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When I was a kid, maybe in 3rd or 4th grade, our math textbook had problems like this:

Find the smallest number that leaves a remainder of 2 when divided by 3, 3 when
divided by 4, 4 when divided by 5, 5 when divided by 6, and 6 when divided by 7?

In this case, you see that all the remainders are 1 less than the divisor. So the trick to solve
this problem is to take the LCM of all the divisors, and subtracting 1 from that. The LCM of 3,
4, 5, 7 is their product 420. So the answer is 419.

One thing has always baffled me about these problems as a kid. We were told to find the
smallest such number. Are there more of such numbers? If so, how can we find all the numbers?
Also, how do we know for a fact that such a number always exists? What baffled me more is
that everyone else used to think that the existence of such numbers is obvious. Later I’ve come
to know the Chinese remainder theorem, and my childhood query got answered!

§1 Statement

Theorem 1.1 (Chinese Remainder Theorem)

Let m1, . . . ,mk be pairwise relatively prime positive integers, and let

M = m1 · · ·mk.

Then for every k-tuple (x1, . . . , xk) of integers, there is exactly one residue class x (mod M)
such that

x ≡ x1 (mod m1)

x ≡ x2 (mod m2)

...

x ≡ xk (mod mk).

Proof. The statement can be rewritten as follows: the map

F : Z/MZ → Z/m1Z× Z/m2Z× · · · × Z/mkZ

defined by
x mod M 7→ (x mod m1, x mod m2, . . . , x mod mk) (1)
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is a bijection. Since the domain and codomain are finite sets with the same cardinality, it suffices
to show that F is injective. Suppose F (x) = F (y). Then x ≡ y (mod mi) for each i. So each
mi divides x− y. Since all the mi’s are pairwise coprime, their product M also divides x− y.
So x ≡ y (mod M) and hence, F is injective.

Note that the above proof is non-constructive. It doesn’t give us any idea about how to construct
x mod M given x mod m1, x mod m2, . . . , x mod mk. There’s a constructive proof as well, but
we don’t really need the construction for most purposes. Existence and uniqueness is enough for
us.

Here’s a meme I made a couple years ago when I first learned about infinite dimensional vector
spaces and the proof of the existence of their bases using axiom of choice:

Figure 1: You can ignore the meme if you’re unfamiliar with vector spaces or axiom of choice.

There are several useful formulations of CRT. I shamelessly copied the names from Evan
Chen’s note.

Chinese Remainder Theorem A (Construction)

Given xi’s and mi’s, there exists x which simultaneously satisfies the congruences

x ≡ xi (mod mi) (2)

for each i. Furthermore, this x is unique modulo M =
∏

mi.

This perspective is the most useful one for problem solving. It allows us to cook up numbers
with desired residues upon division by some numbers. But note that even if mi’s are small, the
product M can be very large. As a result, x also can be very large. Furthermore, there is no
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easy way to write down x in terms of xi’s and mi’s. For the curious minds, suppose yi =
M
mi

,

and zi = y−1
i mod mi. Then

x =
k∑

i=1

xiyizi = x1y1z1 + x2y2z2 + · · ·+ xkykzk mod M.

To quote Evan Chen,

“This perspective talks about things we can’t actually see.”

As I mentioned earlier, we can put together a bunch of (of course, has to be finitely many) linear
congruences x ≡ xi (mod mi), and by CRT, there exists a unique solution modM . This notion
of CRT goes best with Dirichlet’s theorem. In fact, I’d like to call CRT and Dirichlet’s theorem
best friends. Let’s see how these two fit together.

Theorem 1.2 (Dirichlet’s Theorem)

For any two positive coprime integers a and d, there are infinitely many primes of the form
a+ nd, where n is also a positive integer. In other words, given an arithmetic sequence

an = a0 + nd,

with gcd(a0, d) = 1, there are infinitely many n such that an is a prime.

According to CRT, since x mod M is unique, all the numbers x with the property that

x ≡ xi (mod mi)

for each i, are in an arithmetic sequence. A general term of this arithmetic sequence looks like

x+Mn, (3)

where n ∈ Z and x is any number satisfying x ≡ xi (mod mi) for each i. If, furthermore, we can
ensure that x and M are coprime, then we know by Dirichlet’s Theorem that there are infinitely
many prime numbers in this arithmetic sequence (3). So we can take a prime number P such
that P ≡ xi (mod mi) for each i. Moreover, since there are infinitely many such primes, we can
take a sufficiently large prime number with our desired property. This is often useful for sizing
and bounding arguments as we shall soon see.

The key point here is, of course, that x and M need to be coprime. There is a really neat way
to check it. Since M = m1m2 · · ·mk and the mi’s are pairwise coprime, we have

gcd(x,M) = gcd (x,m1) gcd (x,m2) · · · gcd (x,mk) . (4)

Since x ≡ xi (mod mi), we have gcd (x,mi) = gcd (xi,mi). Therefore,

gcd(x,M) = gcd (x1,m1) gcd (x2,m2) · · · gcd (xk,mk) =

k∏
i=1

gcd (xi,mi) . (5)

If xi and mi are coprime for each i, then we can conclude that x and M are coprime. You always
have to verify this before applying CRT and Dirichlet’s Theorem together.
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Chinese Remainder Theorem B (Lifting)

If x ≡ k (mod mi) for each i, then x ≡ k (mod M).

This probably does not look very interesting. But this is particularly useful for bounding
problems.

Chinese Remainder Theorem C (Destruction)

To understand x mod M , it suffices to understand x mod mi for every i.

In particular, we can reduce any statement modulo n = pα1
1 · · · pαk

k to a statement modulo each
pαi
i . If we have perfect information in modulo pαi

i for each i, CRT allows us to get perfect
information in modulo n =

∏
pαi
i . This gives us a way to reduce a problem.

