the maximal such disk. Also this result tell us about the “bounded
implies convergent” property of power series. It motivates the following definition.

Definition 4.1.2 (Radius of Convergence). Suppose (cn)∞n=0 is a sequence of complex
numbers. We define R ∈ [0,∞] by

R := sup {r ≥ 0 : the sequence (cnr
n)∞n=0 is bounded }

We call R the radius of convergence of the power series
∑∞

n=0 cn (z − z0)n.

Proposition 4.1.2∑∞
n=0 cn (z − z0)n converges absolutely and uniformly on every compact subset of

the disk D(z0, R); and diverges at every point z with |z − z0| > R.

Proof. The second part follows immediately. If |z − z0| > R, then the terms cn (z − z0)n

aren’t even bounded. So the summation
∑∞

n=0 cn (z − z0)n clearly diverges.
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But the first part is a bit trickier. Because the compact subsets of D(z0, R) might be
(are likely to be) weird and ugly sets. And working with those ugly sets is gonna be
difficult. Instead we will prove a stronger result. Notice that, if S is a compact subset of
D(z0, R), then S must be contained in some closed ball D̄(z0, r) for some r < R. So we
now want to show that the power series converges uniformly and absolutely in D̄(z0, r).

As r < R, we can choose a number ρ such that r < ρ < R (if you’re not sure about
how to choose that number, or you need an explicit construction of ρ, just take ρ = r+R

2
).

By the definition of R, since ρ < R, cnρ
n is bounded. That is, |cn| ρn ≤ A for every n.

Now for any z ∈ D̄(z0, r),
∞∑
n=0

cn (z − z0)n ≤
∞∑
n=0

cnr
n ≤=

∞∑
n=0

cnρ
n

(
r

ρ

)n
≤

∞∑
n=0

A

(
r

ρ

)n
= A

∞∑
n=0

(
r

ρ

)n
As r < ρ,

∑∞
n=0

(
r
ρ

)n
is a convergent geometric series, hence it is pointwise absolutely

convergent in D̄(z0, r). Observe that, D̄(z0, r) itself is a compact set. By Dini’s theorem,
pointwise absolute convergence of monotone sequence of functions on a compact set is
uniform convergence. Hence, we are done! �

So, the radius of convergence is indeed the radius of the maximal disk on which the
power series converges. In other words,

R = sup

{
|z − z0| :

∞∑
n=0

cn (z − z0)n converges

}
But this definition is not good for finding an explicit value of R. For that, we need the
following lemma.

Lemma 4.1.3

Let
∑∞

n=0 cn(z − z0)
n be a power series and R be its radius of convergence. Then

the following are true:

(a) 1
R

= lim sup |cn|
1
n .

(b) 1
R

= lim inf |cn|
1
n .

(c) R = lim
n→∞

∣∣∣ cn
cn+1

∣∣∣ if the limit exists.

Proof. (a) Let 1
R′

= lim sup |cn|
1
n . We can assume R′ <∞, because if R′ =∞, then it

can easily be shown that R must also be ∞. WLOG, we assume z0 = 0. So we wish
to prove that

∑∞
n=0 cnz

n converges if |z| < R′, and diverges if |z| > R′. That would
prove that R′ is indeed the radius of convergence.

Assume |z| < R′. Let ε > 0. By the definition of lim sup, there are only a finitely

many n such that 1
R′

+ ε < |cn|
1
n . This gives us, |cn| >

(
1
R′

+ ε
)n

for finitely many n.
In other words,

|cn| ≤
(

1

R′
+ ε

)n
for all but finitely many n

If |z| < R′, then there exists some ε such that, |z| <
(

1
R′

+ ε
)−1

. In other words,(
1
R′

+ ε
)
|z| < 1. Now, for all but finitely many n, we have

|cnzn| = |cn| |z|n ≤
((

1

R′
+ ε

)
|z|
)n
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As a result, the power series becomes is a convergent geometric series for all but
finitely many n, so it converges.

Now, if |z| > R′, then |z| =
(

1
R′
− ε
)−1

for some ε > 0. In a similar manner, one can
now show that the power series is a geometric series for all but finitely many n. But
this time, the common ratio is greater than 1. So the series diverges.

(b) Let R′ =
(

lim inf |cn|
1
n

)−1

= lim inf |cn|−
1
n < ∞. We shall prove that r < R iff

r < R′. That would result in R′ = R. Assume r < R′. By the definition of lim inf,

r < R′ = lim inf |cn|−
1
n = sup

n∈N

(
inf
k≥n
|ck|−

1
k

)
=⇒ ∃N ∈ N such that r < inf

k≥N
|ck|−

1
k

Therefore, r < |cn|−
1
n for every n ≥ N . So we have, for n ≥ N ,

rn < |cn|−1 =⇒ |cnrn| < 1 =⇒ (cnr
n)n∈N is bounded =⇒ r < R

Now let’s assume r < R. So cnr
n is bounded, i.e, |cnrn| < M for every n. Therefore,

|cnrn| < M =⇒ rn < M |cn|−1 =⇒ r < M
1
n |cn|−

1
n

We know that, if x < yn for every n, then x ≤ lim inf yn (the proof follows immediately

from the definition of lim inf). As a result, r ≤ lim inf
(
M

1
n |cn|−

1
n

)
= lim inf |cn|−

1
n =

R′. So we are done!

(c) Assume that the limit exists and R′ = lim
n→∞

∣∣∣ cn
cn+1

∣∣∣. We wish to prove that R′ = R.

Again we assume WLOG that z0 = 0.

Assume |z| < R′, so we can find r such that |z| < r < R′. As R′ = lim
∣∣∣ cn
cn+1

∣∣∣, we can

find an integer N such that r <
∣∣∣ cn
cn+1

∣∣∣ for every n ≥ N . Let B = |cN | rN . So

|cN+1| rN+1 = |cN+1| rrN < |cN+1|
∣∣∣∣ cNcN+1

∣∣∣∣ rN = B

Similarly, |cN+2| rN+2 = |cN+2| rrN+1 < |cN+2|
∣∣∣∣cN+1

cN+2

∣∣∣∣ rN+1 = |cN+1| rN+1 < B

Inductively, |cn| rn ≤ B for every n ≥ N . Now, for every n ≥ N , we have

|cnzn| = |cn| rn
(
|z|
r

)n
≤ B

(
|z|
r

)n
So the series is bounded a convergent geometric series for all but finitely many n.
Therefore, the power series converges whenever |z| < R′.

Now assume |z| > R′, so we can find r such that |z| > r > R′. As R′ = lim
∣∣∣ cn
cn+1

∣∣∣,
we can find an integer N such that r >

∣∣∣ cn
cn+1

∣∣∣ for every n ≥ N . In a similar way as

before, |cn| rn ≥ B = |cN | rN for every n ≥ N . This gives us

|cnzn| = |cn| rn
(
|z|
r

)n
≥ B

(
|z|
r

)n
|z|
r
> 1, so this is not bounded. Therefore, the power series does not converge for

|z| > R′. Hence we are done!
�
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If you notice carefully, we are talking about convergence in |z| < R and divergence in
|z| > R. But what happens at the boundary, i.e, at |z| = R? The answer is we don’t
know. In fact, no one knows. Anything can happen at the boundary. Let’s consider the
following three examples:

∞∑
n=0

zn ,
∞∑
n=0

zn

n
,

∞∑
n=0

zn

n2

It’s easy to check that all of them have radius of convergence 1. The first one converges
at no point of the boundary; the third one converges at every boundary point. But the
second one only converges at one boundary point and diverges at other.

§4.2 Differentiating Power Series

In an intuitive sense, it’s kinda clear that differentiating
∑
cnz

n “should” yield
∑
ncnz

n−1.
We shall now proceed to prove this.

Lemma 4.2.1

The power series
∑
cnz

n and
∑
ncnz

n−1 have the same radius of convergence.

Proof. We first prove that if
∑
|cnzn| converges for |z| < R, then

∑
|ncnzn−1| also

converges for |z| < R. Similar as before, we choose ρ such that |z| < ρ < R, and we
assume z 6= 0. Then we have

|ncnzn| =
n

|z|

(
|z|
ρ

)n
|cn| ρn

Since |z|
ρ
< 1, the series

∑
n
(
|z|
ρ

)n
converges1. Thus there exists M such that n

(
|z|
ρ

)n
<

M for every n. Hence,

|ncnzn| ≤
M

|z|
|cn| ρn

cnρ
n converges as ρ < R, so

∑
|ncnzn−1| also converges for |z| < R.

Now, conversely assume that
∑
|ncnzn−1| converges for |z| < R. Then

|cnzn| ≤ |z|
∣∣ncnzn−1

∣∣
As |cnzn| is bounded by a convergent series, so it is also convergent.

Therefore,
∑
cnz

n and
∑
ncnz

n−1 have the same radius of convergence. �

Proposition 4.2.2

Suppose that the power series
∑∞

n=0 cnz
n has radius of convergence R > 0. Then

the function f(z) =
∑∞

n=0 cnz
n is differentiable on D(0, R), with the derivative

f ′(z) =
∞∑
n=1

ncnz
n−1 =

∞∑
n=0

(n+ 1)cn+1z
n

1In fact,
∑

nrn = r
(1−r)2 for −1 < r < 1
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Proof. For |z| < R, we define g(z) =
∑∞

n=1 ncnz
n−1. Take any w ∈ D(0, R). We claim

that f ′(w) exists and f ′(w) = g(w). We define sn(z) and Rn(z) as follows:

sn(z) =
n∑
k=0

ckz
k , Rn(z) =

∞∑
k=n+1

ckz
k =⇒ s′n(z) =

n∑
k=1

kckz
k−1 =⇒ lim

n→∞
s′n(z) = g(z)

Therefore, f(z) = sn(z) +Rn(z). Since |w| < R, we can choose r such that |w| < r < R.
Also, we can pick δ > 0 such that D̄(w, δ) ⊆ D(0, R). Let’s take z ∈ D(w, δ). Let ε > 0.

f(z)− f(w)

z − w
− g(w) =

sn(z) +Rn(z)− sn(w)−Rn(w)

z − w
− g(w)

=
sn(z)− sn(w)

z − w
− s′n(w) + s′n(w)− g(w) +

Rn(z)−Rn(w)

z − w∣∣∣∣f(z)− f(w)

z − w
− g(w)

∣∣∣∣ ≤ ∣∣∣∣sn(z)− sn(w)

z − w
− s′n(w)

∣∣∣∣+ |s′n(w)− g(w)|+
∣∣∣∣Rn(z)−Rn(w)

z − w

∣∣∣∣
Since limn→∞ s

′
n(z) = g(z), there existsN1 ∈ N such that for every n ≥ N1, |s′n(w)− g(w)| <

ε
3
. Since sn is differetiable, we can choose z such that

∣∣∣ sn(z)−sn(w)
z−w − s′n(w)

∣∣∣ < ε
3
. Now,

Rn(z)−Rn(w)

z − w
=

1

z − w

∞∑
k=n+1

ck
(
zk − wk

)
=

∞∑
k=n+1

ck
zk − wk

z − w

∴

∣∣∣∣Rn(z)−Rn(w)

z − w

∣∣∣∣ ≤ ∞∑
k=n+1

|ck|
∣∣∣∣zk − wkz − w

∣∣∣∣
=

∞∑
k=n+1

|ck|
∣∣zk−1 + zk−2w + · · ·+ wk−1

∣∣ ≤ ∞∑
k=n+1

|ck| krk−1

Since r < R, the series
∑
|ck| krk−1 converges. So we can find N2 ∈ N such that for every

n ≥ N2,
∑∞

k=n+1 |ck| krk−1 < ε
3
. Putting all these together, for n ≥ max(N1, N2),∣∣∣∣f(z)− f(w)

z − w
− g(w)

∣∣∣∣ < ε

3
+
ε

3
+
ε

3
= ε =⇒ lim

z→w

f(z)− f(w)

z − w
= g(w)

So we are done! �

By this proposition, a power series is infinitely differentiable. Also, one can easily verify
that

ck =
f (k)(0)

k!
are the coefficients of the power series.

Definition 4.2.1 (Analytic Function). Let V ⊆ C be open. A function f : V → C is
called analytic if for all z0 ∈ V there exists r > 0 such that there is a power series

∞∑
n=0

cn (z − z0)n

converges to f(z) on D(z, r).

Proposition 4.2.2 basically tells us that analytic functions are holomorphic. The converse
is also true, but that requires some more tools. We wish to prove it later.
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5 Integration

Let V ⊆ C be open and f : V → C be holomorphic. Suppose D̄(z0, r) ⊆ V for some
z0 ∈ V and r > 0. We will see that there exists a sequence (cn)n∈N such that

f(z) =
∞∑
n=0

cn (z − z0)n , ∀ z ∈ D(z, r)

How can we find these cn? If we know that such cn exists, then cn = f (n)(z0)
n!

for every n.
But what about their existence? We don’t yet know that whether they always exist or
not. In fact, they do exist, and they can be found using the formula

cn =
1

2iπ

∫
γ

f(w) dw

(w − z0)n+1
, where γ : [0, 2π]→ V is given by γ(t) = z0 + reit

But what do these even mean? We shall get back to these after we build up how
integrations work in C.

§5.1 Contour Integral

Definition 5.1.1 (Curve/Path). A curve or path is a continuous map γ from a closed
interval [a, b] to the complex plane C. In other words, γ : [a, b]→ C is continuous. If
γ(a) = γ(b), we shall call it a closed curve.

We shall always assume γ is piecewise C1 (continuous differentiable).

Definition 5.1.2 (Piecewise C1 Curve). A piecewise C1 curve in C is a curve γ :
[a, b]→ C, which is continuously differentiable except at finitely many exceptional
points.

Also, the range of γ is also called the trace of γ; it is often denoted by γ∗ = γ ([a, b]).

Abuse of Notation. People often write γ when they are actually refering to γ∗. For
example, one may say something like, “the curve γ ⊆ V ”. But actually they mean
γ∗ ⊆ V .

For a function f : [a, b]→ C, we can define its integral as the integral of its real and
imaginary parts. Let u(t) = Re f(t) and v(t) = Im f(t).∫ b

a

f(t) dt =

∫ b

a

u(t) dt+ i

∫ b

a

v(t) dt

Now we are ready to define contour integration.

Definition 5.1.3. Let γ : [a, b] → C be a piecewise C1 curve and f : γ∗ → C be a
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continuous function. The contour integral of f at γ is defined by∫
γ

f(z) dz :=

∫ b

a

f (γ(t)) γ′(t) dt

The integral on the RHS of the equation is our favorite Riemann integral. The map
t 7→ f (γ(t)) γ′(t) is a map from [a, b] to C. So its integral can be splitted into real and
imaginary parts.

Example 5.1.1

Let γ : [0, 2π]→ C is given by γ(t) = reit, for some fixed r > 0. Then∫
γ

zn dz =

{
2iπ if n = −1

0 otherwise

The proof is pretty straightforward. Here f(z) = zn. Let’s do the n = −1 case first.∫
γ

z−1 dz =

∫ 2π

0

(
reit
)−1

ireit dt =

∫ 2π

0

i dt = 2iπ

Now let’s do the n 6= −1 case.∫
γ

zn dz =

∫ 2π

0

(
reit
)n
ireit dt = irn+1

∫ 2π

0

ei(n+1)t dt

= irn+1

∫ 2π

0

(cos ((n+ 1)t) + i sin ((n+ 1)t)) dt = 0

The final integral is 0 because both cos ((n+ 1)t) and sin ((n+ 1)t) has 0 integral
on the interval [0, 2π] (left as an exercise for the reader).

Definition 5.1.4 (Primitive/Antiderivative). Let V ⊆ C be open, and f : V → C be
continuous. Then f is said to have antiderivative or primitive on V if there exists
a holomorphic function F : V → C and f = F ′ in V .

Proposition 5.1.1 (Fundamental Theorem of Calculus)

V ⊆ C is open f : V → C. Let γ : [a, b]→ V with γ(a) = z1 and γ(b) = z2. If f has
an antiderivative F on V , then∫

γ

f(z) dz = F (z2)− F (z1)

Proof. We shall use FTC for real variables and Chain Rule here.∫
γ

f(z) dz =

∫ b

a

f (γ(t)) γ′(t) dt =

∫ b

a

F ′ (γ(t)) γ′(t) dt =

∫ b

a

(F ◦ γ)′ (t) dt

Let F ◦ γ = g. So g is a function from [a, b] to C. Let g(t) = u(t) + iv(t), where u(t), v(t)
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are functions from [a, b] to R. Then we have, g′(t) = u′(t) + iv′(t). Therefore,∫ b

a

g′(t) dt =

∫ b

a

u′(t) dt+ i

∫ b

a

v′(t) dt

=⇒
∫ b

a

g′(t) dt = u(b)− u(a) + iv(b)− iv(a) = g(b)− g(a)

=⇒
∫ b

a

(F ◦ γ)′ (t) dt = F (γ(b))− F (γ(a)) = F (z2)− F (z1)

=⇒
∫
γ

f(z) dz = F (z2)− F (z1)

�

Corollary 5.1.2 (Cauchy’s Theorem for Derivatives)

V ⊆ C is open f : V → C. Let γ : [a, b] → V be a closed curve on V . If f has an
antiderivative F on V , then

∫
γ
f(z) dz = 0.