§2 Some Examples

Again, quoting Evan Chen:

“The Chinese Remainder Theorem is a natural, intuitive concept, and therefore it is
used most effectively when we don’t think explicitly about having to use it.”

Let us see some examples where CRT is used. As always, it is recommended that you try the
problems on your own for some time before seeing solution ideas.

Example 2.1 (a) Do there exist 14 consecutive positive integers such that each of them
is divisible by one or more prime numbers 2 ≤ p ≤ 11?

(b) Do there exist 21 consecutive positive integers such that each of them is divisible by
one or more prime numbers 2 ≤ p ≤ 13?

Solution. (a) Among the 14 consecutive numbers, 7 are even, so they are divisible by 2, and we
don’t need to worry about them. Suppose the odd ones are n, n+ 2, n+ 4, n+ 6, n+ 8, n+
10, n+ 12.

Among these 7 numbers, at most 3 of them are divisible by 3; at most 2 of them are divisible
by 5; exactly 1 is divisible by 7; at most 1 is divisible by 11. 3 + 2+ 1+ 1 = 7, so we need to
have the extreme scenario, and no number can be divisible by more than one prime in the
interval 2 ≤ p ≤ 11.

Two consecutive odd multiples of 3 are separated by 6, so we must have that n, n+ 6, n+ 12
are divisible by 3. Two consecutive odd multiples of 5 are separated by 10. So either
5 | n, n+ 10 or 5 | n+ 2, n+ 12. In either case, either n or n+ 12 is divisible by more than
one prime in the interval 2 ≤ p ≤ 11. So there does not exist 14 consecutive such numbers.

(b) At most 11 of the 14 consecutive numbers are even, so we don’t need to worry about them.
Suppose the odd ones are n, n+ 2, . . . , n+ 18.

Let us keep track of which number is divisible by which primes in the following table. We
would like to fill this table with primes 2 ≤ p ≤ 13.

number n n+ 2 n+ 4 n+ 6 n+ 8 n+ 10 n+ 12 n+ 14 n+ 16 n+ 18

prime
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Let us fill this table greedily. At most 4 of these numbers are divisible by 3, and they are in
a gap of 6.

number n n+ 2 n+ 4 n+ 6 n+ 8 n+ 10 n+ 12 n+ 14 n+ 16 n+ 18

prime 3 3 3 3

Exactly 2 of these numbers are divisible by 5, and they are in a gap of 10. Since we would
like to fill this table completely, the most greedy approach would be to find two numbers
that are not divisible by 3.

number n n+ 2 n+ 4 n+ 6 n+ 8 n+ 10 n+ 12 n+ 14 n+ 16 n+ 18

prime 3 5 3 3 5 3

At most 2 of these numbers are divisible by 7, and they are in a gap of 14. Again, the most
greedy approach would be to find two numbers that are not divisible by 3 or 5.

number n n+ 2 n+ 4 n+ 6 n+ 8 n+ 10 n+ 12 n+ 14 n+ 16 n+ 18

prime 3 7 5 3 3 5 7 3

Now only two numbers remain. We can assign 11 and 13 to these numbers.

number n n+ 2 n+ 4 n+ 6 n+ 8 n+ 10 n+ 12 n+ 14 n+ 16 n+ 18

prime 3 7 5 3 11 13 3 5 7 3

So this is what we want. But does there exist such n? More precisely, does there exist an
odd n which is divisible by 3, n+ 4 is divisible by 5, n+ 2 is divisible by 7, n+ 8 is divisible
by 11, n+ 10 is divisible by 13? Of course such n exists by CRT! CRT guarantees us that
there exists n that satisfies the following congruences:

n ≡ 1 (mod 2),

n ≡ 0 (mod 3),

n ≡ −4 (mod 5),

n ≡ −2 (mod 7),

n ≡ −8 (mod 11),

n ≡ −10 (mod 13).

So we are done!
■

If you actually calculate n, then you’d see n ≡ 9441 (mod 30030). So, the 21 consecutive
numbers are 9440, 9441, . . . , 9460. We were taking modulo 2, 3, 5, 7, 11, 13, which are very small
numbers. But in the end, the result turned out to be pretty large.

Example 2.2 (IMO 1989)

Show that for every n > 1, there exists n consecutive integers such that none of them are
prime powers.

Solution. How can we ensure that a number is not a prime power? If it has more than one prime
factors. So we have to ensure that each of the consecutive numbers are divisible by two primes

5



p, q. Suppose the n consecutive numbers are N + 1, N + 2, . . . , N + n. So we need

N + 1 ≡ 0 (mod p1q1)

N + 2 ≡ 0 (mod p2q2)

...

N + n ≡ 0 (mod pnqn),

(6)

where pi and qj are all distinct primes. Since piqi and pjqj are coprime, by CRT, there exists
such N and we are done! ■

Example 2.3

Show that for every n > 1, there exists n consecutive integers such that none of them are
sum of two squares.

Solution. What do we know about the numbers that are sum of two squares? We know that if p
is an odd prime with p ≡ 1 (mod 4), then p can be written as a sum of two squares. It’s obvious
that primes p ≡ −1 (mod 4) cannot be written as a sum of two squares, because if p = x2 + y2,
taking mod 4, we get p ≡ 0, 1, 2 (mod 4) since the quadratic residues modulo 4 are 0, 1.
Also, if A and B are sum of two squares, then so is AB, because of the Brahmagupta-Fibonacci

identity: (
a2 + b2

) (
c2 + d2

)
= (ac+ bd)2 + (ad− bc)2 . (7)

So, if a number only has prime factors of the form 4k+1, then it can be written as a sum of two
squares. What if the number has prime factors p ≡ −1 (mod 4)? Suppose p | a2 + b2, where
p ≡ −1 (mod 4) is a prime. Then p must divide both a and b. Indeed, if p does not divide a,
then suppose a′ is the inverse of a modulo p.

0 ≡
(
a2 + b2

) (
a′
)2 ≡ (

aa′
)2

+
(
a′b

)2 ≡ (
a′b

)2
+ 1 (mod p) (8)

So −1 is a quadratic residue modulo p. But since p ≡ −1 (mod 4), −1 cannot be a quadratic
residue. So we get a contradiction. As a result, p divides a. Similarly, p divides b as well. As a
result, p2 | a2 + b2.
So we have shown that if p | a2 + b2, then p2 | a2 + b2 for a prime p ≡ −1 (mod 4). Now

consider the number
a2

p2
+

b2

p2
. (9)

If this sum of squares is divisible by p, then it must be divisible by p2. In that case, we can
reduce the number further by dividing it with p2. Eventually, we will find that

a2

p2k
+

b2

p2k
(10)

is not divisible by p anymore, for some k. Therefore, the power of p in the prime factorization of
a2 + b2 is even, i.e. 2 | vp

(
a2 + b2

)
.

So, if we want to ensure that a number N is not a sum of two squares, it suffices that there is
a prime p ≡ −1 (mod 4) such that vp (N) is odd. How can we ensure that? N ≡ 0 (mod p2k−1)
does not work. What works is this: N ≡ p2k−1 (mod p2k). Or simply, N ≡ p (mod p2).
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We now need to ensure that there exists n consecutive numbers with this property. Suppose
the n consecutive numbers are N + 1, N + 2, . . . , N + n. So we need

N + 1 ≡ p1 (mod p21)

N + 2 ≡ p2 (mod p22)

...

N + n ≡ pn (mod p2n),

(11)

where p1, p2, . . . , pn are primes of the form 4k − 1. By CRT, there exists such N , and we are
done! ■

Note that, here we implicitly used the fact that there are infinitely many primes of the form
4k − 1. If there are only finitely many such primes, you cannot choose n such primes for any
n. You can either use Dirichlet’s Theorem to convince yourself that there are infinitely many
primes of the form 4k − 1. Or you can mimic Euclid’s proof of infinitude of primes. If there are
only finitely many such primes, say p1, . . . , pm, then you can take the number

4p1p2 · · · pm − 1. (12)

It has a prime factor of the form 4k − 1, but none of the pi’s divide it.

Example 2.4 (USAMO 2008)

Prove that for each positive integer n, there are pairwise relatively prime integers k0, k1, . . . , kn,
all strictly greater than 1, such that k0k1 . . . kn−1 is the product of two consecutive integers.

Solution. If k0k1 . . . kn − 1 is the product of two consecutive integers, it looks like m (m+ 1) for
some m. So we have

m2 +m+ 1 = k0k1 . . . kn. (13)

In other words, m2 +m + 1 can be written as a product of n + 1 pairwise coprime numbers.
Let’s forget about the structure m2 +m+ 1 for a moment. Given a positive integer N , suppose
you want to write N as a product of k pairwise coprime numbers which are all greater than 1.
What is the maximum possible value of k? If you think about it a bit, you’ll get that the highest
possible value of k is the number of distinct prime factors of N . If you express

N = n1n2 · · ·nk, (14)

where the ni’s are pairwise coprime numbers, each ni contains at least one prime factor of N
since they are greater than 1. So k cannot be more than the number of distinct prime factors of
N . And this is achievable, since we can just put ni = pαi

i , for N =
∏

pαi
i .

So the question essentially boils down to proving that given n > 1, there exists m such that
m2 + m + 1 has at least n + 1 distinct prime factors. In other words, numbers of the form
m2 +m+ 1 can have arbitrarily many prime factors.
One consequence of this is that there are infinitely many prime numbers that divide some

number of the form m2 +m+ 1. So it is necessary that we have this. But is it sufficient? Once
we have that there are infinitely many primes p such that p | m2 +m+ 1, how do we go about
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proving our original problem? In particular, if

p1 | m2
1 +m1 + 1,

p2 | m2
2 +m2 + 1,

...

pk | m2
k +mk + 1,

how do we cook up M such that p1p2 · · · pk | M2 +M + 1?

The key trick is that a − b | P (a) − P (b) for any integer polynomial P . As a result, if a ≡ b
(mod m) then P (a) ≡ P (b) (mod m). Suppose P (x) = x2 + x+ 1. We have pi | P (mi). We
want to show that there is an “universal” M such that pi | P (M) for each i. So it suffices that
we have M ≡ mi (mod pi) for each i. That way, we would have

P (M) ≡ P (mi) ≡ 0 (mod pi). (15)

Now, by CRT, there exists such M satisfying each of the congruences

M ≡ m1 (mod p1)

M ≡ m2 (mod p2)

...

M ≡ mk (mod pk).