Proof. This is just FTC, but here we have z2 = z1 as γ is closed. �

Since F ′ = f on V , FTC can be rephrased as following:∫
γ

F ′(z) dz = F (z2)− F (z1)

Lemma 5.1.3

Let f : V → C where V is a connected open subset of C. If f ′ ≡ 0 on V , then f is
constant

Proof 1. The first proof follows directly from FTC. Let z1, z2 ∈ V and γ : [a, b]→ C be
a path connecting them. Then,

0 =

∫
γ

f ′(z) dz = f (z2)− f (z1) =⇒ f (z1) = f (z2)

Therefore, f is constant. �

Proof 2. This proof uses the fact that if X is connected and A ⊆ X is both open and
closed, then A = ∅ or A = X.
Let’s fix z0 ∈ V , and take w0 = f(z0). Consider the set A = {z ∈ V : f(z) = w0}. A is
obviously nonempty. We wish to prove that A is both open and closed, that would imply
A = V . We choose a sequence {zn}n∈N ⊆ A with z = lim zn. Since zn ∈ A, f(zn) = w0

for every n. As f is continuous,

w0 = lim
n→∞

w0 = lim
n→∞

f (zn) = f
(

lim
n→∞

zn

)
= f(z) =⇒ z ∈ A

So A is closed. Now we will show that A is open. We take z1 ∈ A. We choose ε > 0
such that B (z1, ε) ⊆ V . Such ε always exists because V is open. Take z ∈ B (z1, ε). We
define g : [0, 1]→ C as g(t) = f (tz + (1− t)z1). Then by Chain Rule,

g′(t) = f ′ (tz + (1− t)z1) (z − z1) = 0
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g can be splitted into real part and imaginary part. Both real part and imaginary part
has 0 derivative, and they are real valued functions. So g is constant. Therefore,

f(z) = g(1) = g(0) = f (z1) = w0 =⇒ z ∈ A =⇒ B (z1, ε) ⊆ A

So A is open and we are done. �

Lemma 5.1.4 (ML Inequality)

Suppose γ : [a, b]→ C is a smooth curve, and f is continuous on γ∗. If |f | ≤M on
γ∗ and L is the length of γ, then∣∣∣∣∫

γ

f (z) dz

∣∣∣∣ ≤ML

Proof. The length of γ is given by

L =

∫ b

a

|γ′ (t)| dt

Using the definition of integral,∣∣∣∣∫
γ

f (z) dz

∣∣∣∣ =

∣∣∣∣∫ b

a

f (γ (t)) γ′ (t) dt

∣∣∣∣
≤
∫ b

a

|f (γ (t)) γ′ (t) dt|

≤M

∫ b

a

|γ′ (t)| dt = ML

�

ML inequality is just a fancier name of triangle inequality. Because, if f : [a, b] → C,
then triangle inequality gives us∣∣∣∣∫ b

a

f (t) dt

∣∣∣∣ ≤ ∫ b

a

|f (t)| dt

But if we are integrating about some contour that is not a part of the real line, then
triangle inequality basically says∣∣∣∣∫

γ

f (z) dz

∣∣∣∣ ≤ ∫
γ

|f (z)| |dz|

This is essentially the same as ML Inequality.

§5.2 Goursat’s Theorem

Let T is be a (solid oriented) triangle with the vertices a, b, c (counterclockwise oriented),
we write T = [a, b, c]. Then the boundary ∂T of T is the line segments that enclose T .
In other words,

∂T = [a, b] + [b, c] + [c, a]

Here [a, b] means the directed line segment from a to b.
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a b

c

T

Theorem 5.2.1 (Goursat’s Theorem)

Let V ⊆ C be open, and f : V → C be a holomorphic function. If T is a (solid
oriented) triangle in V , ∫

∂T

f (z) dz = 0

Proof. We split T into four congruent triangles T 1, T 2, T 3, T 4.

a b

c

p

qr

T 1 T 2

T 3

T 4

T

∂T = ∂T 1 + ∂T 2 + ∂T 3 + ∂T 4

Then we choose k such that∣∣∣∣∫
∂Tk

f (z) dz

∣∣∣∣ = max
1≤j≤4

∣∣∣∣∫
∂T j

f (z) dz

∣∣∣∣
and we define T1 to be T k. Then we have∣∣∣∣∫

∂T

f (z) dz

∣∣∣∣ =

∣∣∣∣∣
4∑
j=1

∫
∂T j

f (z) dz

∣∣∣∣∣ ≤
4∑
j=1

∣∣∣∣∫
∂T j

f (z) dz

∣∣∣∣ ≤ 4

∣∣∣∣∫
∂T1

f (z) dz

∣∣∣∣
Now we repeat the same argument for T1 instead of T . Similar as before, we choose k
such that ∣∣∣∣∣

∫
∂Tk1

f (z) dz

∣∣∣∣∣ = max
1≤j≤4

∣∣∣∣∣
∫
∂T j1

f (z) dz

∣∣∣∣∣
and we define T2 to be T k1 . Then we have∣∣∣∣∫

∂T1

f (z) dz

∣∣∣∣ ≤ 4

∣∣∣∣∫
∂T2

f (z) dz

∣∣∣∣ =⇒
∣∣∣∣∫
∂T

f (z) dz

∣∣∣∣ ≤ 42

∣∣∣∣∫
∂T2

f (z) dz

∣∣∣∣
If we keep continuing this process, Tn+1 is the triangle among T 1

n , T
2
n , T

3
n , T

4
n that gives

the maximum integral along the boundary. Then, by induction, we have∣∣∣∣∫
∂T

f (z) dz

∣∣∣∣ ≤ 4n
∣∣∣∣∫
∂Tn

f (z) dz

∣∣∣∣
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If S ⊆ C, we define its diameter to be

diam (S) = sup
z1,z2∈S

|z1 − z2|

Then by the construction of T1, diam (T1) = 1
2

diam (T ). Inductively,

diam (Tn) = 2−n diam (T )

The triangles Tn are closed. Also, T ⊇ T1 ⊇ T2 ⊇ · · ·, so the triangles are nested. Since
diam (Tn)→ 0, by the Nested Interval Theorem, there exists a unique point z0 ∈ C such
that

{z0} =
∞⋂
n=1

Tn

f is holomorphic on V , so f is differentiable at z0. Let α = f (z0) and β = f ′ (z0). Then

f (z) = α + β (z − z0) + E (z) ,

where the error term E (z) is a continuous function on V satisfying

lim
z→z0

E (z)

|z − z0|
= 0.

Now, α + β (z − z0) is a polynomial, and thus it has an antiderivative α (z − z0) +
β (z − z0)2. By Cauchy’s Theorem for Derivatives,

∫
∂Tn

α+ β (z − z0) dz = 0. Therefore,
for each n, ∣∣∣∣∫

∂T

f (z) dz

∣∣∣∣ ≤ 4n
∣∣∣∣∫
∂Tn

f (z) dz

∣∣∣∣ ≤ 4n
∣∣∣∣∫
∂Tn

E (z) dz

∣∣∣∣
For each n, let Mn be the supremum of |E (z)| on ∂Tn. If l is the length of ∂T , then the
length of ∂Tn is 2−nl. By ML Inequality, we have∣∣∣∣∫

∂Tn

E (z) dz

∣∣∣∣ ≤ 2−nlMn =⇒
∣∣∣∣∫
∂T

f (z) dz

∣∣∣∣ ≤ 2nMnl

Now we want to show that 2nMn → 0.
Since ∂Tn is compact and E (z) is continuous, there exists zn ∈ Tn such that |E (zn)| =

Mn. Then
|zn − z0| ≤ diam (Tn) = 2−n diam (T )→ 0

So zn → z0. Then

lim
z→z0

E (z)

|z − z0|
= 0 =⇒ lim

z→z0

∣∣∣∣ E (z)

z − z0

∣∣∣∣ = 0 =⇒ lim
n→∞

∣∣∣∣ E (zn)

zn − z0

∣∣∣∣ = 0

|2nMn| = |2nE (zn)| = 2n
∣∣∣∣ E (zn)

zn − z0

∣∣∣∣ |zn − z0| ≤ 2n
∣∣∣∣ E (zn)

zn − z0

∣∣∣∣ 2−n diam (T )

∴ lim
n→∞

|2nMn| ≤ diam (T ) lim
n→∞

∣∣∣∣ E (zn)

zn − z0

∣∣∣∣ = 0

So 2nmn → 0. Since l is a constant,∣∣∣∣∫
∂T

f (z) dz

∣∣∣∣ ≤ 2nMnl→ 0 =⇒
∫
∂T

f (z) dz = 0

Hence, we are done! �
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Using Goursat’s Theorem, one can conclude that if f : V → C is holomorphic, then for
any (solid oriented) polygon P in V ,∫

∂P

f (z) dz = 0

Because ∂P is the finite sum of some ∂Ti’s where Ti’s are triangles.

Proposition 5.2.2

Suppose V is a convex open subset of C. Let f : V → C be continuous and∫
∂T

f (z) dz = 0 , for any triangle T ⊆ V.

Then f has an antiderivative on V .

Proof. Since V is convex, for every a, b ∈ V , [a, b] ⊆ V . We fix a z0 ∈ V and define F by

F (z) =

∫
[z0,z]

f(w) dw

We claim that F is the desired primitive of f . We choose z ∈ V . Since V is open, we can
find r > 0 such that D(z, r) ⊆ V . So we take h 6= 0 with 0 < |h| < r, then z + h ∈ V .
Consider the triangle T = [z0, z, z + h]. Then ∂T = [z0, z] + [z, z + h] + [z + h, z0].

0 =

∫
∂T

f(w) dw =

∫
[z0,z]

f(w) dw +

∫
[z,z+h]

f(w) dw +

∫
[z+h,z0]

f(w) dw

∴
∫

[z,z+h]

f(w) dw =

∫
[z0,z+h]

f(w) dw −
∫

[z0,z]

f(w) dw = F (z + h)− F (z)

Claim —
∫

[z,z+h]
dw = h; also length of [z, z + h] is |h|.

Proof. Here we are integrating f1(w) = 1 over that path [z, z + h]. The path is
γ : [0, 1]→ V , with γ(t) = (1− t)z + t(z + h); so γ′(t) = −z + z + h = h.∫

[z,z+h]

dw =

∫ 1

0

1 ·γ′(t) dt =

∫ 1

0

h dt = h , and L =

∫ 1

0

|γ′(t)| dt =

∫ 1

0

|h| dt = |h|

�

Claim — lim
h→0

1
h

∫
[z,z+h]

(f(w)− f(z)) dw = 0

Proof. Let ε > 0. Since f is continuous, there exists δ > 0 such that whenever
|w − z| < δ, |f(w)− f(z)| < ε. We choose h with |h| < δ. So if w ∈ [z, z + h], we
have |z − w| ≤ |h| < δ. As a result |f(w)− f(z)| < ε. By ML Inequality,∣∣∣∣1h

∫
[z,z+h]

(f(w)− f(z)) dw

∣∣∣∣ =

∣∣∣∣1h
∣∣∣∣ ∣∣∣∣∫

[z,z+h]

(f(w)− f(z)) dw

∣∣∣∣ ≤ ∣∣∣∣1h
∣∣∣∣ ε |h| = ε

Taking ε→ 0, we are done. �
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lim
h→0

1

h

∫
[z,z+h]

(f(w)− f(z)) dw = 0

=⇒ lim
h→0

1

h

∫
[z,z+h]

f(w) dw = lim
h→0

1

h

∫
[z,z+h]

f(z) dw

=⇒ lim
h→0

1

h

∫
[z,z+h]

f(w) dw = lim
h→0

f(z)

h

∫
[z,z+h]

dw

=⇒ lim
h→0

F (z + h)− F (z)

h
= lim

h→0

f(z)

h
h = f(z)

=⇒ F ′(z) = f(z)

Therefore F ′ = f on V . So F is the desired antiderivative of f . �

Corollary 5.2.3

Let V be an open subset of C and f : V → C be holomorphic. Then f has an
antiderivative on every open convex subset of V .

Corollary 5.2.4 (Cauchy’s Theorem in a Convex Set)

Let V be an open convex subset of C and f : V → C be holomorphic. Then for any
closed curve γ in V , ∫

γ

f (z) dz = 0

Proof. By Goursat’s Theorem, for any triangle T in V ,∫
∂T

f (z) dz = 0

V is convex, so by Proposition 5.2.2, f has an antiderivative on V . Then by Cauchy’s
Theorem for Derivatives,

∫
γ
f (z) dz = 0. �

Definition 5.2.1 (Star Convex). A subset A of Rn is said to be star convex if for
some point a0 of A, all the line segments joining a0 to other points of A lie in A.

Whenever we say “V is a domain”, we actually mean that V is an open connected
subset of C.

Proposition 5.2.5 (Cauchy’s Theorem in a Star-Convex Set)

Let V be a star-convex domain, and f : V → C be a holomorphic function. Then∫
γ

f(z) dz = 0

for any closed contour γ in V .

Proof. By Goursat’s Theorem, for any triangle T in V ,∫
∂T

f (z) dz = 0
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Now, let z0 be the point that is connected to every other point of V by a line segment.
Then we define a new function F by

F (z) =

∫
[z0,z]

f (w) dw

Mimicing the proof of Proposition 5.2.2, we get that F is a primitive of f . Then by
Cauchy’s Theorem for Derivatives,

∫
γ
f (z) dz = 0. �

Proposition 5.2.6

Let V ⊆ C be a domain, and f : V → C be a continuous function with the property∫
γ

f(z) dz = 0

for any closed contour γ in V . Then f has an antiderivative on V .

Proof. Firstly, note that the integral does not depend on the choice of path. This means,
if z1, z2 ∈ V and γ1, γ2 are two paths from z1 to z2, then∫

γ1

f(z) dz =

∫
γ2

f(z) dz

To prove this, notice that γ1 − γ2 is a closed loop based at z1. Given that, the integral
over any closed loop is 0. Hence,∫

γ1−γ2
f(z) dz = 0 =⇒

∫
γ1

f(z) dz −
∫
γ2

f(z) dz = 0 =⇒
∫
γ1

f(z) dz =

∫
γ2

f(z) dz

In other words, the integral does not depend on the choice of path. It only depends on
the endpoints.

Now we shall just mimic the proof of Proposition 5.2.2. Fix z0 ∈ V . For z ∈ V , take
any path γz from z0 to z, and define

F (z) =

∫
γz

f (w) dw

Then F is the antiderivative of f . The details are left for the reader to fill in. �
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D (z0, r) means the open ball centered at z0 with radius r. ∂D (z0, r) means the circle
centered at z0 with radius r. We give this circle counterclockwise orientation. So it can
be expressed as the path γ : [0, 2π]→ C given by γ (t) = z0 + reit. Also, we would use
the shorthand symbol D for the unit open ball D (0, 1).

§6.1 Cauchy Integral Formula

Lemma 6.1.1

Given a, b ∈ C and z ∈ C, one can construct a continuous function f : C→ C such
that f (z) = b and

1

2πi

∫
∂D

f (w)

w − z
dw = a

Proof. We define f as follows:

f (w) = (a− b) (w − z) |w|+ b

Then obviously f is continuous and f (z) = b. Also, if w ∈ ∂D, |w| = 1.

1

2πi

∫
∂D

f (w)

w − z
dw =

1

2πi

∫
∂D

(a− b) (w − z) |w|+ b

w − z
dw

=
1

2πi

∫
∂D

(a− b) |w| dw +
1

2πi

∫
∂D

b

w − z
dw

=
a− b
2πi

∫
∂D

dw +
b

2πi

∫
∂D

dw

w − z
= a− b+ b = a

So this f is our desired continuous function. �

Theorem 6.1.2 (Cauchy Integral Formula for Disks)

Let V ⊆ C be a domain and f : V → C be holomorphic. Suppose D (z0, r) ⊆ V for
some z0 ∈ V and r > 0. Then for every z ∈ D (z0, r),

f (z) =
1

2πi

∫
∂D(z0,r)

f (w)

w − z
dw.

Proof. Let γ be the circular path ∂D (z0, r) oriented counterclockwise. Take any point
z ∈ D (z0, r). Then there exists s > 0 such that D (z, s) ⊆ D (z0, r). Let α be the circular
path ∂D (z, s) oriented counterclockwise. In other words,

γ (t) = z0 + reit and α (t) = z + seit , for t ∈ [0, 2π]

Then we draw a diagonal line through the two centers, and it gives us two curves C1 and
C2:
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γ
z

C1

C2

These curves have the property that

C1 + C2 = γ − α =⇒ γ = C1 + C2 + α

And f(w)
w−z is holomorphic on the images of C1, C2, α, γ. Therefore,∫

γ

f (w) dw

w − z
=

∫
C1

f (w) dw

w − z
+

∫
C2

f (w) dw

w − z
+

∫
α

f (w) dw

w − z

Now, we can find a star convex, open set that contains C1 and the space enclosed by C1,
and that star convex set does not contain z. Similarly, we can find one for C2 also. An
example for C2 is given below:

γ

C2 U

Here f(w)
w−z is holomorphic on U (because U does not contain z). U is star convex. So

by Cauchy’s Theorem in a Star-Convex Set,∫
C2

f (w) dw

w − z = 0

Similarly,
∫
C1

f(w) dw
w−z = 0. Therefore,∫

γ

f (w) dw

w − z
=

∫
α

f (w) dw

w − z
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Therefore,

1

2πi

∫
γ

f (w)

w − z
dw =

1

2πi

∫
γ

f (w)

w − z
dw =

1

2πi

∫ 2π

0

f (z + seit)

z + seit − z
iseit dt

=
1

2π

∫ 2π

0

f
(
z + seit

)
dt

If we choose a even smaller positive value for s, it would stil be true.

1

2πi

∫
γ

f (w)

w − z
dw = lim

s→0+

1

2π

∫ 2π

0

f
(
z + seit

)
dt

As s→ 0+, f (z + seit) converges uniformly to f (z). Therefore,

1

2πi

∫
γ

f (w)

w − z
dw =

1

2π

∫ 2π

0

f (z) dt = f (z)

�

Example 6.1.1

Let’s say we want to calculate the following integral:∫
∂D

cos z2 + z

z (z −
√
π)

dz

We denote this by I.