(16)

So CRT reduced our problem to proving that there are infinitely many prime numbers that
divide some number of the form m2 +m+ 1. It can be proved by just mimicing Euclid’s proof
of infinitude of primes. Suppose there are only finitely many primes that divide some number
of the form m2 +m+ 1, say p1, p2, . . . , pk. Then choose N = p1p2 · · · pk, and take N2 +N + 1.
Neither pi’s divide N2 +N + 1, so it has a new prime factor, and we are done! ■

There is also another way to finish this problem. A prime p divides some number of the form
m2 +m+ 1 means that the quadratic x2 + x+ 1 = 0 has a solution in mod p. The solution is

x =
−1±

√
−3

2
, (17)

which is a valid solution mod p if and only if −3 is a quadratic residue modulo p. Let us now
use quadratic reciprocity!1 (

−3

p

)
=

(
−1

p

)(
3

p

)
. (18)

1Check out the first four lines of this: https://www.youtube.com/watch?v=93Bab7S3hjA
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(
−1
p

)
= (−1)

p−1
2 , and (

3

p

)(p
3

)
= (−1)

3−1
2

· p−1
2 . (19)

So we have (
−3

p

)
= (−1)

p−1
2

(p
3

)
(−1)

p−1
2 =

(p
3

)
. (20)

p is a quadratic residue modulo 3 if and only if p = 3 or p ≡ 1 (mod 3). So p divides some
number of the form m2 +m+1 if and only if p = 3 or p ≡ 1 (mod 3). There are infinitely many
primes p ≡ 1 (mod 3), by Dirichlet’s Theorem.

Also, we have proved that there are infinitely many prime numbers that divide some num-
ber of the form m2 + m + 1. There is a generalization of this result. It’s known as Schur’s
theorem2.

Theorem 2.5 (Schur’s Theorem)

Suppose P is a polynomial with integer coefficients. Then there exists infinitely many prime
numbers p such that p | P (n) for some n ∈ Z≥0.

I’m not going to prove it here. You can just mimic Euclid’s proof of infinitude of primes (the
way we did it for P (x) = x2 + x+ 1 in the previous example).

Example 2.6 (APMO 2009)

Prove that for any positive integer k, there exists an arithmetic sequence

a1
b1

,
a2
b2

,
a3
b3

, . . . ,
ak
bk

of rational numbers, where ai, bi are relatively prime positive integers for each i = 1, 2, . . . , k
such that the positive integers a1, b1, a2, b2, . . . , ak, bk are all distinct.

Solution. An arithmetic sequence of rational number doesn’t look very nice when expressed in
least form (i.e. when denominator and numerator are coprime). So what we will do is, we are
going to consider a common denominator of the rational numbers, then the numerators form an
arithmetic progression of integers:

x+ d

N
,
x+ 2d

N
,
x+ 3d

N
, . . . ,

x+ kd

N
. (21)

(We have written the first term to be x + d instead of just x for merely aesthetic reasons.
Otherwise, the last term would’ve been x+ (k − 1)d, which doesn’t really look nice.) We need
to ensure that when expressed in least terms, the denominators and numerators are all distinct.
When expressed in least terms, the denominators will all look like N/n for some divisor n

of N (at first I wrote N
d , but later realized that we used d for the common difference of the

arithmetic sequence); and when that happens, the numerator is also divisible by that n. Not
only that, the gcd of the denominator and N is also exactly n.

2There are actually a bunch of results that are known as Schur’s theorem. See here: https://en.wikipedia.org/
wiki/Schur’s_theorem. Also check this out: https://en.wikipedia.org/wiki/List_of_things_named_

after_Issai_Schur.

9

https://en.wikipedia.org/wiki/Schur's_theorem
https://en.wikipedia.org/wiki/Schur's_theorem
https://en.wikipedia.org/wiki/List_of_things_named_after_Issai_Schur
https://en.wikipedia.org/wiki/List_of_things_named_after_Issai_Schur


For the denominators to be distinct, the n’s have to be distinct for each terms. Therefore, we
need N to have at least k different factors n1, n2, . . . , nk such that

n1 | x+ d,

n2 | x+ 2d,

· · ·
nk | x+ kd.

(22)

If we want to cook up x with these properties, we need to apply CRT. For that purpose, we
need to have ni’s pairwise coprime. The simplest way to make sure of that is choosing each ni

to be a prime pi. Then

N =
k∏

i=1

pi = p1p2 · · · pk. (23)

Since the choice of d also doesn’t really matter, we can just choose d = 1. Now we have all the
ingredients to apply CRT. By CRT, there exists x such that

x ≡ −1 (mod p1)

x ≡ −2 (mod p2)

· · ·
x ≡ −k (mod pk).

(24)

Then each pi divides x+ i. Now we need to ensure that gcd(x+ i,N) = pi. For that purpose,
we need to have that for i ̸= j, pj does not divide x+ i. Suppose pj | x+ i. Since pj | x+ j,
then we have pj | i− j. We can solve this issue by taking pj > k, since |i− j| < k.
Now we have that ai =

x+i
pi

and bi =
N
pi
. Each bi is distinct. Let’s show that ai and bj are

distinct. Assume otherwise. Then

x+ i

pi
= ai = bj = p1p2 · · · pj−1pj+1 · · · pk. (25)

For k ≥ 3, x+i
pi

is divisible by somoe pl for l ̸= i. In other words, pl | x+ i. Contradiction! (The
k ≤ 2 case is not worth considering, because a sequence is always arithmetic if it has 1 or 2
terms)

Now we just need to prove that ai’s are distinct. ai =
x+i
pi

. x+ i are strictly increasing, so if
we just choose pi to be strictly decreasing, then we would have that ai is a strictly increasing
sequence. This would ensure that ai’s are distinct. ■

If I had written the solution as you would write on a contest, then the first line would’ve been
like this:

Consider primes p1 > p2 > p3 > · · · > pk > k.

You would have zero idea so as to why we need the primes to be greater than k, or why we
need the primes to be in decreasing order. Unfortunately, most solutions we see on internet are
written like this, without explaining the intuitions. That is why it is extremely important to
understand the intuitions while reading solutions.

Example 2.7

Find all functions f : Z>0 → Z>0 such that for any m,n ∈ Z>0,

mn + nm | f (m)φ(n) + f (n)φ(m) .
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Solution. Let’s just do some random substitutions first (as we do after encountering an FE
problem). Let P (m,n) denote the given assertion. P (1, 1) gives 2 | 2f (1), which doesn’t really
give us any new information. From P (m,m), we get

mm | f (m)φ(m) .

In particular, if p is a prime number,

pp | f (p)p−1 . (26)

So f (p) is divisible by p. Not only that, it must be divisible by p2 as well. Otherwise, if it’s
divisible by p only and not p2, then f (p)p−1 is divisible by pp−1 only, not pp.

One thing to notice in this problem is that φ of any random number does not look very nice.
The nice outputs of φ are: φ(p) = p− 1 and φ(1) = 1. So our primary instinct is to substitute
primes and 1. So we substitute m = p and n = 1 to get

p+ 1 | f (p) + f (1)p−1 . (27)

Furthermore, P (p, q) gives us

pq + qp | f (p)q−1 + f (q)p−1 , (28)

where p, q are primes. Seemingly, there is nowhere much to go from here. Furthermore, if
somehow we get the values of f(p), there is no clear way of finding the values of f(n), for
composite n. So we are stuck now. How do we proceed now? One way might be considering
prime factors of p+ 1 or pq + qp.
Let r be a prime factor of pq + qp. Then r | pq + qp | f (p)q−1 + f (q)p−1, i.e.

0 ≡ pq + qp ≡ f (p)q−1 + f (q)p−1 (mod r). (29)

The exponents p− 1 and q − 1 are not particularly pretty in mod r, as we have no information
about the order of f (p) or f (q) modulo r. It would be nice if we had r−1 | p−1 and r−1 | q−1.
Then we would have

0 ≡ f (p)q−1 + f (q)p−1 ≡ 1 + 1 ≡ 2 (mod r),

so we could conclude that there is no such f . But it’s not necessary that for any prime factor r
of pq + qp, we would have r − 1 | p− 1 and r − 1 | q − 1. This is too much to ask to be honest.
Also, notice that, in order to produce a contradiction, we don’t need it for any prime p, q. Just
the mere existence of one pair is sufficient for us. So we need to construct primes p, q, r such
that r | pq + qp, r − 1 | p− 1, r − 1 | q − 1.3

Also, once we have r − 1 | p− 1, r − 1 | q − 1, ensuring r | pq + qp is not very difficult:

pq + qp ≡ p · pq−1 + q · qp−1 ≡ p+ q (mod r). (30)

So we just need to construct primes p, q, r such that r − 1 | p− 1, r − 1 | q − 1, r | p+ q. Pick
your favorite prime for r (don’t choose 57 though). By Dirichlet’s Theorem, there is a prime p
such that p ≡ 1 (mod r − 1). Then by CRT and its best friend Dirichlet’s Theorem, there is a
prime q satisfying

q ≡ −p (mod r),

q ≡ 1 (mod r − 1).
(31)

3If you understand Bangla, click here.
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So such p, q, r exists, and hence,

0 ≡ f (p)q−1 + f (q)p−1 ≡ 1 + 1 ≡ 2 (mod r). (32)

So no such functions exist! Are we done? Well, not really. In (32), we assumed that neither
f (p) nor f (q) is divisible by r. Fermat’s little theorem states that if p is a prime number that
does not divide a, then ap−1 ≡ 1 (mod p). In principle, it’s possible that both f (p) and f (q)
are divisible by r. And in that case, we don’t get any contradiction.
But can we construct p, q, r in such a way that the previous conditions are satisfied, and r

does not divide at least one of f(p) and f(q), say r ∤ f(p)? Note that we have only used the
result of P (p, q). Let us try to use the result of P (p, 1) that we got in (27). Let r be a prime
factor of p+ 1. Then r | p+ 1 | f(p) + f(1)p−1, i.e.

0 ≡ p+ 1 ≡ f(p) + f (1)p−1 (mod r). (33)

We already have r − 1 | p− 1, so

0 ≡ f(p) + f (1)p−1 ≡ f(p) + 1 (mod r). (34)

So r ∤ f(p). If you’ve been paying attention, then you noticed that we have a similar problem
here as well. Here also we assumed that r ∤ f(1). But that’s not an issue at all. Instead of your
favorite prime, we can just choose r to be a prime greater than f(1). After that, we choose the
prime p in such a way that

p ≡ −1 (mod r)

p ≡ 1 (mod r − 1).
(35)

Again, such a prime exists because of CRT and Dirichlet. As before, we choose q such that

q ≡ −p ≡ 1 (mod r),

q ≡ 1 (mod r − 1).
(36)

Then the corrected version of (32) is

0 ≡ f (p)q−1 + f (q)p−1 ≡ 1 + ( 0 or 1 ) ≡ 1 or 2 (mod r). (37)

Thus we get a contradiction, and we are done! ■

I think this example illustrates the importance of being mindful about the edge cases. Even if
the theorem is a straightforward and elementary one like Fermat’s little theorem, we often tend
to overlook the tiny details. Tiny details are not really tiny, as we have seen in this problem.

If you reflect on this problem (and if you clicked on the meme in the last footnote), then
you’ll understand that we actually treat CRT as our wish-granting genie. Honestly, this is a
recurring theme of solving problems using CRT. No matter how many wishes you have, as long
as there are finitely many of them and they are compatible (i.e. the mi’s are pairwise coprime),
CRT will grant that wish for you.
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Example 2.8 (USEMO 2020, easier version)

Prove that for every odd integer n > 1, there exist integers a, b > 0 such that, if we let
Q(x) = (x+ a)2 + b, then the following conditions hold:

� we have gcd(a, n) = gcd(b, n) = 1;

� the number Q(0) is divisible by n; and

� the numbers Q(1), Q(2), Q(3), . . . , Q(n) each have a prime factor not dividing n.