I

2πi
=

1

2πi

∫
∂D

cos z2 + z

z (z −
√
π)

dz =
1

2πi

∫
∂D

cos z2+z
z−
√
π

z − 0
dz

f (z) = cos z2+z
z−
√
π

is holomorphic on D. So we can apply the Cauchy Integral Formula.
Therefore,

I

2πi
= f (0) = − 1√

π
=⇒ I =

2πi√
π

Lemma 6.1.3 (Mean Value Property)

Let V be a domain and f : V → C be holomorphic. Suppose z0 ∈ V with
D (z0, r) ⊆ V . Then

f (z0) =
1

2π

∫ 2π

0

f
(
z0 + reit

)
dt

Proof. Let γ be the circular path ∂D (z0, r) oriented counterclockwise. In other words,
γ (t) = z0 + reit for t ∈ [0, 2π]. Then by Cauchy Integral Formula for Disks,

f (z0) =
1

2πi

∫
γ

f (z)

z − z0

dz

=
1

2πi

∫ 2π

0

f (z0 + reit)

z0 + reit − z0

ireit dt

=
1

2π

∫ 2π

0

f
(
z0 + reit

)
dt

�
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Mean Value Property basically says that the value at the center of a circle is the average
of the values at the boundary. There is a generalization of Mean Value Property, which
says that the value at the center of a disk is the average of the values at the interior of
the disk. See Problem 6 of Midterm 1.

Theorem 6.1.4 (Cauchy Integral Formula for Derivatives)

Let V ⊆ C be a domain and f : V → C be holomorphic. Suppose D (z0, r) ⊆ V for
some z0 ∈ V and r > 0. Then for every z ∈ D (z0, r),

f (n) (z) =
n!

2πi

∫
∂D(z0,r)

f (w)

(w − z)n+1 dw.

Proof. We shall approach by induction on n. The base case n = 0 is just Cauchy Integral
Formula for Disks. Suppose inductively that f is n− 1 times differentiable at z, and

f (n−1) (z) =
(n− 1)!

2πi

∫
∂D(z0,r)

f (w)

(w − z)n
dw

If ∂
∂z
f (n−1) (z) is a defined expression, it’s equal to f (n) (z).

f (n) (z) =
∂

∂z
f (n−1) (z) =

∂

∂z

(
(n− 1)!

2πi

∫
∂D(z0,r)

f (w)

(w − z)n
dw

)
=

(n− 1)!

2πi

∫
∂D(z0,r)

f (w)

(
∂

∂z

1

(w − z)n

)
dw

=
n!

2πi

∫
∂D(z0,r)

f (w)
1

(w − z)n+1 dw

Here the integrand does not depend on z. That’s why we could switch integral and
∂
∂z

. �

One can conclude from this theorem that if f is once differentiable in V , then f is
infinitely differentiable in V .

§6.2 Some Consequences

Theorem 6.2.1 (Morera’s theorem)

Let V ⊆ C be a domain and suppose that f : V → C is a continuous function. If for
any closed curve γ in V ∫

γ

f(z) dz = 0

then f is holomorphic.

Proof. For any closed curve γ the integral over γ is 0. So by Proposition 5.2.6, f has
an antiderivative F in V . Since F is holomorphic, it is infinitely differentiable in V . So
F ′ = f is differentiable in V . So f is holomorphic. �
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Proposition 6.2.2

Holomorphic functions are analytic.

Proof. Let V be a domain and f : V → C be holomorphic. Choose some z0 ∈ V and
r > 0 such that D (z0, r) ⊆ V . Suppose γ = ∂D (z0, r) oriented counterclockwise. Then
for z ∈ D (z0, r), Cauchy Integral Formula for Disks gives us

f (z) =
1

2πi

∫
γ

f (w) dw

w − z
=

1

2πi

∫
γ

f (w) dw

(w − z0)− (z − z0)

=
1

2πi

∫
γ

1

w − z0

1

1− z−z0
w−z0

f (w) dw

=
1

2πi

∫
γ

f (w)

w − z0

∞∑
n=0

(
z − z0

w − z0

)n
dw

=
∞∑
n=0

(z − z0)n
1

2πi

∫
γ

f (w) dw

(w − z0)n+1

=
∞∑
n=0

cn (z − z0)n , where cn =
1

2πi

∫
γ

f (w) dw

(w − z0)n+1 =
f (n) (z0)

n!

So f can be expressed as power series, hence it’s analytic. �

But there are a couple of issues with this proof. First of all, we need to make sure that∑∞
n=0 cn (z − z0)n is a valid power series. In other words, it converges on D (z0, r). To

make sure of that, we need the following cool result:

Lemma 6.2.3 (Cauchy Estimates)

Let V be a domain and f : V → C is holomorphic. Let γ be the circle |z − z0| = r
in V . Suppose |f | ≤M on γ∗. Then∣∣f (n) (z0)

∣∣ ≤ Mn!

rn

Proof. This follow immediately from Cauchy Integral Formula for Derivatives and ML
Inequality. The length of γ is 2πr.

∣∣f (n) (z0)
∣∣ =

∣∣∣∣ n!

2πi

∫
γ

f (z)

(z − z0)n+1 dz

∣∣∣∣ =
n!

2π

∣∣∣∣∫
γ

f (z)

(z − z0)n+1 dz

∣∣∣∣
≤ n!

2π

M

rn+1
2πr =

Mn!

rn

�

Now, back to the proof of Proposition 6.2.2. Observe that,

|cn (z − z0)n| =
∣∣∣∣f (n) (z0)

n!
(z − z0)n

∣∣∣∣ ≤M

(
|z − z0|

r

)n
Clearly,

∑∞
n=0

(
|z−z0|
r

)n
converges uniformly on D (z0, r). So

∑∞
n=0 cn (z − z0)n converges

on D (z0, r).
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Now, there is another issue with the proof of Proposition 6.2.2. We swapped summation
and integral without any justification. There are a couple of ways to justify this. One
can use either DCT or UCT. However, using DCT requires some amount of work.

One can apply Weiestrass M-test to show that the sum

k∑
n=0

(z − z0)n

(w − z0)n+1f (w)

converges uniformly on γ∗. The argument is similar to the proof of Cauchy Estimates.
Then UCT justifies swapping summation and integral.

Now our proof of Proposition 6.2.2 is complete. We previously showed that ana-
lytic functions are holomorphic. So, we have finally established the equivalence of
holomorphicity and analyticity.

Theorem 6.2.4 (Liouville’s Theorem)

If f is entire and bounded, then f is constant.

Proof. It’s enough to show that f ′ ≡ 0. Let z ∈ C. Choose any r > 0 and consider γ to
be the circle centered at z with radius r. Then γ is contained in D(z, r). As a result,
the length of γ is 2πr. Since f is bounded, |f(w)| ≤M for every w. By Cauchy integral
formula for derivatives,

|f ′(z)| =
∣∣∣∣ 1!

2πi

∫
γ

f(w) dw

(w − z)1+1

∣∣∣∣ ≤ 1

2π

M

r2
2πr =

M

r

Since f is entire, this is true for every r > 0. So we can take r →∞ and we get f ′(z) = 0.
Therefore, f ′ ≡ 0 and f is constant. �

Note that, Liouville’s Theorem is a consequence of Cauchy Estimates. Now we will see a
consequences of Liouville’s theorem.

Theorem 6.2.5 (Fundamental Theorem of Algebra)

If P ∈ C [z] (P is a polynomial with complex coefficients), then P has a complex
root.

Proof. Assume the contrary. Then P (z) 6= 0 for every z ∈ C. So f (z) = 1
P (z)

is entire.

Note that, as |z| → ∞, |P (z)| → ∞. So

lim
z→∞

f (z) = 0

Therefore, for M > 0 we can find R > 0 such that |f (z)| < M when |z| > R. f is
continuous on the compact set D (0, R). So it is bounded by some N > 0 in D (0, R).
Therefore, f is bounded by max (M,N).
f is entire and bounded. So by Liouville’s Theorem, f is constant. Therefore, f (z) = 0

for every z. But that’s not possible since f (z) = 1
P (z)

. �

Corollary 6.2.6

If P ∈ C [z], and the degree of P is n, then P has exactly n roots.
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Proof. We shall proceed by induction. The 1-degree polynomials have exactly 1 root is
trivial. Suppose P is a n-degree polynomial,

P (z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0

By FTA, P has at least one root w1. Then writing z = (z − w1) + w1, plugging this into
the expression of P , and using the binomial formula we get

P (z) = bn (z − w1)n + bn−1 (z − w1)n−1 + · · ·+ b1 (z − w1) + b0

where b0, b1, . . . , bn−1, bn are the new coefficients, with bn = an. Since P (w1) = 0, b0 = 0.
Therefore,

P (z) = (z − w1)
(
bn (z − w1)n−1 + bn−2 (z − w1)n−1 + · · ·+ b2 (z − w1) + b1

)
= (z − w1)Q (z)

Q is a n− 1 degree polynomial. Therefore, by inductive hypothesis, it has exactly n− 1
roots. Therefore, P has exactly n roots. So, by induction, we are done. �

Lemma 6.2.7

Let V ⊆ C be a domain and D ⊆ V . Let f : V → C be holomorphic, and∫
∂D
f (z) zn dz = 0

for every n ≥ 1. Then f ≡ 0.

Proof. When z ∈ ∂D,

1 = |z|2 = zz =⇒ zn =
1

zn

So, the integral condition becomes∫
∂D

f (z)

zn
dz = 0 =⇒ 2πi

(n− 1)!
f (n−1) (0)

If we consider power series around 0, we get that all the coefficients of the power series
are 0. Hence, f ≡ 0. �

§6.3 Some More Consequences

To avoid writing “f : V → C is holomorphic” again and again, we shall write f ∈ H (V )
instead.

Proposition 6.3.1

Let V ⊆ C be a domain, and f ∈ H (V ). Suppose f (n) (z) = 0 for every n ∈ N for
some 0. Then f is a constant.

Proof. Our strategy is to show that f ′ (z) = 0 for every z ∈ V . Then by Lemma 5.1.3,
we can conclude that f is a constant.

We take the following subset of V :

A =
{
z ∈ V : f (n) (z) = 0 ∀n ∈ N

}
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A is clearly non-empty. To show that A is closed, suppose (zm)m∈N is a sequence in A
that converges to z0. Then by the continuity of f (n),

0 = lim
m→∞

f (n) (zm) = f (n)
(

lim
m→∞

zm

)
= f (n) (z0) =⇒ f (n) (z0) = 0 =⇒ z0 ∈ A

Therefore, A is closed. Now we shall show that A is open.
Choose some z0 ∈ A. Since V is open, there exists r > 0 such that D (z0, r) ⊆ V .

Then we take the power series around z0. This gives us for w ∈ D (z0, r),

f (w) =
∞∑
n=0

(w − z0)n
f (n) (z0)

n!
= f (z0) +

∞∑
n=1

(w − z0)n
f (n) (z0)

n!
= f (z0)

So f (w) = f (z0) for every w ∈ D (z0, r). Therefore, f (n) (w) = 0 for n ∈ N. Hence
D (z0, r) ⊆ A, and thus A is open.
A is a nonempty clopen subset of the connected set V . Therefore, A = V . Therefore,

f ′ (z) = 0 for all z ∈ V . So f is constant. �

However, Prposition 6.3.1 is not true in real analysis. For example, if we take the function
f : R→ R defined by

f (x) =

{
e−

1
x2 if x 6= 0

0 if x = 0
,

f has all derivatives 0 at x = 0. But f is non-constant.

Definition 6.3.1 (Order of Zero). Suppose f is holomorphic at 0 and f (z) = 0. If
there exists a positive integer N with the property that

f (n) (z) = 0 ∀ 0 ≤ n < N and f (N) (z) 6= 0

Then we say that N is the order of zero at z. If there does not exists such positive
integer N , we say that the order of zero at z is infinity. Otherwise, when f (z) 6= 0,
we say that the order of zero at z is 0.

Corollary 6.3.2

Any zero of a nonconstant holomorphic function on a domain must be of finite order.

Proposition 6.3.3 (Factorization of Holomorphic Functions)

Let f ∈ H (V ) and z0 ∈ V be a zero of f with order n0. Then there exists g ∈ H (V )
such that g (z0) 6= 0 and

f (z) = (z − z0)n0 g (z) , ∀ z ∈ V

Proof. We choose r > 0 such that D (z0, r) ⊆ V . We take the power series around z0.

f (z) =
∞∑
n=0

cn (z − z0)n
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Since the zero at z0 has order n0, cn = 0 for 0 ≤ n < n0 and cn0 6= 0. Therefore,

f (z) =
∞∑

n=n0

cn (z − z0)n = (z − z0)n0

∞∑
n=0

cn0+n (z − z0)n

This gives us that
f (z)

(z − z0)n0
=
∞∑
n=0

cn0+n (z − z0)n

on D (z0, r) ∩ (V \ {z0}). Now we define a function g that is f(z)
(z−z0)n0

on V \ {z0}, and∑∞
n=0 cn0+n (z − z0)n on D (z0, r).
By pasting lemma, g is continuous. Also g is analytic on D (z0, r), so it is holomorphic

on D (z0, r). Also, g is holomorphic on V \ {z0}. So g is holomorphic. Furthermore,

g (z0) = cn0 6= 0

So we are done! �

Suppose f ∈ H (V ). Then the zero set of f , denoted by Z (f), is defined by

Z (f) = {z ∈ V : f (z) = 0}

Theorem 6.3.4

If V ⊆ C is a domain and f ∈ H (V ) and f is non-constant, then Z (f) does not
contain any limit point.

Proof. Let w ∈ V be a limit point of X, therefore it is the limit of some non-constant
sequence in X. Let the sequence be {zn}∞n=1 ⊆ X. Since f is continuous,

f (w) = f
(

lim
n→∞

zn

)
= lim

n→∞
f (zn) = 0 =⇒ w ∈ X

Since V is open, there exists r > 0 such that D (w, r) ⊆ V . We claim that f ≡ 0 on
D (w, r). Consider the power series of f around w.

f(z) =
∞∑
n=0

cn (z − w)n

Assume for the sake of contradiction that f is not identically 0 on D (w, r). So not all
cn’s are 0. Let cm be the first nonzero coefficient.

f(z) =
∞∑
n=m

cn (z − w)n = cm (z − w)m
(

1 +
∞∑

n=m+1

cn
cm

(z − w)n−m
)

= cm (z − w)m (1 + g (z − w))

Notice that, if z → w, then g (z − w)→ 0. Now take z = zn 6= w.

f (zn) = cm (zn − w)m (1 + g (zn − w))

cm (zn − w)m 6= 0 as zn 6= w. Also zn → w gives us 1 + g (zn − w)→ 1. This means, for
a suitable n, this quantity is arbitrarily close to 1. As a result, 1 + g (zn − w) 6= 0. So
this gives us f (zn) 6= 0, contradiction! Therfore, D (w, r) ⊆ X.
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Let U be the interior of X. U contains D (w, r), so it’s nonempty. U is open because
it’s interior. Now we will show that U is also closed.

Let an ∈ U with an → a. By continuity, f(a) = 0. Then by the argument above, f is
0 in a neighborhood of a. Thus, a ∈ U , so U is closed. As U is both open and closed,
and U is nonempty, so U = V . Therefore, f(z) = 0 for every z ∈ V . �

Corollary 6.3.5

Let V ⊆ C be a domain and f, g ∈ H (V ). If X = {z ∈ V : f(z) = g(z)} has a limit
point in V , then f ≡ g on V .

Proof. X is Z (f − g). Z (f − g) contains a limit point, so f − g ≡ 0. �

Proposition 6.3.6 (Maximum Modulus Principle)

Let V ⊆ C be a domain, and f ∈ H (V ). If there exists z0 ∈ V such that
|f (z0)| ≥ |f (z)| for every z ∈ V , then f is constant.

Proof. We shall use Mean Value Property here. Choose r > 0 such that D (z0, r) ⊆ V .
Then let γ be the path ∂D (z0, r) oriented counterclockwise. Then by Mean Value
Property,

f (z0) =
1

2π

∫ 2π

0

f
(
z0 + reit

)
dt

∴ |f (z0)| = 1

2π

∣∣∣∣∫ 2π

0

f
(
z0 + reit

)
dt

∣∣∣∣
≤ 1

2π

∫ 2π

0

∣∣f (z0 + reit
)∣∣ dt

≤ 1

2π

∫ 2π

0

|f (z0)| dt = |f (z0)|

So all the inequality signs must be equality. Therefore,∣∣∣∣∫ 2π

0

f
(
z0 + reit

)
dt

∣∣∣∣ =

∫ 2π

0

∣∣f (z0 + reit
)∣∣ dt =

∫ 2π

0

|f (z0)| dt

Now, when does the first equality hold? It holds when f (z0 + reit) lies on the same ray
from origin. In other words, when f (z0 + reit) has the same argument for all t ∈ [0, 2π].

Also, when does the second equality hold? It holds when |f (z0 + reit)| = |f (z0)|. In
other words, when f (z0 + reit) has the same modulus for all t ∈ [0, 2π]. Therefore, in
order to satisfy the equalities, we must have f (z0 + reit) constant for t ∈ [0, 2π]. In other
words, f is constant on γ∗.
f (z0) is the average of values at γ∗. Since f is constant on γ∗, f (z) = f (z0) for z ∈ γ∗.

Now, consider g (z) = f (z)− f (z0). g ∈ H (V ) and Z (g) contains the circle ∂D (z0, r).
∂D (z0, r) is closed, so it must have some limit points. Therefore, by Theorem 6.3.4,
g ≡ 0. In other words, f (z) = f (z0) for every z ∈ V . �

However, Maximum Modulus Principle is not true in real analysis. One simple coun-
terexample is f : R → R given by f (x) = cosx. Then |f (x)| has maximum at x = 0,
but f is definitely non-constant.
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Corollary 6.3.7 (Minimum Modulus Principle)

If f is a non-constant holomorphic function on a domain V , then there does not
exist any z0 ∈ V such that f (z0) 6= 0 and |f (z0)| ≤ |f (z)| for every z ∈ V .

Proof. Assume the contrary. f (z0) 6= 0 gives us f (z) 6= 0 for any z ∈ V . So g (z) = 1
f(z)

is well-defined, and holomorphic on V . Then we have

|f (z0)| ≤ |f (z)| =⇒
∣∣∣∣ 1

f (z0)

∣∣∣∣ ≥ ∣∣∣∣ 1

f (z)

∣∣∣∣ =⇒ |g (z0)| ≥ |g (z)|

Then by Maximum Modulus Principle, g is constant, which gives us that f is constant.
Contradiction! �

Proposition 6.3.8

Let V ⊆ C be open, and φ : V × [0, 1] be continuous such that for each fixed t ∈ [0, 1],
z 7→ φ (z, t) is holomorphic. Then

g (z) =

∫ 1

0

φ (z, t) dt

is a holomorphic function on V .