Solution. We need to show that each Q(i) has a prime factor pi that does not divide n, for
i = 1, . . . , n. That means pi | (i+ a)2 + b, i.e. −b is a quadratic residue modulo pi. The easiest
choice for such b is −1, as 1 is a quadratic residue modulo anything. Now we need to see if this
works.

For each pi, a satisfies (i+ a)2 ≡ 1 (mod pi). So we just need that a + i ≡ 1 (mod pi). In
order to satisfy n | Q(0), we need n | a2− 1, so a ≡ 1 (mod n) suffices. Therefore, we can choose
b = −1 and we can construct a to satisfy

a ≡ 1− i (mod pi) for each i = 1, 2, . . . , n

a ≡ 1 (mod n).
(38)

Note that we already have gcd(b, n) = 1, and a ≡ 1 (mod n) guarantees that gcd(a, n) = 1.
Therefore, we are done. ■

In the original problem, the third condition was

“the numbers Q(1), Q(2), Q(3), . . . each have a prime factor not dividing n”

Sure, CRT is our wish-granting machine. But it can only grant finitely many wishes. So just
mimicing the above solution does not work for this problem. I will leave this as an exercise for
you to work out.

Example 2.9

Let n be a positive integer. Determine, in terms of n, the number of x ∈ {1, 2, . . . , n} for
which x2 ≡ x (mod n).

Solution. Since x2 ≡ x (mod n), n | x2 − x = x (x− 1). From this we can’t conclude either
n | x or n | x− 1. We could, if there was only one prime in n. So let us write down the prime
power factorization of n:

n =

k∏
i=1

pαi
i = pα1

1 pα2
2 · · · pαk

k . (39)

Then for each i, pαi
i | x (x− 1). So either pαi

i | x or pαi
i | x − 1. In other words, either x ≡ 0

(mod pαi
i ) or x ≡ 1 (mod pαi

i ). So, the k-tuple(
x mod pα1

1 , x mod pα2
2 , . . . , x mod pαk

k

)
consists of 0s and 1s only. There are 2k such possible tuples. By CRT, each of the tuples
indicates a unique residue class modulo

∏
pαi
i = n. So there are 2k possible values of x. ■
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Example 2.10

Let n be a positive integer and let a1, a2, a3, . . . , ak, (k ≥ 2) be distinct integers in the set
{1, 2, . . . , n} such that n divides ai(ai+1 − 1) for i = 1, 2, . . . , k − 1. Prove that n does not
divide ak(a1 − 1).

Solution. Assume the contrary. Then n | ai (ai+1 − 1) for all i = 1, 2, . . . , k (here we are taking
ak+1 = a1). From this, we cannot really deduce that n | ai or n | ai+1 − 1. As much as we want
to do it, we can’t, because n is not a prime. In these cases, it’s often useful to consider the prime
powers of n (like Example 2.9).

n =

m∏
i=1

pαi
i = pα1

1 pα2
2 · · · pαm

k . (40)

Then we have pe | ai (ai+1 − 1) for each i (here pe ∈ {pα1
1 , . . . , pαm

m }). From here as well, as much
as we want to write pe | ai or pe | ai+1 − 1, we can’t. Suppose p | ai for some i. Then

pe | ai−1 (ai − 1) . (41)

Since p | ai, p ∤ ai − 1. Therefore, pe | ai−1. By induction, pe | ai for each i.
On the other hand, if p ∤ ai, pe | ai (ai+1 − 1) gives us that pe | ai+1 − 1. Then p ∤ ai+1. So, by

induction, pe | ai − 1 for each i.
Therefore, we see that ai mod pe is a constant sequence, either all 0 or all 1. This holds for

all prime p dividing n. Since

ai mod pα1
1 , ai mod pα2

2 , . . . , ai mod pαm
m

uniquely determines ai mod n, and ai mod pe is a constant sequence for all p, we can conclude
that ai mod n is also a constant sequence. Contradiction! ■

The following is one of my favorite problems.

Example 2.11 (USA TSTST 2012)

Let Z>0 be the set of positive integers. Let f : Z>0 → Z>0 be a function satisfying the
following two conditions:

(a) gcd(m,n) = 1 implies gcd (f (m) , f (n)) = 1.

(b) n ≤ f(n) ≤ n+ 2012 for all n.

Prove that for any positive integer n and any prime p, if p divides f(n) then p divides n.

Solution. Attempting a proof by contradiction looks the most natural approach for this problem.
Suppose p | f (n) but p ∤ n for some prime p and positive integer n. We want to produce a
contradiction. There is no obvious way of how we can contradict the statement (b) of the
problem. So we shall try to contradict (a).

In order to show a contradiction, we need the existence of N such that gcd(N,n) = 1 but
gcd (f(N), f(n)) ̸= 1. The only information we have about f(n) is that it is divisible by p. So
the only way of showing gcd (f(N), f(n)) ̸= 1 is to show that p | f(N).
But then again we encounter another problem. We know nothing about f(N) yet. We just

know that N and n are coprime, where p ∤ n. So what we can do is, we can try to find N such
that f(N) = N and p | N . Let’s take a moment to list the things we want:

14



(i) gcd(N,n) = 1;

(ii) p | N ;

(iii) f(N) = N .

(i) and (ii) are not very hard to get. Since p and n are coprime, we can just take an N that
satisfies

N ≡ 0 (mod p) and N ≡ 1 (mod n). (42)

The real challence lies in ensuring (iii). We just have a bound that N ≤ f(N) ≤ N + 2012.
In order to show that f(N) = N , we need to show that f(N) = N + i are not possible for
i = 1, 2, . . . , 2012. Then again, this looks challenging on its own. Since there is no way to
contradict (b), we shall again try to contradict (a). For that purpose, we need the existence of
M such that gcd(M,N) = 1 but gcd(f(M), N + i) ̸= 1 for i = 1, 2, . . . , 2012. That will prove
that f(N) ̸= N + i.

But don’t we have the same problem again? We have literally no information about this
new variable M we just introduced. So what we have to do is that we have to construct
M in such a way that gcd(M,N) = 1 and gcd(M + j,N + i) ̸= 1 for i = 1, 2, . . . , 2012 and
j = 0, 1, 2, . . . , 2012. Let pi,j is a common prime factor between M + j and N + i.

Now we have all the necessary ingredients to solve this problem. Choose 2012 × 2013 dif-
ferent primes pi,j for i = 1, 2, . . . , 2012 and j = 0, 1, 2, . . . , 2012. Note that the construction of
M depends on N , since we must have gcd(M,N) = 1. So we have to construct N first. We
construct N such that

N ≡ −i (mod pi,j) for i = 1, 2, . . . , 2012 and j = 0, 1, 2, . . . , 2012,

N ≡ 0 (mod p),

N ≡ 1 (mod n).

(43)

After that we construct M such that

M ≡ −j (mod pi,j) for i = 1, 2, . . . , 2012 and j = 0, 1, 2, . . . , 2012,

M ≡ 1 (mod N).
(44)

We are almost done, we just need to check the compatibility condition. For (43), we need all
the pi,j ’s to be coprime with n and p. This is easily achievable by choosing the primes pi,j ’s
such that pi,j > max {n, p}. (44) is a bit more interesting. Here, we need that pi,j and N are
coprime. Since pi,j are primes, the only way pi,j and N can fail to be prime is when pi,j | N .
But we already have pi,j | N . So we just need to ensure that pi,j ∤ i. The largest value of i is
2012, so choosing pi,j > 2012 suffices. Therefore, the condition on pi,j is

pi,j > max {2012, n, p} .

After imposing this condition, by CRT, such N and M exists satisfying (43) and (44) and we
are done! ■

Example 2.12 (RMM Shortlist 2018)

Determine all polynomials f with integer coefficients such that f(p) is a divisor of 2p − 2 for
every odd prime p.

15



Solution. We know that f (p) | 2p− 2, and we have no other information. So it’s natural that we
would like to know more about f (p), for example what are the prime factors of f (p). Clearly, 2
can be a prime factor of f (p), so can p. Because 2 | 2p − 2 and p | 2p − 2. In mod3, 2 is −1. So
2p is also −1 since p is odd. Therefore, 3 also divides 2p − 2. Let us see if there are any more
prime factors of f (p).
Let q be a prime (other than 2, 3 and p) that divides f(p). Then

q | f (p) | 2p − 2 =⇒ 2p ≡ 2 (mod q). (45)

We would like to simplify this 2p term into something manageable, or something we know about.
Note that since q is an odd prime, this simplifies to 2p−1 ≡ 1 (mod q). If we can somehow make
the exponent something not divisible by q− 1, then we would be able to produce a contradiction.
But apparently there’s no way to do that directly. So we would take an indirect approach.

We can construct a different prime P such that q | f(P ), so that we have q | 2P−1 − 1, but P − 1
is NOT divisible by q − 1. That way we would be able to show a contradiction. In order to
make q divide f(P ), we need

f (p) ≡ f (P ) (mod q). (46)

So taking P ≡ p (mod q) suffices4. Furthermore, we also need that P − 1 is NOT divisible by
q − 1. For that purpose, we set P − 1 ≡ 1 (mod q − 1). Now, by CRT and Dirichlet’s Theorem,
there are infinitely many prime P satisfying the following congruences:

P ≡ p (mod q)

P − 1 ≡ 1 (mod q − 1).
(47)

Well, not quite. Because for implementing Dirichlet along with CRT, in the congruences x ≡ xi
(mod mi), we need that xi and mi are coprime. But here, the second congruence is P ≡ 2
(mod q − 1). 2 and q − 1 are not coprime. So we need to tweak it a little bit. We set

P ≡ p (mod q)

P ≡ −1 (mod q − 1).
(48)

Then by CRT and Dirichlet’s Theorem, there are infinitely many such primes P . We can just
take one of them to get

q | f(P ) | 2P − 2 =⇒ 2P ≡ 2 (mod q)

=⇒ 2−1 ≡ 2 (mod q)

=⇒ 1 ≡ 4 (mod q). (49)

But this is a contradiction to q ̸= 3. Therefore,

f (p) = ±2α3βpe. (50)

Note that, here α, β, e depends on p, in general. If they were the same for all p, then we could
give an argument along the lines of

f (x)∓2α3βxe has infinitely many roots, so it must be the zero polynomial. Therefore,
f (x) = ±2α3βxe.

4If a ≡ b (mod m) then for any polynomial f of integer coefficients, f(a) ≡ f(b) (mod m)
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But we can’t do that here. But we get the idea that perhaps f (x) is of the form cxn. So we can
try to prove that. We can try to factor out the highest power of x that we can.

f (x) = xkg (x) . (51)

In general, the constant term of f can be 0, but if xk is the highest power such that we can
factor it out, then it forces that the constant term of g has to be nonzero, i.e. g (0) ̸= 0. Now we
want to show that g is a constant polynomial.