Proof. Let T ⊆ V be a triangle in V . We claim that
∫
∂T
g = 0.∫

∂T

g (z) dz =

∫
∂T

∫ 1

0

φ (z, t) dt dz =

∫ 1

0

dt

∫
∂T

φ (z, t) dz

Here we used Fubini’s theorem to swap integrals. The integral over ∂T can be translated
into an integral over a closed interval and the integrand is continuous. So we can apply
Fubini’s theorem. Since φ (z, t) is holomorphic for all t, by Goursat’s Theorem,∫

∂T

φ (z, t) dz = 0

As a result, ∫
∂T

g (z) dz =

∫ 1

0

0 dt = 0

So by Morera’s theorem, g is holomorphic. �

Corollary 6.3.9

Suppose V ⊆ C is open, Γ is a chain, and φ : V × Γ∗ is a continuous function such
that for each fixed w ∈ Γ∗, the function z 7→ φ (z, w) is holomorphic. Then

g (z) =

∫
Γ

φ (z, w) dw

is a holomorphic function on V .

The proof is exactly similar to that of Proposition 6.3.8.
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§6.4 Homotopies and Simply Connected Domain

Definition 6.4.1 (Homotopy). If f and f ′ are continuous maps of the space X
into the space Y , we say that f is homotopic to f ′ if there is a continuous map
F : X × I → Y such that

F (x, 0) = f(x) and F (x, 1) = f ′(x)

for each x ∈ X. (Here I = [0, 1]) The map F is called a homotopy between f and
f ′. If f is homotopic to f ′, we write f ' f ′.

We considered a continuous function f : X → Y . Now we consider a special case where
f : [0, 1]→ X is a continuous map such that f(0) = x0 ∈ X and f(1) = x1 ∈ X. We say
that f is a path from x0 (the initial point) to x1 (the final point) in X.
If f and f ′ are 2 paths in X, there is a stronger relation between them than hometopy It
is defined as follows:

Definition 6.4.2 (Path Homotopy). Two paths f, f ′ : I → X, are said to be path
homotopic if they have the same initial and final points, dented by x0 and x1

respectively, and if there is a continuous map F : I × I → X such that

F (s, 0) = f(s) and F (s, 1) = f ′(s),
F (0, t) = x0 and F (1, t) = x1,

for each s ∈ I and each t ∈ I. We call F a path homotopy between f and f ′. If f
is path homotopic to f ′, we write f 'p f ′.

Lemma 6.4.1

Let (X, d) be a metric space, and K ⊆ U ⊆ X where K is compact and U is open.
Then there exists ε > 0 such that for every k ∈ K, B (k, ε) ⊆ U .

Proof. For every x ∈ K, since K is a subset of an open set U , there exists rx > 0 such
that B (x, rx) ⊆ U . This gives us an open cover for K.

K ⊆
⋃
x∈K

B
(
x,
rx
2

)
Since K is compact, there is a finite subcover.

K ⊆
n⋃
i=1

B
(
xi,

rxi
2

)
We take ε to be the smallest of these

rxi
2

.

ε = min
{rxi

2
: i = 1, 2, . . . , n

}
We claim that this ε is our desired ε. Let k ∈ K. Take any y ∈ B (k, ε). We need to
show that y ∈ U .

y ∈ B (k, ε) =⇒ d (k, y) < ε ≤ rxi
2
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Suppose k is in B
(
xi,

rxi
2

)
.

k ∈ B
(
xi,

rxi
2

)
=⇒ d (xi, k) <

rxi
2

Using triangle inequality, we get

d (xi, y) ≤ d (xi, k) + d (k, y) < rxi =⇒ y ∈ B (xi, rxi) ⊆ U

Hence, B (k, ε) ⊆ U . �

Proposition 6.4.2

Let V ⊆ C be open in C, and γ1, γ2 be two contours in V with γ1 'p γ2. Then∫
γ1

f(z) dz =

∫
γ2

f(z) dz

for any holomorphic function f : V → C.

Proof. γ1, γ2 : I → V are homotopic paths, with fixed endpoints; let γ1 (0) = γ2 (0) = a
and γ1 (1) = γ2 (1) = b. Let F : I × I → V be a path homotopy between γ1 and γ2.

F (s, 0) = γ1(s) , F (s, 1) = γ2(s) and F (0, t) = a , F (1, t) = b

for every s, t ∈ I. Now, I × I is a closed bounded subset of R2, so it’s compact. Image of
compact set under continuous map is compact, so K = F (I × I) is a compact subset of
V . By Lemma 6.4.1, there exists ε > 0 such that for every z ∈ K, D (z, ε) ⊆ V .

Continuous function on a compact set is uniformly continuous (Heine-Cantor theorem).
So F is uniformly continuous. Therefore, there exists δ > 0 such that for x, y ∈ I2

whenever ‖x− y‖ < δ , we must have |F (x)− F (y)| < ε

By the Archimedian property, there exists N ∈ N such that Nδ > 1. This can be
rewritten as 1

N
< δ. We divide I into N equal pieces, so we get

0 = t0 < t1 < t2 < · · · < tN = 1 , tj =
j

N
for j = 0, 1, . . . , N

We apply this division to both dimensions of I2. Thus we get N2 squares of side length
1
N

, they make I2. Also, we get N + 1 different paths from F by

γtj(s) = F (s, tj)

In this way, γ1 = γt0 and γ2 = γtN . We claim that for every j = 0, 1, . . . , N∫
γtj

f(z) dz =

∫
γtj+1

f(z) dz

Let’s consider the rectangular strip I × [tj, tj+1]. By our previous construction, it is
composed of N squares. Consider two sequences w0, w1, . . . , wN and z0, z1, . . . , zN defined
by

wi = γtj (ti) and zi = γtj+1
(ti)

Obviously, w0 = z0 and wN = zN because they are the endpoints.
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tj

tj+1

t0 t1 · · · tN

z0
z1

zNw0

w1

wN

· · ·

· · ·

F

Let Sk denote the square [tk−1, tk] × [tj, tj+1] and ck be the center of the square Sk.
Let Dk be the open disk centered at F (ck) with radius ε, i.e. Dk = D (F (ck) , ε). Using
Lemma 6.4.1, Dk ⊆ V .

Claim — zk, zk−1, wk, wk−1 ∈ Dk.

Proof. Let x be any of the corners of Sk. Since Sk has side length 1
N

,

‖ck − x‖ =
1

N

1√
2
<

1

N
< δ =⇒ |F (x)− F (ck)| < ε =⇒ F (x) ∈ Dk

Sk = [tk−1, tk]× [tj, tj+1]. If we take x = (tk−1, tj),

Dk 3 F (x) = F (tk−1, tj) = γtj (tk−1) = wk−1

If we take x = (tk−1, tj+1),

Dk 3 F (x) = F (tk−1, tj+1) = γtj+1
(tk−1) = zk−1

If we take x = (tk, tj),

Dk 3 F (x) = F (tk, tj) = γtj (tk) = wk

If we take x = (tk, tj+1),

Dk 3 F (x) = F (tk, tj+1) = γtj+1
(tk) = zk

The claim is proved. �

Now, Dk is a convex subset of V . So f has a primitive gk on Dk. Therefore, both gk and
gk+1 are primitives of f on Dk ∩Dk+1. So gk+1 − gk must be a constant on Dk ∩Dk+1.
By the above claim, zk, wk ∈ (Dk ∩Dk+1). Therefore,

gk+1 (zk)− gk (zk) = gk+1 (wk)− gk (wk) =⇒ gk+1 (zk)− gk+1 (wk) = gk (zk)− gk (wk)

for every k = 1, 2, . . . , N − 1. Now we can compute the integral using fundamental
theorem of calculus.∫

γtj+1

f(z) dz = (g1 (z1)− g1 (z0)) + (g2 (z2)− g1 (z1)) + · · ·+ (gN (zN)− gN (zN−1))

=
N∑
k=1

(gk (zk)− gk (zk−1))

We get a similar expression for
∫
γtj
f(z) dz, with wk instead of zk. Now subtracting them,
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we get∫
γtj+1

f(z) dz −
∫
γtj

f(z) dz =
N∑
k=1

(gk (zk)− gk (zk−1))−
N∑
k=1

(gk (wk)− gk (wk−1))

=
N∑
k=1

((gk (zk)− gk (wk))− (gk (zk−1)− gk (wk−1)))

= (gN (zN)− gN (wN))− (g1 (z0)− g1 (w0))

= 0

Here we could do telescoping because of the boxed equation stated above. And the final
quantity is 0 because zN = wN and z0 = w0.

We have proved that
∫
γtj+1

f(z) dz =
∫
γtj
f(z) dz. Continuing this way, one can

conclude that ∫
γt0

f(z) dz =

∫
γtN

f(z) dz

γt0 is just γ1 and γtN is just γ2. So we are done. �

Definition 6.4.3 (Simply Connected Domain). A domain V is called simply con-
nected if any two pair of curves in V with the same endpoints are homotopic.

Proposition 6.4.3

Any holomorphic function in a simply connected domain has a primitive.

Proof. Suppose f ∈ H (V ), where V is simply connected. From the simply connected-
ness, we get that the integral does not depend on the choice of path. It only depends on
the endpoints.

Now we shall just mimic the proof of Proposition 5.2.2. Fix z0 ∈ V . For z ∈ V , take
any path γz from z0 to z, and define

F (z) =

∫
γz

f (w) dw

Then F is the antiderivative of f . The details are left for the reader to fill in. �

Corollary 6.4.4 (Cauchy’s Theorem in a Simply Connected Domain)

Let V be a simply connected domain, and f ∈ H (V ). Then∫
γ

f(z) dz = 0

for any closed contour γ in V .

Proof. Proposition 6.4.3 tells us that f has an antiderivative. Then the conclusion follows
from Cauchy’s Theorem for Derivatives. �

Simply connected set is usually a topological notion. But there are a couple of complex
analytic characterization of simply connected sets.
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(i) Suppose V ⊆ C is a domain with the property that for every f ∈ H (V ) and for all
smooth closed curve γ in V , ∫

γ

f (z) dz = 0 .

Then V is simply connected.

(ii) If V is a domain where every holomorphic function has a holomorphic square root,
then V is simply connected.

The proof of these two results are omitted.
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7 Winding Numbers and Logarithms

In this chapter, we will try to answer the following question:

Question. Given an open set V ⊆ C and a cycle (a cycle is a chain composed of closed
curves) Γ in V , when is it true that ∫

Γ

f (z) dz = 0

for every f ∈ H (V )?

There is a similar question, which we can answer using the tools we have till now.

Question. Given an open set V ⊆ C and f ∈ H (V ), when is it true that∫
Γ

f (z) dz = 0

for all cycles Γ in V ?

The answer to this question is provided by the following theorem:

Theorem 7.0.1

Suppose V ⊆ C is open and f ∈ H (V ). Then for every smooth curve γ in V∫
γ

f (z) dz = 0

if and only if f has a primitive.

Proof. One direction is given by Cauchy’s Theorem for Derivatives. The other direction
is Proposition 5.2.6. �

In search for the primitive of 1
z
, we encounter complex logarithms.

§7.1 Logarithm

We say that w is a logarithm of z if

ew = z .

Notice that, we said a logarithm, not the logarithm. That’s because complex logarithm
is not unique. For example, any complex number of the form 2πin with n ∈ Z is a
logarithm of 1. Furthermore,

ew = z =⇒ w = log |z|+ arg z .

But the problem is, arg is not a well-defined function. That’s why we need the notion of
branch of logarithm.
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Definition 7.1.1 (Branch of Logarithm). Let V ⊆ C be open. A branch of loga-
rithm on V is a function L ∈ H (V ) such that

eL(z) = z

for every z ∈ V .

One thing to note that, there certainly exists discontinuous functions f that satisfies
ef(z) = z. f (z) = log |z|+ Arg z is one such example. But we need not only continuous,
but also holomorphic function to be a branch of logarithm. The following result tells us
that continuity is enough.

Proposition 7.1.1

Suppose V ⊆ C is open and f ∈ C (V ) that satisfies ef(z) = z for every z ∈ V . Then
f ∈ H (V ).

Proof. Firstly, note that f is injective. To prove that let f (z) = f (w). Then

z = ef(z) = ef(w) = w

So f is injective. In particular, for every small nonzero h, f (z + h)−f (z) 6= 0. Therefore,

lim
h→0

h

f (z + h)− f (z)
= lim

h→0

z + h− z
f (z + h)− f (z)

= lim
h→0

ef(z+h) − ef(z)

f (z + h)− f (z)
= ef(z) = z

∴ lim
h→0

f (z + h)− f (z)

h
=

1

z

Since z = ef(z), z is not equal to 0. Therefore, for z ∈ V , f ′ (z) exists and it is equal to
1
z
. �

The following result gives us a characterization of branches of logarithm on a domain.

Proposition 7.1.2

Let V ⊆ C be a domain and L ∈ H (V ). Then the following are equivalent:

(i) L is a branch of logarithm in V .

(ii) eL(z0) = z0 for some z0 ∈ V , and L′ (z) = 1
z

for every z ∈ V .

Proof. (i)⇒(ii) is trivial, so let’s prove (ii)⇒(i). We define a new function f (z) = e−L(z)z.
Then f ∈ H (V ). Then for any z ∈ V ,

f ′ (z) = e−L(z) − zL′ (z) e−L(z) = 0

So f ′ ≡ 0 on V . Therefore, by Lemma 5.1.3, f is constant. Then for any z ∈ V ,

f (z) = f (z0) = e−L(z0)z0 = 1 =⇒ eL(z) = z

Therefore, L is a branch of logarithm in V . �
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Proposition 7.1.3

Let V ⊆ C be a domain. There exists a branch of logarithm in V ⇐⇒ there exists
f ∈ H (V ) such that f ′ (z) = 1

z
for all z ∈ V .

Proof. ⇒ is trivial. Let’s prove ⇐. We choose some z0 ∈ V . Since z0 6= 0, we can find
c ∈ C such that

ef(z0)+c = z0

We define L (z) = f (z) + c. Then L′ (z) = 1
z

and L is a logarithm at z0 ∈ V . Therefore,
by Proposition 7.1.2, L is a branch of logarithm. �

Corollary 7.1.4

If V is a convex open subset of C \ {0}, then there exists a branch of logarithm in V .

Proof. V does not contain 0, so z 7→ 1
z

is holomorphic on V . V is convex, so by
Corollary 5.2.3, 1

z
has an antiderivative. So we can find f ∈ H (V ) with the property that

f ′ (z) = 1
z

for all z ∈ V . Hence, by Proposition 7.1.3, there exists a branch of logarithm
in V . �

In fact, Corollary 7.1.4 still holds if we have a simply connected set instead of convex set.
Because, Proposition 6.4.3 tells us that any holomorphic function on a simply connected
domain has an antiderivative. So there is some f ∈ H (V ) with f ′ (z) = 1

z
. Hence, there

exists a branch of logarithm.

Proposition 7.1.5

Suppose that V is an open subset of C. There exists a brach of logarithm in V if
and only if ∫

γ

dz

z
= 0

for all closed path γ in V .

Proof. Using the proof of Corollary 7.1.4, branch of logarithm exists if and only if there
is a primitive of 1

z
. By Theorem 7.0.1, primitive of 1

z
exists if and only if the integral of

1
z

over any closed path is 0. �

§7.2 Winding Numbers

We’ve seen before that ∫
γ

dz

z
= 2πi , where γ = ∂D

If we take γ : [0, 2π]→ C given by γ (t) = e−it, then we get that∫
γ

dz

z
= −2πi

Furthermore, if we take γ : [0, 2π]→ C given by γ (t) = e2it, then the integral would be
4πi. So we see that if γ revolves around 0 n-times (counterclockwise rotation is positive,
and clockwise is negative), the integral of 1

z
over γ is 2πni. Also, if we translate things,
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we can find how many times a curve revolves around any point. This gives us motivation
to define winding number or the index of a curve. We can define it as follows:

Ind (γ, a) =
1

2πi

dz

z − a
Then Ind (γ, a) will give us the number how many times γ winds around a. But this
definition only works if we can integrate over γ. Whenever γ is not piecewise smooth, we
can’t integrate, so this definition of winding number doesn’t work. So we need a better
definition that works for continuous paths too. The following lemma allows us to do
so.

Lemma 7.2.1

Let γ : [0, 1]→ C \ {0} be continuous. Suppose θ0 ∈ R such that eiθ0 = γ(0)
|γ(0)| . Then

there exists a unique continuous function θ : [0, 1]→ R such that

γ (t) = |γ (t)| eiθ(t)

for all t ∈ [0, 1] and θ (0) = θ0.

Proof. γ (t) 6= 0, so there exists ε > 0 such that D (0, ε) does not intersect γ∗. [0, 1] is
compact, so γ is uniformly continuous. Therefore, we can find δ > 0 such that

|γ (s)− γ (t)| < ε whenever |s− t| < δ

By the Archimedian property, there exists n ∈ N such that nδ > 1. Now we divide [0, 1]
into n equal parts.

Let Ij =
[
j−1
n
, j
n

]
. Then for s, t ∈ Ij,

|s− t| ≤ 1

n
< δ =⇒ |γ (s)− γ (t)| < ε

So γ (Ij) is contained in a disk Dj of radius ε not containing the origin. Since 0 6∈ Dj,
1
z

is holomorphic on Dj. Dj is convex, so there is a branch of logarithm in Dj. In other
words, there exists Lj ∈ H (Dj) such that eiLj(z) = z for all z ∈ Dj. Now, γ (0) ∈ D1, so

eiL1(γ(0)) = γ (0) = |γ (0)| eiθ0

Therefore, ReL1 (γ (0)) and θ0 differ by an integer multiple of 2π.
Adding 2πi to a branch of logarithm yields another branch. So we can replace L1 by

L1 + 2πn1 in such a way that ReL1 (γ (0)) = θ0. As a result,

γ (0) = eiL1(γ(0)) = eiθ0 |γ (0)|

Now we shall approach inductively. Note that, for j ≥ 2, γ
(
j
n

)
∈ Dj ∩Dj+1. Lj

(
γ
(
j
n

))
and Lj+1

(
γ
(
j
n

))
exists.

eiLj(γ(
j
n)) = γ

(
j

n

)
= eiLj+1(γ( jn))

So ReLj
(
γ
(
j
n

))
and ReLj+1

(
γ
(
j
n

))
differ by an integer multiple of 2π.

Adding 2πi to a branch of logarithm yields another branch. So we can replace Lj+1 by
Lj+1 + 2πnj+1 in such a way that ReLj

(
γ
(
j
n

))
= ReLj+1

(
γ
(
j
n

))
. Therefore,

Lj

(
γ

(
j

n

))
= Lj+1

(
γ

(
j

n

))
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for all j ∈ {1, 2, . . . , n− 1}.
Now we can just define θ (t) = ReLj (γ (t)) if t ∈ Ij . Then this θ satisfies our condition

γ (t) = |γ (t)| eiθ(t). Also, θ is continuous on the closed pieces Ij, and agrees at the
intersection of the pieces. Therefore, by pasting lemma, θ is continuous.

Now we are left with the uniqueness of θ. Suppose that there are two such continuous
maps θ1 and θ2. Then we have

|γ (t)| eiθ1(t) = γ (t) = |γ (t)| eiθ2(t) =⇒ ei(θ1(t)−θ2(t)) = 1

So θ1(t)−θ2(t)
2π

∈ Z. Now, t 7→ θ1(t)−θ2(t)
2π

is a continuous map from [0, 1] to Z. Since [0, 1] is
connected, the map must be constant. As θ1 (0) = θ0 = θ2 (0), θ1 (t)− θ2 (t) = 0 for all
t ∈ [0, 1]. Hence, the map θ is unique. �

Now we are ready to define winding number.

Definition 7.2.1 (Winding Number). If γ : [0, 1]C is a continuous closed curve, and
a 6∈ γ∗, then the winding number or index of γ about a is

Ind (γ, a) =
θ (1)− θ (0)

2π
,

where θ : [0, 1] is a continuous function such that

γ (t)− a = |γ (t)− a| eiθ(t)

Existence of such θ is guaranted by Lemma 7.2.1.

Now we will show that this definition agrees with our “idea” of winding numbers.

Lemma 7.2.2

If γ is a closed path, and θ is that unique continuous function of Lemma 7.2.1, then
θ(1)−θ(0)

2π
is an integer.

Proof. Since γ is a closed path, γ (1) = γ (0) = z0. Both θ (0) and θ (1) are arguments of
z0. Hence, these arguments differ by an integer multiple of 2π. That’s why

θ (1)− θ (0) = 2πn , where n ∈ Z =⇒ θ (1)− θ (0)

2π
= n ∈ Z

�

Proposition 7.2.3

If γ is a smooth closed curve and a 6∈ γ∗, then

Ind (γ, a) =
1

2πi

∫
γ

dz

z − a

Proof. γ : [0, 1]→ C, so we can write

γ (t) = a+ r (t) eiθ(t)
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where r (t) = |γ (t)− a| > 0. Since r 6= 0, r is differentiable. Also, differentiablity of γ
guarantees differentiability of θ.∫

γ

dz

z − a
=

∫ 1

0

γ′ (t) dt

γ (t)− a
=

∫ 1

0

r′ (t) eiθ(t) + ir (t) eiθ(t)θ′ (t)

r (t) eiθ(t)
dt

=

∫ 1

0

r′ (t)

r (t)
dt+ i

∫ 1

0

θ′ (t) dt = ln (r (1))− ln (r (0)) + i (θ (1)− θ (0))

∴
1

2πi

∫
γ

dz

z − a
=
θ (1)− θ (0)

2π
= Ind (γ, a)

�

Corollary 7.2.4

If γ1, γ2 are two homotopic smooth curves in C \ {a}, then

Ind (γ1, a) = Ind (γ2, a)

Proof. Trivial from Proposition 7.2.3 and Proposition 6.4.2. �

Proposition 7.2.5

Suppose V is an open subset of C. There exists a branch of logarithm in V if and
only if 0 6∈ V and

Ind (γ, 0) = 0

for any closed curve γ in V .

This is a restatement of Proposition 7.1.5. From this, we can conclude that there cannot
be any branch of logarithm in the whole punctured plane C \ {0}. But if you get rid of
the negative real axis, then we have a branch of logarithm. In a similar manner, if you
delete any ray from 0, then there exists a branch of logarithm in that set.

There is a branch of logarithm in C \
{
reiθ : r ∈ [0,∞)

}
This is not hard at all to prove. Because S = C \

{
reiθ : r ∈ [0,∞)

}
is a star convex

set, so it’s simply connected. So we have a branch of logarithm in S.
In fact, a stronger result is true. There are no other set S ′ that contains S and there

is a branch of logarithm in S ′. The proof is also pretty simple. Because if S ′ is a strictly
larger set than S, it contains at least one point of the form r0e

iθ. Then if we integrate 1
z

over ∂D (0, r0), the integral is not 0.

§7.3 Branch of Logarithm of Function

Proposition 7.3.1

Let V be a simply connected subset of C. If f ∈ H (V ) and f has no zeroes on V ,
then there exists L ∈ H (V ) such that

eL = f in V
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Proof. f is nonzero, f ′ is holomorphic, therefore f ′

f
is holomorphic. Since V is simply

connected, by Proposition 6.4.3, f ′

f
has a primitive F . Now fe−F is holomorphic. Hence,

(
fe−F

)′
= f ′e−F + fe−F (−F ′) = f ′e−F − fe−F f

′

f
= 0

So fe−F is constant. Both f and e−F are nonzero, so fe−F = ec 6= 0.

f (z) e−F (z) = ec =⇒ f (z) = eF (z)+c

So L = F + c is our desired holomorphic function. �

Similar to logarithm, taking n-th root is also a problem in C. Because there are n
different values for the n-th root of 1 (known as the n-th roots of unity). That’s why
there is no well-defined function, in general, for taking n-th root. But things are so
smooth when we have a simply connected set.

Proposition 7.3.2

Let V be a simply connected subset of C and n ∈ N. If f ∈ H (V ) is nonvanishing,
then there exists g ∈ H (V ) such that gn = f .

Proof. f is nonvanishing holomorphic in a simply connected domain. Therefore, by
Proposition 7.3.1, there exists L ∈ H (V ) such that

eL(z) = f (z) , for every z ∈ V

Now, L(z)
n

is a holomorphic function. So we can just take g (z) = exp
(
L(z)
n

)
. Then we

have
g (z)n =

(
e
L(z)
n

)n
= eL(z) = f (z)

�

§7.4 Cauchy’s Theorem

In this section we shall see some generalization of Cauchy’s theorems for cycles.

Lemma 7.4.1

Suppose Γ is a cycle in C. The function I (a) = Ind (Γ, a) is an integer valued
continuous function on C \ Γ∗.

Proof. For a closed curve γ, Ind (γ, a) is an integer. Since a cycle is a chain of closed
curves,

Γ =
∑

γ =⇒ Ind (Γ, a) =
∑

Ind (γ, a) ∈ Z

Now we need to show that I is a continuous function. Let’s fix some p0 ∈ C \ Γ∗. Let
d = d (Γ∗, p0) be the distance from p0 to Γ∗. To put it concretely,

d (Γ∗, p0) = inf {|z − p0| : z ∈ Γ∗} .

Since Γ∗ is compact, d > 0. Therefore,

p ∈ D
(
p0,

d

2

)
=⇒ |z − p| ≥ |z − p0| − |p− p0| ≥

d

2
, for z ∈ Γ∗
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Let ε > 0. We choose δ > 0 in such a way that

δ < min

{
d

2
,
επd2

l

}
where l is the length of Γ. Now, for |p− p0| < δ,

|I (p)− I (p0)| =
∣∣∣∣ 1

2πi

∫
Γ

(
1

z − p
− 1

z − p0

)
dz

∣∣∣∣ =
1

2π

∣∣∣∣∫
Γ

p0 − p
(z − p) (z − p0)

dz

∣∣∣∣
≤ 1

2π

∫
Γ

|p0 − p| |dz|
|z − p| |z − p0|

≤ 1

2π

2δl

d2

≤ δl

πd2
< ε

So I is continuous at p0. Similarly, I is continuous at every point of C \ Γ∗. �

Corollary 7.4.2

Ind (Γ, a) is constant on the components of C \ Γ∗, and vanished on the unbounded
component.

Proof. The components are maximal connected subsets of C \ Γ∗. Since Ind (Γ, a) is
continuous integer valued, it’s constant on the connected subsets. Hence, Ind (Γ, a) is
constant on the components of C \ Γ∗.

For any p ∈ C \ Γ∗,

|Ind (Γ, p)| = 1

2π

∣∣∣∣∫
Γ

dz

z − p

∣∣∣∣ ≤ 1

2π

∫
Γ

|dz|
|z − p|

≤ l

2π d (Γ∗, p)

If p is in the unbounded component, d (Γ∗, p) can be arbitrarily large. So Ind (Γ, p) is
bounded by arbitrarily small numbers. Therefore, Ind (Γ, p) = 0. �

Lemma 7.4.3

Let V ⊆ C be open and f ∈ H (V ). We define g : V × V → C by

g (z, w) =

{
f(z)−f(w)

z−w if z 6= w

f ′ (z) if z = w

Then g is continuous on V × V . If we define gw (z) = g (z, w), then gw ∈ H (V ) for
all w ∈ V .

Proof. It is clear that g is continuous at (z, w) for z 6= w. Also, gw is holomorphic at z
for z 6= w. The fact that g is continuous at (z, z) follows directly from the holomorphicity
of f . Now we need to show that gz is holomorphic at z.
f is holomorphic, so it has power series expression at some disk D (z, r).

f (w) =
∞∑
n=0

cn (w − z)n , for w ∈ D (z, r)

lim
w→z

gz (w)− gz (z)

w − z
= lim

w→z

f(w)−f(z)
w−z − f ′ (z)

w − z
= lim

w→z

∞∑
n=0

cn+2 (w − z)n = c2

So gz is differentiable at z. �
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Theorem 7.4.4 (Cauchy Integral Formula, Homology Version)

Let V ⊆ C be open, f ∈ H (V ). Γ is a cycle in V with the property that

Ind (Γ, a) = 0 , for every a ∈ C \ V .

Then for every f ∈ H (V ) and z ∈ V \ Γ∗,

1

2πi

∫
Γ

f (w) dw

w − z
= Ind (Γ, z) f (z) .

Proof. We define g as Lemma 7.4.3. Now we define a new function h :

h (z) =

{∫
Γ
g (w, z) dw if z ∈ V∫

Γ
f(w) dw
w−z if z 6∈ Γ∗ and Ind (Γ, z) = 0

Since Ind (Γ, z) = 0 for every z ∈ C \ V , h is defined on the whole C. We need to show
that h is well-defined. Suppose z ∈ V and z 6∈ Γ∗ and Ind (Γ, z) = 0. Then∫

Γ

g (w, z) dw =

∫
Γ

f (w)− f (z)

w − z
dw =

∫
Γ

f (w) dw

w − z
− f (z)

∫
Γ

dw

w − z

=

∫
Γ

f (w) dw

w − z
− 2πi f (z) Ind (Γ, z) =

∫
Γ

f (w) dw

w − z

So h is well-defined.
z 7→ g (w, z) is holomorphic on V as proven in Lemma 7.4.3. Also, when z 6∈ Γ∗,

z 7→ f(w)
w−z is holomorphic since w 6= z. Therefore, the pieces of h are holomorphic due to

Corollary 6.3.9. Hence h is holomorphic everywhere. In other words, h is entire.
Γ∗ is compact, so f is bounded on Γ∗. In other words, |f | ≤ M on Γ∗. Let l be

the length of Γ. The unbounded component of C \ Γ∗ is contained in the set where
Ind (Γ, z) = 0. So in this component, h is defined by the second expression. Consider z
in this component.

|h (z)| =
∣∣∣∣∫

Γ

f (w) dw

w − z

∣∣∣∣ ≤ ∫
Γ

|f (w)| |dw|
|w − z|

≤ Ml

d (Γ∗, z)

As z →∞, d (Γ∗, z)→∞. So h (z)→ 0.
In other words, h is a bounded entire function. By Liouville’s Theorem, h is constant.

Since h (z)→ 0 for z →∞, h must an identically zero. Therefore, for z ∈ V \ Γ∗,

0 = h (z) =

∫
Γ

f (w)− f (z)

w − z
dw =

∫
Γ

f (w) dw

w − z
− f (z)

∫
Γ

dw

w − z

=

∫
Γ

f (w) dw

w − z
− 2πi f (z) Ind (Γ, z)

∴
1

2πi

∫
Γ

f (w) dw

w − z
= Ind (Γ, z) f (z)

�
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Theorem 7.4.5 (Cauchy’s Theorem, Homology Version)

Let V ⊆ C be open, f ∈ H (V ). Γ is a cycle in V with the property that

Ind (Γ, a) = 0 , for every a ∈ C \ V .

Then for every f ∈ H (V ), ∫
Γ

f (z) dz = 0 .

Proof. We fix some z ∈ V \ Γ∗. Then we apply Homology version of Cauchy integral
formula on the map w → (w − z) f (w) at w = z:

(z − z) f (z) Ind (Γ, z) =
1

2πi

∫
Γ

(w − z) f (w) dw

w − z
=⇒

∫
Γ

f (w) dw = 0

�

Definition 7.4.1 (Homologous Cycle). Suppose V ⊆ C. Two cycles Γ0 and Γ1 in V
are said to be homologous in V if Ind (Γ0, z) = Ind (Γ1, z) for all z ∈ C \ V .

This definition can be rephrased as

Ind (Γ0 − Γ1, z) = 0 , for all z ∈ C \ V

In particular, when we say that a cycle Γ is homologous to zero in V , we basically
mean that

Ind (Γ, z) = 0 , for all z ∈ C \ V

Corollary 7.4.6

Let V ⊆ C be open and f ∈ H (V ). If two cycles Γ0 and Γ1 in V are homologous in
V , then ∫

Γ0

f (z) dz =

∫
Γ1

f (z) dz

Proof. Homology version of Cauchy’s theorem on the cycle Γ0 − Γ1. �
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8 Singularity Points and Residue

We shall write D′ (z0, r) to denote the punctured disk:

D′ (z0, r) = D (z0, r) \ {z0} = {z ∈ C : 0 < |z − z0| < r}

§8.1 Classification of Singularities

Definition 8.1.1 (Isolated Singularity). The function f ∈ H (V ) has an isolated
singularity at z if D′ (z, r) ⊆ V for some r > 0 but z 6∈ V .

Definition 8.1.2. Suppose f has an isolated singularity at z.

1. The singularity is removable if f can be defined at z such that f becomes
holomorphic in a neighborhood of z.

2. The singularity is a pole if lim
w→z

f (w) =∞.

3. The singularity is essential if it is neither removable nor a pole.

Proposition 8.1.1

Let V be a domain, and a ∈ V . Suppose f is holomorphic on V \ {a}. If
lim
z→a

(z − a) f (z) = 0, then f has a removable singlarity at a.

Proof. We define g : V → C as follows

g (z) =

{
(z − a)2 f (z) if z 6= a

0 if z = a

Then g is holomorphic on V \ {a}, because f is. We claim that g is holomorphic on V .
For that we need to show that g is differentiable at a.

lim
z→a

g (z)− g (a)

z − a
= lim

z→a

(z − a)2 f (z)

z − a
= lim

z→a
(z − a) f (z) = 0

So g′ (a) exists, and it is equal to 0. Hence, g is holomorphic on a. So g has a power
series about a on the ball D (a, r) for some r > 0.

g (z) =
∞∑
n=0

cn (z − a)n , for z ∈ D (a, r)

g (a) = g′ (a) = 0 gives us c0 = c1 = 0. So for z ∈ D′ (a, r),

f (z) =
g (z)

(z − a)2 = c2 + c3 (z − a) + c4 (z − a)2 + · · ·
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8 Singularity Points and Residue 72

So we can define f (a) = c2. Thus f is analytic on D (a, r). Analytic functions are
holomorphic, so f is holomorphic on D (a, r).

Therefore, we can define f (a) in such a way that f is holomorphic on a neighborhood
of a. So the singularity at a is removable. �

Proposition 8.1.1 can be rephrased as: “If a holomorphic function is bounded near an
isolated singularity, then the singularity is removable.”

Proposition 8.1.2

Suppose f ∈ H (D′ (z, r)). Then f has a pole at z if and only if there exists N ∈ N
and complex numbers (cn)n≥−N such that c−N 6= 0 and

f (w) =
∞∑

n=−N

cn (w − z)n , for w ∈ D′ (z, r)

Proof. The if direction is trivial, because

f (w) =
∞∑

n=−N

cn (w − z)n =⇒ lim
w→z

f (w) =∞

For the converse, suppose f has a pole at z. Since f is unbounded near z, there exists
ρ ∈ (0, r) such that |f | > 1 in D′ (z, ρ).

If we take g = 1
f
, since f is nonzero on D′ (z, ρ), g ∈ H (D′ (z, ρ)). Also |g| < 1, so g is

bounded near its isolated singularity z. Therefore, by Proposition 8.1.1, the singularity of
g at z is removable. Since f has a pole at z, g (z) = 0 makes g holomorphic on D (z, ρ).