We want to show that g (p) takes a constant value for infinitely many primes p. And, we
would like to have that g (p) is not divisible by p, so as to have g (p) = 2α3β. We already have
g (p) ≡ g (0) (mod p). So in order to make it nonzero, it suffices to take a prime p that doesn’t
divide g (0). Then g (p) = ±2α3β. Note that, α and β depends on p. If we can find an upper
bound for α and β, then we can say that g (p) takes values from a finite set, so there is one value
that occurs infinitely often. Then we can conclude that g is a constant polynomial.
One can easily check that α > 1 is not possible. Because in that case,

4 | ±2α3β = g(p) | f(p) | 2p − 2. (52)

But 4 | 2p. Therefore, α ≤ 1. Similarly, we want to show that β ≤ 1. For β > 1, we have
9 | 2p − 2. In other words,

2p ≡ 21 (mod 9). (53)

φ(9) = 6, and primes can be ±1 mod 6. Taking p to be 1 mod 6 doesn’t produce a contradiction
to (53), but −1 mod 6 does. There are infinitely many primes p such that p ≡ −1 (mod 6)
(Dirichlet’s Theorem). For those primes,

2p ≡ 2−1 ≡ 5 ̸≡ 2 (mod 9). (54)

Therefore, for those primes, β ≤ 1. So we have,

g (p) ∈ {±1,±2,±3,±6} (55)

for primes p ≡ −1 (mod 6). There are infinitely many such primes, so there is one value that
occurs infinitely often. Hence, g is a constant polynomial, and the constant value divides 6.
Hence,

f (x) = cxk, (56)

where c ∈ {±1,±2,±3,±6}. Now, are all the values of k work? Actually, no. For k ≥ 2,
9 | f(3) | 23 − 2 = 6 is a contradiction. Therefore,

f (x) = ±1,±2,±3,±6,±x,±2x,±3x,±6x. (57)

f (x) = ±3x,±6x doesn’t work because in that case 9 | f(3) and we get a contradiction similar
to above. It’s an easy check that the other solutions work. ■

Example 2.13 (ELMO shortlist 2014)

Find all triples (a, b, c) of positive integers such that if n is not divisible by any prime less
than 2014, then n+ c divides an + bn + n.
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Solution. We have that n+ c | an + bn − c. We have to somehow get rid of n here. The idea
is: if we can make sure that for an arbitrarily large prime p dividing n+ c, if we can make it
p | aconstant + bconstant − c, then we can conclude that aconstant + bconstant − c = 0. Also we would
like to have the constants are small and/or manageable.
Picking a suitable n is the main challenge now. We need to have p | n+ c. Furthermore, for

the exponents to be manageable in mod p, we would like to have n ≡ ±1 (mod p− 1). Also, we
need to make sure that n is not divisible by primes smaller than 2014. So we set

n ≡ −c (mod p),

n ≡ 1 (mod p− 1),

n ≡ 1 (mod q) for primes q < 2014.

(58)

There is a small issue with that. p− 1 and q are not coprime. For instance, 2 | p− 1. Note that
since we have n ≡ 1 (mod p− 1), then for all “small” primes (by small, I mean less than 2014)
q dividing p− 1, n ≡ 1 (mod q). So we rewrite

n ≡ −c (mod p),

n ≡ 1 (mod p− 1),

n ≡ 1 (mod q) for primes q < 2014 and q ∤ p− 1.

(59)

By CRT, such n exists. So we have p | n+ c | an + bn − c. In mod p,

c ≡ an + bn ≡ a1 + b1 (mod p). (60)

So p | a+ b− c. This holds for all arbitrarily large prime p. Therefore,

a+ b = c. (61)

In a similar manner, we can set n ≡ −1 (mod p− 1).

n ≡ −c (mod p),

n ≡ −1 (mod p− 1),

n ≡ −1 (mod q) for primes q < 2014 and q ∤ p− 1.

(62)

By CRT, such n exists, and we have

c ≡ an + bn ≡ a−1 + b−1 (mod p) =⇒ abc ≡ a+ b (mod p). (63)

So p | a+ b− abc. This holds for all arbitrarily large prime p. Therefore,

a+ b = abc. (64)

Equating (61) and (64), we have c = abc, so that ab = 1. This can only happen when a = b = 1.
So (a, b, c) = (1, 1, 2). ■
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§3 Some Practice Problems

Problem 3.1 (USA TST 2015). Prove that for every n ∈ Z>0, there exists a set S of n positive
integers such that for any two distinct a, b ∈ S, a − b divides a and b but none of the other
elements of S.

Problem 3.2. A set of positive integers C is called “good” if for all positive integer k, there
exists a, b pairwise distinct in C such that (a+ k, b+ k) > 1. Assume that the set C is “good”
and the sum of its elements is equal to 2003. Prove that we can eliminate an element c in C
such that the remaining elements in C form a “good” set.

Problem 3.3 (ISL 2005). Let a, b be positive integers such that bn + n is a multiple of an + n
for all positive integers n. Prove that a = b.

Problem 3.4 (USEMO 2020). Prove that for every odd integer n > 1, there exist integers
a, b > 0 such that, if we let Q(x) = (x+ a)2 + b, then the following conditions hold:

� we have gcd(a, n) = gcd(b, n) = 1;

� the number Q(0) is divisible by n; and

� the numbers Q(1), Q(2), Q(3), . . . each have a prime factor not dividing n.

Problem 3.5 (ELMO 2013). For what polynomials P (n) with integer coefficients can a positive
integer be assigned to every lattice point in Z3 so that for every integer n ≥ 1, the sum of the
n3 integers assigned to any n× n× n grid of lattice points is divisible by P (n)?

Problem 3.6 (ELMO 2013). Let m1,m2, . . . ,m2013 > 1 be 2013 pairwise relatively prime
positive integers and A1, A2, . . . , A2013 be 2013 (possibly empty) sets with Ai ⊆ {1, 2, . . . ,mi−1}
for i = 1, 2, . . . , 2013. Prove that there is a positive integer N such that

N ≤ (2 |A1|+ 1) (2 |A2|+ 1) · · · (2 |A2013|+ 1)

and for each i = 1, 2, . . . , 2013, there does not exist a ∈ Ai such that mi divides N − a.
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