Certainly, g is not identically 0. So there exists N ∈ N and h ∈ H (D (z, ρ)) such that

g (w) = (w − z)N h (w) , for w ∈ D (z, ρ) and h (z) 6= 0 .

g has no zeroes in D′ (z, ρ), so h has no zeroes in D (z, ρ). As a result, 1
h

is holomorphic
on D (z, ρ). Since holomorphic functions are analytic,

1

h (w)
=
∞∑
n=0

an (w − z)n , for w ∈ D (z, ρ)

Note that a0 = 1
h(z)
6= 0. As a result,

f (w) =
1

g (w)
= (w − z)−N

1

h (w)
= (w − z)−N

∞∑
n=0

an (w − z)n

for w ∈ D′ (z, ρ). This can be rewritten as

f (w) =
∞∑

n=−N

cn (w − z)n

where c−N = a0 6= 0. This series representation is true in D′ (z, ρ). D′ (z, ρ) has plenty
of limit points in D′ (z, r). Therefore, by Corollary 6.3.5, the series representation is true
in D′ (z, r). �
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8 Singularity Points and Residue 73

Proposition 8.1.3

Suppose f ∈ H (D′ (z, r)). Then f has an essential singularity at z if and only if
f (D′ (z, ρ)) is dense in C for all ρ ∈ (0, r).

Proof. We shall prove the contrapositive statements in both directions.
(⇒) If f does not have an essential singularity at z, then either z is a pole, or the

singularity at z is removable. Either way f (w) has a finite or infinite limit as w → z.
Hence, it’s not true that f (D′ (z, ρ)) is dense in C for all ρ ∈ (0, r).

(⇐) Now suppose that f (D′ (z, ρ)) is not dense in C for some ρ ∈ (0, r). We shall
show that f does not have an essential singularity at z.
f (D′ (z, ρ)) is not dense in C, so there exists α ∈ C which is not a limit point of

f (D′ (z, ρ)). Hence, we can find δ > 0 such that

f (D′ (z, ρ)) ∩D (α, δ) = ∅ =⇒ |f (w)− α| ≥ δ for w ∈ D′ (z, ρ)

In particular f − α has no zeroes in D′ (z, ρ). So 1
f−α ∈ H (D′ (z, ρ)). We have∣∣∣∣ 1

f (w)− α

∣∣∣∣ ≤ 1

δ
for w ∈ D′ (z, ρ)

So 1
f−α is bounded near its isolated singularity z. Therefore, by Proposition 8.1.1, the

singularity of 1
f−α at z is removable. In other words, there exists g ∈ H (D (z, ρ)) such

that

g (w) =
1

f (w)− α
for w ∈ D′ (z, ρ)

Hence f = α+ 1
g

in D′ (z, ρ). If g (z) 6= 0, then α+ 1
g
∈ H (D (z, ρ)). So f has a removable

singularity at z.
Otherwise if g (z) = 0, then f approaches infinity at z. So f has a pole at z in this

case. Either way, f does not have an essential singularity at z. �

To summarize, if f has an essential singularity at z0, then for every α ∈ C, you can
choose a sequence (zn)n∈N that converges to z0, but

lim
n→∞

f (z0) = α

So f behaves really wildly near z0.
When we have a removable singularity, then we can just assign a new value at that

point and the function becomes holomorphic. When we have a pole, then we can just
take 1

f
and it is holomorphic at some neighborhood of thet pole. But if we have an

essential singularity, we can’t really do anything at all to make a holomorphic function.
That’s why it’s called “essential” singularity.

§8.2 Laurent Series

We shall write A (z0, r, R) to denote the annulus:

A (z0, r, R) = D (z0, R) \D (z0, r) = {z ∈ C : r < |z − z0| < R}
where 0 ≤ r < R ≤ ∞. It turns out that if f is holomorphic on an annulus A (z0, r, R),
then f has a Laurent series expansion:

f (z) =
∞∑

n=−∞

cn (z − z0)n , for z ∈ A (z0, r, R)
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Theorem 8.2.1

Suppose a ∈ C and 0 ≤ r < R ≤ ∞. If f ∈ H (A (a, r, R)) then there exists a
sequence of complex numbers (cn)n∈Z such that

f (z) =
∞∑

n=−∞

cn (z − a)n , for z ∈ A (a, r, R) .

This series converges uniformly on compact subsets ofA (a, r, R). Also, the coefficients
are given by

cn =
1

2πi

∫
∂D(a,ρ)

f (w) dw

(w − a)n+1

for any ρ ∈ (r, R).

Proof. We choose r1, r2 such that r < r1 < r2 < R. Now we take the cycle

Γ = ∂D (a, r2)− ∂D (a, r1)

Now we claim that Ind (γ, z) = 0 for z ∈ C \ A (a, r, R) = (C \D (a,R)) ∪D (a, r).
If z ∈ D (a, r), then Ind (∂D (a, r2) , z) = 1 = Ind (∂D (a, r1) , z). Hence Ind (γ, z) = 0.

Now if z ∈ C \ D (a,R), then Ind (∂D (a, r2) , z) = 0 = Ind (∂D (a, r1) , z). Hence
Ind (γ, z) = 0. So our claim is proved.

Therefore, Γ is homologous to zero in A (a, r, R). On the other hand, if z ∈ A (a, r1, r2),
then Ind (∂D (a, r2) , z) = 1 and Ind (∂D (a, r1) , z) = 0. So Ind (Γ, z) = 1.

Let γ1 = ∂D (a, r1) and γ2 = ∂D (a, r2), By Homology version of Cauchy integral
formula, for z ∈ A (a, r1, r2),

f (z) =
1

2πi

∫
Γ

f (w) dw

w − z
=

1

2πi

∫
γ2

f (w) dw

w − z
− 1

2πi

∫
γ1

f (w) dw

w − z

Now let’s expand the integrals separately. If w ∈ γ∗2 ,
∣∣ z−a
w−a

∣∣ = |z−a|
r2

< 1.

1

2πi

∫
γ2

f (w) dw

w − z
=

1

2πi

∫
γ2

f (w)

w − a
1

1− z−a
w−a

dw

=
1

2πi

∫
γ2

f (w)

w − a

(
∞∑
n=0

(
z − a
w − a

)n)
dw

=
∞∑
n=0

(z − a)n
1

2πi

∫
γ2

f (w) dw

(w − a)n+1

=
∞∑
n=0

(
1

2πi

∫
γ2

f (w) dw

(w − a)n+1

)
(z − a)n

Here swapping integral and summation is justified because of UCT. The argument is
similar to that of power series.
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8 Singularity Points and Residue 75

In a similar manner, if w ∈ γ1,
∣∣w−a
z−a

∣∣ = r1
|z−a| < 1. Hence,

− 1

2πi

∫
γ1

f (w) dw

w − z
=

1

2πi

∫
γ1

f (w)

z − a
1

1− w−a
z−a

dw

=
1

2πi

∫
γ1

f (w)

z − a

(
∞∑
m=0

(
w − a
z − a

)m)
dw

=
∞∑
m=0

(z − a)−m−1 1

2πi

∫
γ1

f (w) (w − a)m dw

=
−1∑

n=−∞

(z − a)n
1

2πi

∫
γ1

f (w) dw

(w − a)n+1

=
−1∑

n=−∞

(
1

2πi

∫
γ1

f (w) dw

(w − a)n+1

)
(z − a)n

Here, too, swapping integral and summation is justified because of UCT.
Given any ρ ∈ (r, R), the cycle ∂D (a, ρ)−∂D (a, r1) is homologous to zero in A (a, r, R).

Also, the map w 7→ f(w)

(w−a)n+1 is holomorphic on A (a, r, R). Therefore, by Homology version

of Cauchy’s theorem,∫
∂D(a,ρ)−∂D(a,r1)

f (w)

(w − a)n+1 dz = 0 =⇒
∫
∂D(a,ρ)

f (w)

(w − a)n+1 dw =

∫
γ1

f (w)

(w − a)n+1 dw

Similarly, for γ2, we have∫
∂D(a,ρ)

f (w)

(w − a)n+1 dw =

∫
γ2

f (w)

(w − a)n+1 dw

Therefore, combining the two sums, we have

f (z) =
∞∑
n=0

(
1

2πi

∫
∂D(a,ρ)

f (w) dw

(w − a)n+1

)
(z − a)n+

1∑
n=−∞

(
1

2πi

∫
∂D(a,ρ)

f (w) dw

(w − a)n+1

)
(z − a)n

Now, about convergence, the geometric series used in the first sum converges uniformly
and absolutely when

∣∣ z−a
w−a

∣∣ = |z−a|
r2

< 1. In other words, the first sum converges uniformly
absolutely in compact subsets of D (a, r2).

Similarly, the geometric series used in the second sum converges uniformly and ab-
solutely when

∣∣w−a
z−a

∣∣ = r1
|z−a| < 1. In other words, the second sum converges uniformly

absolutely in compact subsets of C \D (a, r1).
Therefore, the Laurent series expansion converges uniformly absolutely in compact

subsets of D (a, r2) ∩ C \ D (a, r1) = A (a, r1, r2). r1 and r2 were arbitrary satisfying
r < r1 < r2 < R. So the Laurent series expansion converges uniformly absolutely in
compact subsets of A (a, r, R).

Now we are left with the uniqueness part. Suppose there are another sequence (dn)n∈Z
that satisfies

f (z) =
∞∑

n=−∞

dn (z − a)n , for z ∈ A (a, r, R) ,

converging absolutely uniformly on the compact subsets of A (a, r, R). Then

cn =
1

2πi

∫
∂D(a,ρ)

∞∑
m=−∞

dm (w − a)m
dw

(w − a)n+1
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Since the sum converges uniformly, we can swap summation and integral.

cn =
1

2πi

∞∑
n=−∞

dm

∫
∂D(a,ρ)

(w − a)m−n−1 dw

When m 6= n, each terms of the form (w − a)m−n−1 have primitives. So they don’t
conbtribute anything to the integral. Therefore,

cn =
1

2πi
dn

∫
∂D(a,ρ)

dw

w − a
= dn Ind (∂D (a, ρ) , a) = dn

So, the coefficients are unique. �

Note that D′ (z0, r) = A (z0, 0, r). So if a function is holomorphic on the punctured disk
D′ (z0, r), then it has a Laurent series expansion.

Proposition 8.2.2

Suppose f ∈ H (D′ (z0, r)), so it has the Laurent series expansion

f (z) =
∞∑

n=−∞

cn (z − z0)n , for z ∈ D′ (z0, r)

(i) f has a removable singularity at z0 if and only if cn = 0 for all n < 0.

(ii) f has a pole of order N > 0 at z0 if and only if c−N 6= 0 and cn = 0 for every
n < −N .

(iii) f has an essential singularity at z0 if and only if there exists infinitely many
values of n < 0 such that cn 6= 0.

Proof. (i) If f has a removable singularity at z0, then we can define f (z0) such that f ∈
H (D (z0, r)). Then f has a power series representation about z0. The coefficients
of power series agrees with the coefficients of Laurent series (Theorem 8.2.1). Hence,
for n < 0, cn cannot be nonzero.

For the reverse direction, suppose all the cn are zero for n < 0. Then if we define
f (z0) = c0, then f is analytic on D (z0, r). Hence, f is holomorphic on D (z0, r),
and the singularity at z0 is removable.

(ii) This is just a restatement of Proposition 8.1.2.

(iii) If n < 0, we shall call cn a “negative index coefficient”. If f has an essential
singularity at z0, then z0 is neither a removable singularity nor a pole. Thus not
all the negative index coefficients can be 0. Furthermore, it cannot happen that
finitely many negative index coefficients are nonzero (because that would mean that
z0 is a pole). So it must be the case of infinitely many negative index coefficients
are nonzero.

For the reverse direction, suppose infinitely many negative index coefficients are
nonzero. Then z0 cannot be a removable singularity because not all the negative
index coefficients are 0. Also z0 cannot be a pole since infinitely many negative
index coefficients are nonzero. So z0 is an essential singularity.

�
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§8.3 Residue

By this time , you’re probably convinced that holomorphic functions are the nicest
possible function. They have lots of cool properties. We have the second nicest kind of
function, namely meromorphic function.

Definition 8.3.1 (Meromorphic Function). A function f on an open set V is said to
be meromorphic if there exists a sequence of points {z1, z2, . . .} that has no limit
points in V , and

i. f is holomorphic in V \ {z1, z2, . . .}.

ii. f has poles at the points {z1, z2, . . .}.

It’s of no surprise that Cauchy’s theorem does not hold for meromorphic functions. The
motivation between defining “residue” is to measure how much the meromorphic function
deviate from satisfying Cauchy’s theorem.

Definition 8.3.2 (Residue). Suppose f has an isolated singularity at z0, and it has
the Laurent series expansion in D′ (z0, r) for some r > 0.

f (z) =
∞∑

n=−∞

cn (z − z0)n , for z ∈ D′ (z0, r) .

Then the residue of f at z0 is defined as

Res (f, z0) = c−1 = the coefficient of
1

z − z0

Now, why does this thing measure how much Cauchy’s theorem fails? If we integrate f
over some closed curve γ, then all the terms (z − z0)n (where n ≥ 0) have primitives. So
they contribute 0 to the integral. Also, all the terms 1

(z−z0)n
for n ≥ 2 have primitives.

So they also contribute 0 to the integral. The only thing which has issues with having
primitive is the term 1

z−z0 . So, you should expect to get∫
γ

f (z) dz = c−1 .

That’s why this coefficient is of importance.

If f has a removable singularity, then obviously Res (f, z0) = 0 (Proposition 8.2.2). If
f has a pole of order N at z0, we have

f (z) =
∞∑

n=−N

cn (z − z0)n

near z0. Let g (z) = (z − z0)N f (z). Then g has a removable singularity at z0, since

g (z) = (z − z0)N f (z) = (z − z0)N
∞∑

n=−N

cn (z − z0)n =
∞∑
n=0

cn−N (z − z0)n
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Then Res (f, z0) = c−1 is equal to the coefficient of (z − z0)N−1 in the power series of g
about z0. As a result,

Res (f, z0) = c−1 =
g(N−1) (z0)

(N − 1)!

In particular, if f has a simple pole (pole of order 1) at z0, then the residue of f at z0 is
equal to g (z0).

Res (f, z0) = g (z0) = lim
z→z0

(z − z0) f (z)

We’ve seen before that if f has a removable singularity at z0, Res (f, z0) is 0. By
Proposition 8.1.1,

Res (f, z0) = 0 = lim
z→z0

(z − z0) f (z)

Thus we have the following result:

Lemma 8.3.1

If f has either a removable singularity or a simple pole at z0, then

Res (f, z0) = lim
z→z0

(z − z0) f (z)

Now let’s calculate some residues.

Example 8.3.1. Suppose f, g are holomorphic near z0 and f has a simple zero (zero of
order 1) at z0. We want to calculate Res (g/f, z0).

If g (z0) = 0, then g/f has a removable singularity at z0. Otherwise, g/f has a simple
pole at z0. Either way, we can apply Lemma 8.3.1.

Res (g/f, z0) = lim
z→z0

(z − z0)
g (z)

f (z)
= lim

z→z0
(z − z0)

g (z)

f (z)− f (z0)

=

(
lim
z→z0

z − z0

f (z)− f (z0)

)(
lim
z→z0

g (z)

)
=

g (z0)

f ′ (z0)

Note that, f ′ (z0) is nonzero. Because if f ′ (z0) were 0, it would mean that f is identically
0 in a neighborhood of z0. This contradicts with the fact that f has a simple zero at z0.

Example 8.3.2. Suppose g is holomorphic near z0 and f has a simple pole at z0. We
want to find Res (fg, z0).

If g (z0) = 0, then fg has a removable singularity at z0. So Res (fg, z0) = 0.
But if g (z0) 6= 0, then fg has a simple pole at z0. Then using Lemma 8.3.1, we get

that

Res (fg, z0) = lim
z→z0

(z − z0) f (z) g (z) =

(
lim
z→z0

(z − z0) f (z)

)(
lim
z→z0

g (z)

)
= Res (f, z0) g (z0)

Therefore, in all the cases Res (fg, z0) = Res (f, z0) g (z0).

Example 8.3.3. Suppose f has an isolated singularity at z0. Let γ : [0, 2π]→ C be a
curve given by γ (t) = z0 + reint for some fixed n ∈ Z. We want to compute the following
integral: ∫

γ

f (z) dz
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8 Singularity Points and Residue 79

Since f has an isolated singularity at z0, it has a Laurent series expression about z0.∫
γ

f (z) dz =

∫
γ

∞∑
n=∞

cn (z − z0)n dz =
∞∑

n=∞

∫
γ

cn (z − z0)n dz

Here we swapped integral and summation. Since Laurent series converges uniformly,
UCT allows this swap.∫

γ

f (z) dz =
∞∑
n=2

∫
γ

c−n dz

(z − z0)n
+

∫
γ

c−1 dz

z − z0

+
∞∑
n=0

∫
γ

cn (z − z0)n dz

Now, each of the terms 1
(z−z0)n

has a primitive for n ≥ 2. So the integral of them over

γ is 0. Also, each terms of the form (z − z0)n has a primitive for n ≥ 0. So, they also
contribute 0 to the integral. Therefore,∫

γ

f (z) dz = c−1

∫
γ

dz

z − z0

= Res (f, z0) 2πi Ind (γ, z0)

∴
1

2πi

∫
γ

f (z) dz = Ind (γ, z0) Res (f, z0)

This is a special case of a famous result called Residue theorem.

§8.4 Residue Theorem and Residue Calculus

Definition 8.4.1 (Principal Part). Suppose f is holomorphic on D′ (a, r). Then it has
a Laurent series expression:

f (z) =
∞∑

n=−∞

cn (z − a)n , for z ∈ D′ (a, r)

Then we define

Pa (f) =
∞∑
n=1

c−n
(z − a)n

to be the principal part of f at a.

Theorem 8.4.1 (Residue Theorem)

Let V ⊆ C be open, and S be a finite subset of V . Suppose a cycle Γ in V is
homologous to zero. Suppose f ∈ H (V \ S). Then

1

2πi

∫
Γ

f (z) dz =
∑
p∈S

Ind (Γ, p) Res (f, p)

Proof. Let w1, w2, . . . , wn be the elements of S. We take positive numbers r1, r2, . . . , rn
such that the closed disks D (wj, rj) are all pairwise disjoint and D (wj, rj) ⊆ V for all
j = 1, 2, . . . , n. Let γj = ∂D (wj, rj), and mj = Ind (Γ, wj). We define a new cycle Λ as
follows:

Λ = Γ−m1γ1 −m2γ2 · · · −mnγn
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8 Singularity Points and Residue 80

We claim that Ind (Λ, z) = 0 for all z ∈ C \ (V \ S) = (C \ V ) ∪ S.

Ind (Λ, z) = Ind (Γ, z)−m1 Ind (γ1, z)−m2 Ind (γ2, z) · · · −mn Ind (γn, z)

If z ∈ C \ V , then Ind (Γ, z) = 0 since Γ is homologous to zero in V . D (wj, rj) ⊆ V , so
Ind (γj, z) = Ind (∂D (wj, rj) , z) = 0. So Ind (Λ, z) = 0.

If z ∈ S, z = wk for some k. Then Ind (γj, wk) = 0 if j 6= k, because D (wj, rj) does
not contain wk. Also Ind (γk, wk) = 0.

Ind (Λ, wk) = Ind (Γ, wk)−mk Ind (γk, wk) = Ind (Γ, wk)− Ind (Γ, wk) = 0

So our claim holds. Therefore, Λ is homologous to zero in V \ S. f is holomorphic in
V \ S, so applying Homology version of Cauchy’s theorem, we get∫

Λ

f (z) dz = 0 =⇒ 1

2πi

∫
Λ

f (z) dz = 0

=⇒ 1

2πi

∫
Γ

f (z) dz − 1

2πi

n∑
j=1

mj

∫
γj

f (z) dz

=⇒ 1

2πi

∫
Γ

f (z) dz =
n∑
j=1

Ind (Γ, wj)
1

2πi

∫
γj

f (z) dz

Using Example 8.3.3,

1

2πi

∫
γj

f (z) dz = Ind (γj, wj) Res (f, wj) = Res (f, wj)

Therefore, we get

1

2πi

∫
Γ

f (z) dz =
n∑
j=1

Ind (Γ, wj) Res (f, wj) =
∑
p∈S

Ind (Γ, p) Res (f, p)

�

Residue theorem is a powerful tool to compute integrals.

Example 8.4.1. We shall compute the following integral:∫ ∞
−∞

dx

1 + x2

This is a well-known integral, so it’s probably not a great example to illustrate residue
theorem’s power. But we will see a “better” example soon.

Consider f (z) = 1
z2

, we shall integrate f over the following contour Γ = γR + [−R,R],
where γR is the semicircular arc.

γR

R−R

i

80



8 Singularity Points and Residue 81

Now, f (z) = 1
1+z2

= 1
(z+i)(z−i) . f has a simple pole at i and −i. The region enclosed

by Γ contains one singularity point i. So we need to find Res (f, i).

Res (f, i) = lim
z→i

(z − i) f (z) = lim
z→i

1

z + i
=

1

2i

Also Ind (Γ, i) = 1. Therefore, by Residue Theorem,∫
Γ

f (z) dz = 2πi Ind (Γ, i) Res (f, i) = π =⇒
∫ R

−R

dx

1 + x2
+

∫
γR

f (z) dz = π

Taking R→∞, we get ∫ ∞
−∞

dx

1 + x2
+ lim

R→∞

∫
γR

f (z) dz = π

Now we shall show that
∫
γR
f goes to 0 as R→∞. |f (z)| ≤ B

|z|2 for some suitable B. So

f is bounded by B
R2 on γR. Also, the length of γR is πR. So by ML Inequality,∣∣∣∣∫

γR

f (z) dz

∣∣∣∣ ≤ B

R2
πR =

Bπ

R
=⇒ lim

R→∞

∫
γR

f (z) dz = 0 =⇒
∫ ∞
−∞

dx

1 + x2
= π

Example 8.4.2. Now we want to generalize Example 8.4.1. We shall compute the
following integral ∫ ∞

0

dx

1 + x2
, where n ≥ 2

It’s not a surprise that we would consider the function f (z) = 1
1+zn

. zn + 1 is 0 when

z = eiπ
2m+1
n where m = 0, 1, . . . , n− 1. So f has a simple pole at each eiπ

2m+1
n . Now we

need to choose a suitable contour. We shall integrate f over the following “sector of
circle” contour (colored in blue).

eiπ/n

e3iπ/n

R

Re2πi/n

We name this contour ΓR. So ΓR = [0, R] + γR +
[
Re2πi/n, 0

]
, where γR is the circular

arc. Let ζ = eiπ/n. Then ζ is a singularity of f . Ind (ΓR, ζ) = 1. So by Residue Theorem,∫
ΓR

f (z) dz =

∫ R

0

dx

1 + xn
+

∫
γR

f (z) dz −
∫

[0,Re2πi/n]
f (z) dz = 2πiRes (f, ζ)
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8 Singularity Points and Residue 82

Let’s compute the third integral now.
[
0, Re2πi/n

]
can be paramtrized by γ (t) = te2πi/n

for 0 ≤ t ≤ R.∫
[0,Re2πi/n]

f (z) dz =

∫ R

0

e2πi/n dt

1 + (te2πi/n)
n = e2πi/n

∫ R

0

dt

1 + tn

On γR, |zn + 1| ≥ |zn| − 1 = Rn − 1. The length of γR is smaller than 2πR. Therefore,
by ML Inequality,∣∣∣∣∫

γR

f (z) dz

∣∣∣∣ ≤ 2πR

Rn + 1
=⇒ lim

R→∞

∫
γR

f (z) dz = 0

If R→∞, Res (f, ζ) does not change. Therefore,

2πiRes (f, ζ) = lim
R→∞

f (z) dz =

∫ ∞
0

dx

1 + xn
−e2πi/n

∫ ∞
0

dt

1 + tn
=
(
1− e2πi/n

) ∫ ∞
0

dx

1 + xn

Now we need to compute Res (f, ζ). 1 + zn has a simple zero at ζ. Therefore, by
Example 8.3.1,

Res (f, ζ) =
1

nζn−1
= − ζ

n

e2πi/n = ζ2, so we have ∫ ∞
0

dx

1 + xn
= − 1

1− ζ2
2πi

ζ

n
=
π

n

2i

z − z−1

After simplifying things, we get

z − z−1

2i
=
eiπ/n − e−iπ/n

2i
= sin

(π
n

)
=⇒

∫ ∞
0

dx

1 + xn
=

π/n

sin (π/n)

Lemma 8.4.2

Suppose f is holomorphic on D′ (z0, r) and f has a simple pole at z0. For ε > 0, let
Cε : [0, π]→ C be defined by Cε (t) = z0 + εeit. Then

lim
ε→0+

∫
Cε

f (z) dz = iπRes (f, z0)

Proof. The pole on z0 has order 1, so there exists g : D (z0, r)→ C such that

f (z) =
g (z)

z − z0

, and g is holomorphic on D (z0, r) .

Since f has a simple pole on z0,

Res (f, z0) = lim
z→z0

(z − z0) f (z) = lim
z→z0

g (z) = g (z0)

∫
Cε

f (z) dz =

∫
Cε

g (z) dz

z − z0

=

∫ π

0

g (z0 + εeit)

εeit
iεeit dt = i

∫ π

0

g
(
z0 + εeit

)
dt
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8 Singularity Points and Residue 83∣∣∣∣∫
Cε

f (z) dz − iπRes (f, z0)

∣∣∣∣ =

∣∣∣∣i ∫ π

0

g
(
z0 + εeit

)
dt− iπg (z0)

∣∣∣∣
=

∣∣∣∣∫ π

0

g
(
z0 + εeit

)
dt−

∫ π

0

g (z0) dt

∣∣∣∣
=

∣∣∣∣∫ π

0

(
g
(
z0 + εeit

)
− g (z0)

)
dt

∣∣∣∣
≤
∫ π

0

∣∣g (z0 + εeit
)
− g (z0)

∣∣ dt
As ε→ 0+, g (z0 + εeit)→ g (z0). Also, Cε is compact, so g (z0 + εeit) is bounded. Hence,
|g (z0 + εeit)− g (z0)| is bounded. Hence, switching limit and integral is valid. Therefore,

lim
ε→0+

∣∣∣∣∫
Cε

f (z) dz − iπRes (f, z0)

∣∣∣∣ ≤ lim
ε→0+

∫ π

0

∣∣g (z0 + εeit
)
− g (z0)

∣∣ dt
=

∫ π

0

lim
ε→0+

∣∣g (z0 + εeit
)
− g (z0)

∣∣ dt = 0

�

Example 8.4.3. Now we shall compute the following integral:∫ ∞
−∞

sinx

x
dx

Consider the function f (z) = eiz
z

. Then f has a pole at z = 0. The order of this pole is
exactly 1, because (z − 0) f (z) = eiz is entire.

f (z) =
g (z)

z − 0
, where g (z) = eiz is entire

so 0 is a simple pole.
Consider the following contour γ:

where the bigger semi-circular arc has radius M and the smaller semicircular arc has
radius ε. In other words,

γ = CM + [−M,−ε]− Cε + [ε,M ]

We claim that lim
M→∞

∫
CM

f = 0.

Using the definition of integral,∫
CM

f (z) dz =

∫ π

0

eiM cos t−M sin t

Meit
iMeit dt = i

∫ π

0

eiM cos t−M sin t dt

∴

∣∣∣∣∫
CM

f (z) dz

∣∣∣∣ ≤ ∫ π

0

∣∣eiM cos t−M sin t
∣∣ dt =

∫ π

0

e−M sin t dt = 2

∫ π
2

0

e−M sin t dt
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8 Singularity Points and Residue 84

sin′′ = − sin, so sin is concave on
[
0, π

2

]
, so we have

sin t = sin

(
2t

π

π

2
+

(
1− 2t

π

)
0

)
≥ 2t

π
sin

π

2
+

(
1− 2t

π

)
sin 0 =

2t

π

Therefore, −M sin t ≤ −2Mt
π

, so e−M sin t ≤ e−
2Mt
π .∣∣∣∣∫

CM

f (z) dz

∣∣∣∣ ≤ 2

∫ π
2

0

e−M sin t dt ≤ 2

∫ π
2

0

e−
2Mt
π dt = 2

[
e−

2Mt
π
−π
2M

]π
2

0

= − π

M
e−M +

π

M
=

π

M

(
1− e−M

)
≤ π

M

∴ lim
M→∞

∣∣∣∣∫
CM

f (z) dz

∣∣∣∣ ≤ lim
M→∞

π

M
= 0

So our claim is proved.
Using Lemma 8.4.2, we get

lim
ε→0+

∫
Cε

f (z) dz = iπRes (f, 0) = iπ lim
z→0

zf (z) = iπ lim
z→0

eiz = iπ

f is holomorphic on γ∗ and on the region enclosed by γ. Therefore, we can find a star
convex open set containing γ∗ and the region enclosed by γ, such that f is holomorphic
on that open set. Therefore,

∫
γ
f = 0. As a result

∫
γ
f (z) dz is 0 as M → ∞ and

ε→ 0+.

0 = lim
M→∞,ε→0+

(∫
CM

f (z) dz +

∫ −ε
−M

f (x) dx−
∫
Cε

f (z) dz +

∫ M

ε

f (x) dx

)
= lim

M→∞

∫
CM

f (z) dz − lim
ε→0+

∫
Cε

f (z) dz +

∫ 0−

−∞
f (x) dx+

∫ ∞
0+

f (x) dx

= 0− iπ +

∫ ∞
−∞

cosx+ i sinx

x
dx =⇒

∫ ∞
−∞

cosx dx

x
+ i

∫ ∞
−∞

sinx dx

x
= iπ

Equating the imaginary parts, we get∫ ∞
−∞

sinx

x
dx = π

84



9 Open Mapping Theorem

In Problem 2(b) of HW2, we proved that f is constant on a domain V ⊆ C if either of
these are satisfied:

(i) Re f is constant.

(ii) Im f is constant.

(iii) |f | is constant.

(iv) arg f is constant.

In this chapter we shall see a theorem, namely the “open mapping theorem”, that
trivializes the problem.

§9.1 Counting Zeros

If f is a holomorphic function, the zero set of f is denoted by Zf . In this section, we
shall consider Zf to be a “multiset” rather than a set. This means that if an element
occurs multiple times in Zf , we shall count it multiple times.

Theorem 9.1.1

Suppose f ∈ H (V ). Let γ be a curve in V such that Ind (γ, z) is either 0 or 1 for
z ∈ C \ γ∗; and Ind (γ, z) = 0 for z ∈ C \ V . Suppose f has no zeroes on γ∗, and let
Ω = {z ∈ V : Ind (γ, z) = 1}. Then

# (Zf ∩ Ω) =
1

2πi

∫
γ

f ′ (z) dz

f (z)

Proof. We define g ∈ H (V \ Zf ) by

g (z) =
f ′ (z)

f (z)

Zf is closed in V with no limit points. Therefore, by Residue Theorem,

1

2πi

∫
γ

f ′ (z) dz

f (z)
=

1

2πi

∫
γ

g (z) dz =
∑

z∈Ω∩Zf

Ind (γ, z) Res (g, s) =
∑

z∈Ω∩Zf

Res (g, s)

Suppose z ∈ Zf is a zero of f with order n. Since Zf is isolated, there exists a small disk
D (z, r) such that f is nonzero on D′ (z, r). So g is holomorphic on D′ (z, r).

Also, the zero at z has order n. Hence, there exists h ∈ H (V ) such that f (w) =
(w − z)n h (w), where h (z) 6= 0. f is nonzero on D′ (z, r), so h is nonzero on D (z, r).
Therefore, h′/h is holomorphic on D (z, r). For w ∈ D′ (z, r),

g (w) =
f ′ (w)

f (w)
=

n

w − z
+
h′ (w)

h (w)
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9 Open Mapping Theorem 86

Therefore, Res (g, z) = n. Each zero in Ω contributes its order to the sum
∑

z∈Ω∩Zf Res (g, s).

Hence, the number of zeroes (counting multiplicity) in Ω is∑
z∈Ω∩Zf

Res (g, s) =
1

2πi

∫
γ

f ′ (z) dz

f (z)

�

However, we can extend this result for meromorphic functions. If f has a pole of order n
at z, then f (w) = (w − z)−n h (w) near z, where h is holomorphic with h (z) 6= 0. Then
carrying out the same computations, we can prove that

number of zeroes− number of poles =
1

2πi

∫
γ

f ′ (z) dz

f (z)

Corollary 9.1.2 (Argument Principle)

Suppose f, γ, etc. are as in Theorem 9.1.1. We define a curve γ̃ by γ̃ (t) = f (γ (t)).
Then the number of zeroes in Ω is Ind (γ̃, 0).

Proof. γ : [a, b]→ C. Then by the definition of Ind,

Ind (γ̃, 0) =
1

2πi

∫
γ̃

dz

z
=

1

2πi

∫ b

a

γ̃′ (t) dt

γ̃ (t)

=
1

2πi

∫ b

a

f ′ (γ (t)) γ′ (t) dt

f (γ (t))
=

1

2πi

∫
γ

f ′ (z) dz

f (z)

By Theorem 9.1.1, we are done! �

There is a reason why this result is called “argument” principle. Suppose γ̃ is
parametrized by [0, 1]. Then we have a continuou function θ : [0, 1]→ R that returns an
argument of γ̃ (t). Then

Ind (γ̃, 0) =
θ (1)− θ (0)

2π
=

arg f (γ (1))− arg f (γ (0))

2π

Informally speaking, Ind (γ̃, 0) basically measures the change in argument of f as we
move around γ. That’s why this result is called “argument” principle.

Lemma 9.1.3

Suppose |z − w| < |z|+ |w| for w, z ∈ C. Then 0 does not lie

Proof. If we take the triangle with vertices 0, z, w, by triangle inequality,

|z − w| ≤ |z − 0|+ |w − 0| =⇒ |z − w| ≤ |z|+ |w|

Here we have the strict inequality. That means the triangle is cannot be a degenerate
triangle. So 0, z, w are not collinear. �
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9 Open Mapping Theorem 87

Proposition 9.1.4

Suppose γ0 and γ1 are two closed curves in C \ {0} with the same parameter interval
[a, b]. If

|γ1 (t)− γ0 (t)| < |γ1 (t)|+ |γ0 (t)|

for all t ∈ [a, b], then γ0 'p γ1. And in particular Ind (γ0, 0) = Ind (γ1, 0).

Proof. We shall construct a homotopy F : [0, 1]× [a, b]→ C \ {0} as follows:

F (s, t) = s γ1 (t) + (1− s) γ0 (t)

For a fixed t, |γ1 (t)− γ0 (t)| < |γ1 (t)| + |γ0 (t)| gives us that 0 does not lie in the line
segment joining γ0 (t) and γ1 (t) (Lemma 9.1.3). Therefore, F is a homotopy between γ0

and γ1. So γ0 'p γ1.
Furthermore, since γ0 and γ1 are homotopic, by Corollary 7.2.4, Ind (γ0, 0) = Ind (γ1, 0).

�

Theorem 9.1.5 (Rouche’s Theorem)

Let γ be a curve in V such that Ind (γ, z) is either 0 or 1 for z ∈ C \ γ∗; and
Ind (γ, z) = 0 for z ∈ C \ V . Let Ω = {z ∈ V : Ind (γ, z) = 1}. If f, g ∈ H (V ) and

|f (z)− g (z)| < |f (z)|+ |g (z)|

for all z ∈ γ∗. Then f and g have the same number of zeroes in Ω.

Proof. Let γ̃f = f ◦ γ and γ̃g = g ◦ γ. By the given condition,

|γ̃f (t)− γ̃g (t)| < |γ̃f (t)|+ |γ̃g (t)|

Then by Proposition 9.1.4, Ind (γ̃f , 0) = Ind (γ̃g, 0). But the number of zeroes of f in
Ω is just Ind (γ̃f , 0) (Argument Principle). Similarly, the number of zeroes of g in Ω is
Ind (γ̃g, 0).

Therefore, f and g have the same number of zeroes in Ω. �

There is another version of Rouche’s Theorem that assumes a stronger hypothesis:

|f (z)− g (z)| < |f (z)|

The proof of this version is left as an exercise for the reader.

§9.2 Open Mapping Theorem

Theorem 9.2.1 (Open Mapping Theorem)

Let V ⊆ C be a domain and f ∈ H (V ) be non-constant. Then f is an open map
(maps open sets to open sets).

Proof. Suppose S ⊆ V is open, we want to show that f (S) is open. Let z0 ∈ S, and
g (z) = f (z)− f (z0). We choose r > 0 such that D (z0, r) ⊆ S and g has no zeroes on
∂D (z0, r). We can choose such r because we’ve proved that the zeroes of a holomorphic
function are isolated.
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9 Open Mapping Theorem 88

Let γ = ∂D (z0, r) and δ = inf {|g (z)| : z ∈ γ∗}. δ > 0 as g has no zeroes on γ∗.
Let h ∈ C with |h| < δ. Then

|(g (z)− h)− g (z)| = |h| < δ ≤ |g (z)|

for all z ∈ γ∗. By Rouche’s Theorem, g and g − h have the same number of zeroes in
D (z0, r). g (z0) = 0, so it has at least one zero in D (z0, r). Therefore, g − h has at least
one zero in D (z0, r). In other words, there exists z ∈ D (z0, r) such that

0 = g (z)− h = f (z)− f (z0)− h =⇒ g (z) = f (z0) + h

This is true for every h ∈ D (0, δ). Therefore,

D (f (z0) , δ) = f (z0) +D (0, δ) ⊆ f (D (z0, r)) ⊆ f (S)

For every f (z0) ∈ f (S), we can find a ball around f (z0) that is contained in f (S). So
f (S) is open. �

However, Open Mapping Theorem is not true in real analysis. For example, let’s take
f : R→ R given by f (x) = x2. (−α, α) is an open subset of R. But its image [0, α2) is
not open, despite f being differentiable.

In the beginning of this chapter, we said that Open Mapping Theorem trivializes
Problem 2(b) of HW2. Let’s see how.

Suppose f is holomorphic in a domain V . If Re f is constant, then f (V ) is a line
parallel to the imaginary axis. This is not open, since open sets contain some open disks.
V is open, but f (V ) is not. So f is not an open map. This contradicts Open Mapping
Theorem, so f cannot be non-constant.

Now suppose Im f is constant. Then f (V ) is a line parallel to the real axis, which is
not open. V is open, but f (V ) is not. So f is not an open map. This contradicts Open
Mapping Theorem, so f cannot be non-constant.

If |f | is constant, then f (V ) is a circular arc, which is not open. V is open, but f (V )
is not. So f is not an open map. This contradicts Open Mapping Theorem, so f cannot
be non-constant.

Finally, if arg f is constant, f (V ) is a ray through the origin. This does not contain
any open disk, so it’s not open. V is open, but f (V ) is not. So f is not an open map.
This contradicts Open Mapping Theorem, so f cannot be non-constant.

In general, from Open Mapping Theorem, one can conclude that if f is nonconstant
holomorphic on V and D (z0, r) ⊆ V , then f (D (z0, r)) cannot be a one-dimensional
submanifold1 embedded in C. In other words, dim f (V ) cannot be 1.

Open Mapping Theorem gives us an elegant proof of Maximum Modulus Principle.

Theorem 9.2.2 (Maximum Modulus Principle)

If f is non-constant holomorphic is a domain V , then |f | cannot attain a maximum
in V .

Proof. Assume for the sake of contradiction that |f (z0)| ≥ |f (V )| for all z ∈ V . Since
f is non-constant holomorphic, it’s an open mapping. Take r > 0 with D (z0, r) ⊆ V .
Then f (D (z0, r)) is an open set containing f (z0). So there exists r′ > 0 such that

D (f (z0) , r′) ⊆ f (D (z0, r))

1You can ignore it if you don’t know what it means.
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9 Open Mapping Theorem 89

Let f (z0) = a+ ib. If a < 0, we take z1 = f (z0)− r′

2
∈ D (f (z0) , r′). Otherwise, if a ≥ 0,

we take z1 = f (z0) + r′

2
∈ D (f (z0) , r′). Then a quick check shows that |z1| > |f (z0)|.

Since z1 ∈ D (f (z0) , r′) ⊆ f (D (z0, r)), there exists z2 ∈ D (z0, r) such that f (z2) = z1.
Hence

|f (z2)| = |z1| > |f (z0)|

which contradicts the assumption that |f (z0)| is maximum. So |f | cannot attain a
maximum. �

Theorem 9.2.3 (Inverse Function Theorem)

Suppose f : V → C is injective and holomorphic, and f ′ (z) 6= 0 for every z ∈ V . If
g : f (V )→ V is the inverse of f , then g is holomorphic with g′ (z) = 1

f ′(g(z))
.

Proof. Firstly, let’s show that g is continuous. Let U ⊆ V be open. Then by Open
Mapping Theorem, f (U) is open. Therefore,

g−1 (U) = f (U) is open =⇒ g is continuous.

To see that g is holomorphic, let w0 ∈ f (U), and z0 = g (w0). Since both g and f are
continuous, if w → w0 then g (w)→ z0. If g (w) = z, then f (z) = w.

lim
w→w0

g (w)− g (w0)

w − w0

= lim
g(w)→z0

g (w)− z0

w − f (z0)
= lim

z→z0

z − z0

f (z)− f (z0)
=

1

f ′ (z0)

Therefore, g′ (w0) exists, and it is equal to 1
f ′(g(w0))

. �
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10 Homeworks and Exams

§10.1 Homework 1

Problem 1. Let ω = e
2πi
3 . Suppose a, b, c ∈ Z. They are nonzero, and not all equal.

What is the minimum value of ∣∣a+ bω + cω2
∣∣

Problem 2. Show that SO(2) is isomorphic to S1 where the group operation in SO(2)
is the matrix multiplication and the group operation in S1 is the complex number
multiplication.

Problem 3. t = cos(θ) + u sin(θ) where u is a “pure imaginary” unit quaternion. Show
that the map

ct : H → H

q 7→ t−1qt

rotates R3(≡ Ri + Rj + Rk) through angle −2θ about the axis u.

Problem 4. Show that

f : S1 → S1

z 7→ zn

is a group homomorphism. What’s its kernel?

Problem 5. Let z0 ∈ C and |z0| < a for some positive real number a. Observe that

E = {z ∈ C : |z − z0|+ |z + z0| = 2a}

represents a very familiar graph. Identify the graph and write a couple of facts about
the graph.

§10.2 Homework 2

Problem 1. Find the radius of convergence of the following power series

∞∑
n=1

(−1)n

n
zn(n+1)

What happens if z = i?

Problem 2. Prove that

(a) A holomorphic function f on domain Ω whose derivative vanishes identically is a
constant.

(b) The same conclusion holds if
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10 Homeworks and Exams 91

(i) real part is constant.

(ii) imaginary part is constant.

(iii) modulus of f is constant.

(iv) the argument of f is constant.

Problem 3. Let V be open in C and Γ1,Γ2 be two piecewise C1 paths from α ∈ V to
β ∈ V . Suppose the map f : V → C has a primitive in V . Show that∫

Γ1

f(z) dz =

∫
Γ2

f(z) dz

Problem 4. Given k ∈ Z and z, w ∈ C satisfying 2kπ < Im(z) ≤ 2(k + 1)π and
2kπ < Im(w) ≤ 2(k + 1)π. Then ez = ew if and only if z = w.

Problem 5. Define H = {z ∈ C : Im(z) > 0} as the upper half plane in C and
D = {z ∈ C : |z| < 1} as the unit disk of C. Consider, the Cayley map, C(z) = z−i

z+i
.

Provide explicit description of the following sets:

(a) C(R)

(b) C(H)

(c) C−1(D)

Problem 6. Prove the following:

(i) f(0) = 0, f(z) = e−z
−4

, when z 6= 0. Prove that the partial derivatives exist at
every point (including the origin) and f satisfies the CR-equations at every point.
Then prove that f is not complex differentiable at the origin.

(ii) Prove that f(z) = ix2 − 2xy − iy2 + 3x+ 3iy + i can be written as a function of z,
and show that f is holomorphic. (z = x+ iy)

(iii) Consider the function f(z) = zm(z̄)n for non-negative integers m and n. Is f
holomorphic in any open subset of C?

Problem 7. Compute
∫
γ

dz
z−z0 , where γ(t) = z0 + reit, 0 ≤ t ≤ 2π and r > 0. Using this

conclude that 1
z−z0 doesn’t have a primitive in {z : |z − z0| < r}.

Problem 8. Suppose V ⊂ C be open and convex, and f : V → C is a continuous
function with

∫
∂T
f(z)dz = 0 for every triangle T ⊂ V. Then show that there exists a

function g : V → C such that g′ = f in V .

Problem 9. Compute the simplicial homology groups of the triangular parachute
obtained from ∆2 (standard 2-simplex) by identifying its three vertices to a single point.

Problem 10. Consider the following ∆-complex structure of T 2 (torus):

V

V

V

V

a a

b

c

b

U

L
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10 Homeworks and Exams 92

Compute the cellular homology groups of T 2. Follow the exact procedure that we did for
simplicial homology groups computation.

§10.3 Midterm 1 / Homework 3

Problem 1. Prove the following:

(a) Let Ω be a domain in C, and f : Ω→ C be a C1 function such that

i
∂f

∂x
=
∂f

∂y

Is f holomorphic?

(b) Consider V = {z ∈ C : Re z > 1}. Show that

f(z) =
∞∑
n=1

1

nz

is holomorphic on V .

Problem 2. Show that
∞∑
n=0

nnzn
n

has radius of convergence 1, but
∞∑
n=0

nnzn is not

convergent at all.

Problem 3. Prove the following:

(a) Let V ⊆ C be a domain, and f : V → C be a continuous function with the property∫
γ

f(z) dz = 0

for any closed contour γ in V . Show that f has an antiderivative on V .

(b) Does f(z) = 1
z

have antiderivative on C \ {0}?

Problem 4. Let z0, z
′
0 be two nonzero complex numbers. A holomorphic function

f : C→ C is defined in a way so that

f (z) = f (z +mz0 + nz′0)

for any z ∈ C, for all m,n ∈ Z. Show that f is constant.

Problem 5. Let n ∈ N. Find all entire functions f for which there exist M,R > 0 such
that |f (z)| ≥M |z|n whenever |z| > R.

Problem 5 (Alternate). Let f be an entire function with the property that
∣∣f ( 1

n

)∣∣ ≤ n−n

for n ∈ N. Show that f is constant.

Problem 6. Let f be an entire function such that f (ix) = f (x) for all x ∈ (1, 2) ⊆ R.
Prove that

f (z) = f (−z) ∀ z ∈ C
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10 Homeworks and Exams 93

Problem 6 (Alternate). Let U be a non-empty open connected subset of C. Let p ∈ U
and ∆r(p) be the disk of radius r (> 0) centered at p. ∆r(p) ⊆ U , and f : U → C be
holomorphic. Prove that the average of f on ∆r(p) is f(p). In other words,

1

πr2

∫
∆r(p)

f(z) dA = f(p)

[Hint: Convert the integral suitably into a double integral and use the “mean-value
property”. Recall dA = dx dy = r dr dθ, where z = reiθ = x+ iy.]

Problem 7. Let V be a star-convexdomain, and f : V → C be a holomorphic function.
Prove that ∫

γ

f(z) dz = 0

for any closed contour γ in V .

Problem 8. Let V ⊆ C be open in C, and γ1, γ2 be two contours in V that are homotopic
with fixed end points. Then show that∫

γ1

f(z) dz =

∫
γ2

f(z) dz

for any holomorphic function f : V → C.

Problem 9. Prove that ∫
γ

P (z) dz = 0

for any polynomial P and any chain γ with the property: ∂ (γ) = 0 where ∂ : C1 → C0

is the usual boundary map.

Problem 10. Compute the following integral for the following contours:∫
γ

cos (z2) + z

z −
√
π

dz

(a) γ (t) = 2eit, for 0 ≤ t ≤ 2π

(b) γ (t) = e2πit, for 0 ≤ t ≤ 1

(c) γ (t) = (1 + i) + 5e2πit, for 0 ≤ t ≤ 1

§10.4 Midterm 2 / Homework 4

Notations:

1. f ∈ H(V ) means f is holomorphic on V .

2. f ∈ C(V ) means f is continuous on V .

3. f ∈ C
(
V
)
∩H(V ) means f ∈ C

(
V
)

and f
∣∣
V
∈ H(V ).

4. D′ (z, r) = D (z, r) \ {z} = {w ∈ C : 0 < |w − z| < r}
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10 Homeworks and Exams 94

Problem 1. Suppose that f ∈ H(C) and |f(z)| ≤ eRe z for all z. Show that f(z) = cez

for some constant c.

Problem 2. Suppose that f ∈ H(C). n is a positive integer and |f(z)| ≤ (1 + |z|)n for
all z. Show that f is a polynomial.

Problem 3. Suppose that f, g ∈ H(D(z, r)), 1 ≤ m ≤ n, f has a zero of order n at z
and g has a zero of order m at z. Show that f/g has a removable singularity at z.

Problem 4. Suppose that f ∈ H(C) and f(n) = 0 for all n ∈ Z. Show that all the
singularities of f(z)/ sin(πz) are removable.

Problem 5. Suppose that f ∈ H(C), f(z + 1) = −f(z) for all z, f(0) = 0, and
|f(z)| ≤ eπ|Im z| for all z. Show that f(z) = c sin(πz) for some constant c.

Problem 6. Let V = C \ {0}. Show that there does not exist f ∈ H(V ) such that
ef(z) = z for all z ∈ V .

Problem 7. Suppose that V is a bounded open subset of the plane and f ∈ C
(
V
)
∩H(V ).

Show that if M ≥ 0 and |f(z)| ≤M for all z ∈ ∂V , then |f(z)| ≤M for all z ∈ V .

Problem 8. Let V = D(0, 1). Suppose that f ∈ C
(
V
)
∩H(V ), f(0) = 0 and |f(z)| ≤ 1

for all z ∈ V . Show that |f(z)| ≤ |z| for all z ∈ V .

Problem 9. Let V = D(0, 1). Suppose that f ∈ H(V ), f(0) = 0 and |f(z)| ≤ 1 for all
z ∈ V . Show that |f(z)| ≤ |z| for all z ∈ V .

Problem 10. Suppose that α < 1 and f ∈ H (D′ (z0, r)) satisfies

|f(z)| ≤ c |z − z0|−α .

Show that f has a removable singularity at z0.

§10.5 Homework 5

Problem 1. Let a, b, c ∈ C be three non-collinear complex numbers. Show that they
form an equilateral triangle iff a2 + b2 + c2 = ab+ bc+ ca.

Problem 2. Let a, b ∈ C be two complex numbers with the property: Re a ≤ 0 and
Re b ≤ 0. Show that

∣∣ea − eb∣∣ ≤ |a− b|.
Problem 3. Consider the following power series

∞∑
n=0

anz
n. The coefficients an are real,

and given by the following recurrence relation:

3an + 4an−1 − an−2 = 0 , ∀n ≥ 2

a0 = 1 and a1 = −1. Find the radius of convergence of this power series and the function
to which this series converges.

Problem 4. Show that

f ′′ (z) = zf (z) , f ′ (0) = f (0) = 1

has a unique entire solution.
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Problem 5. Find a conformal map1 f such that

f ({z : |z| < 1 and Re z > 0}) = {z : |z| < 1} .

Problem 6. Find the area of the image of D (0, 1) under tha map f (z) = z + z2

2
.

Problem 7. Suppose f is holomorphic on D (0, 1), f (0) = 3 + 4i, and |f (z)| ≤ 5 for
every z ∈ D (0, 1). Find f ′ (0).

Problem 8. Suppose f ∈ H (C) such that∫ 2π

0

∣∣f (reiθ)∣∣ dθ ≤ r
17
3 , for every r > 0.

Show that f ≡ 0.

Problem 9. Let f ∈ H (C) with the property

|f (z)| ≤ |Re z|−
1
2 off the imaginary axis.

Prove that f is constant.

Problem 10. Suppose f ∈ H (C), f (0) = 0, and

{z : |f (z)| < M} is connected ∀M > 0.

Show that f (z) = czn for some c ∈ C and n ∈ N.

§10.6 Homework 6

Problem 1. Suppose f is holomorphic on D = D (0, 1), and f : D→ D. Show that

|f ′ (z)| ≤ 1

1− |z|2
.

Problem 2. Suppose f, h ∈ H (C), and for every z ∈ C, we have

|f (z)| ≤ |g (z)| .

Show that f (z) = c g (z) for some constant c ∈ C.

Problem 3. If f, h ∈ H (C), and

Re f ≤ k Re g for some k,

then show that there exists a, b ∈ C such that f (z) = a g (z) + b.

Problem 4. Suppose f is complex valued continuous function on [0, 1], and

g (z) =

∫ 1

0

f (t) etz dt , ∀ z ∈ C.

Show that g ∈ H (C).

1A conformal map is a function that preserves angle.
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10 Homeworks and Exams 96

Problem 5. Let f ∈ C0 (C) be holomorphic on {z : Re z 6= 0}. Show that f is entire.

Problem 6. Suppose uxx + uyy = 0 for some positive function u on R2. Show that u is
constant.

Problem 7. Show that P (z) = z47− z23 + 2z11− z5 + 4z2 + 1 has at least one zero in D.

Problem 8. How many zeroes does f (z) = 3z100 − ez have in D? Are all distinct?

Problem 9. How many zeroes does f (z) = 3z9+8z6+z5+2z3+1 have in {z : 1 < |z| < 2}?

Problem 10. If f ∈ H (C), then show that f (C) is dense in C.

Problem 11. Find all entire functions such that f
(
zk
)

= (f (z))k for k > 1.

Problem 12. Find all holomorphic functions on D that satisfy

f ′′
(

1

n

)
+ f

(
1

n

)
= 0 ∀n ≥ 2.

Problem 13. Let f be a holomorphic function, and

f (z) = f

(
1

z

)
∀ z 6= 0.

Suppose f is real on ∂D. Show that f (z) is real for all nonzero real z.
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