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1 Recap of Real Analysis, Topology and Linear
Algebra

§1.1 Metric Spaces

Definition 1.1 (Metric Space). A metric space is a pair (X, d) where X is a set and d is a metric
on X satisfying the following properties:

• (M1) 0 ≤ d(x, y) <∞

• (M2) d(x, y) = 0 ⇐⇒ x = y

• (M3) d(x, y) = d(y, x)

• (M4) d(x, y) ≤ d(x, z) + d(z, y)

Example 1.1 (Eucliean Space Rn). The metric space (Rn, dEuc) consists of the set Rn, the n dimensional
Euclidean space, which contains all ordered n-tuples of real numbers, written as

x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn)

And the metric dEuc is defined as:

dEuc(x, y) =

√√√√ n∑
i=1

(xi − yi)2)

Example 1.2 (Unitary space Cn). The metric space (Cn, duni) consists of the set Cn, which contains
all ordered n-tuples of complex numbers, written as

z = (α1, α2, . . . , αn), w = (β1, β2, . . . , βn)

And the metric duni is defined as:

duni(z, w) =

√√√√ n∑
i=1
|αi − βi|2

Cn is called the n-dimensional unitary space. It is sometimes called the complex Euclidean n-space.

Example 1.3 (Sequence Space). The metric space consists of the set of all bounded sequences of
complex numbers, i.e every element of the set is a complex sequence,

x = (x1, x2, . . .) briefly written as x = {xi}
y = (y1, y2, . . .) briefly written as y = {yi}

Such that for all i ∈ N, |xi| ≤ Mx for some Mx ∈ Rdepending on x but not on i . The metric d is
defined as:

d(x, y) = sup
i∈N
|xi − yi|

Example 1.4 (Function Space C[a,b]). The Function space consists of all real valued continuous
functions on the closed interval [a, b], written as C[a, b]. Let f and g be two continuous functions in
C[a, b]. Then the distance between f and g is defined as:

d(f, g) = max
x∈[a,b]

|f(x)− g(x)|
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1 Recap of Real Analysis, Topology and Linear Algebra

Example 1.5 (Discrete Metric Space). Let X be a set and d be a metric on X such that:

d(x, y) =
{

0 if x = y

1 if x ̸= y

(X, d) is called a discrete metric space.
Example 1.6 (Space B(A) of bounded real or complex valued functions on a set A). The metric space
consists of all bounded real or complex valued functions on a set A, written as B(A). Let x : A→ R
and y : A→ R be two bounded functions in B(A). Then the distance between x and y is defined as:

d(x, y) = sup
a∈A
|x(a)− y(a)|

§1.2 ℓp space
Example 1.7 (Space ℓp). Let p ≥ 1 be a fixed real number. Let x ∈ ℓp. Then x = x1, x2, . . . is a
sequence of real numbers such that:

∞∑
i=1
|xi|p <∞

Then the distance between x and y is defined as:

d(x, y) =
( ∞∑

i=1
|xi − yi|p

) 1
p

In the special case where p = 2, we have the hilbert sequence space l2. In general ℓp is a metric space.
We will prove prove this using Hölder’s and Minkowski’s inequality.

Lemma 1.1 (Hölder’s Inequality)
Let x = {xi} ∈ ℓp and y = {yi} ∈ ℓq be two sequences of complex numbers where p > 1 is a real
number and q be the conjugate exponent of p i.e.

1
p

+ 1
q

= 1 (1.1)

Then the Hölder’s inequality states that:

∞∑
i=1
|xiyi| ≤

 ∞∑
j=1
|xj |p

 1
p ( ∞∑

k=1
|yk|q

) 1
q

(1.2)

Proof. From equation (1.1), we have

1 = p + q

pq

=⇒ pq = p + q

=⇒ −p− q + pq + 1 = 1
=⇒ p(q − 1)− 1(q − 1) = 1
=⇒ (p− 1)(q − 1) = 1 (1.3a)

=⇒ 1
p− 1 = q − 1 (1.3b)

Let u = tp−1, then using equation (1.3b) we have
u = tp−1

=⇒ t = u
1

p−1

=⇒ t = uq−1 (1.4)
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1 Recap of Real Analysis, Topology and Linear Algebra

Let α, β be any positive real numbers. Then αβ is the area of the rectangle in the figures below.

t

u u = tp−1

β

α

1
2

t

u u = tp−1

β

α

1

2

Figure 1.1: In both figures, Area (1):
∫ α

0 tp−1dt, Area(2):
∫ β

0 uq−1dt (Indicated by dashed lines)

In both figures of (1.1),

αβ ≤
∫ α

0
tp−1dt +

∫ β

0
qq−1dt = αp

p
+ βq

q
(1.5)

Note that, this holds trivially for α = 0 or β = 0.

Let x̃ = {x̃i} and ỹ = {ỹi} be two sequences of complex numbers such that,
∞∑

i=1
|x̃i|p = 1,

∞∑
i=1
|ỹi|q = 1 (1.6)

Setting α = |x̃i|, β = |ỹi| for a given i, the inequality (1.5) becomes,

|x̃iỹi| ≤
|x̃i|p

p
+ |ỹi|q

q

=⇒ |x̃iỹi| ≤
1
p
|x̃i|p + 1

q
|ỹi|q (1.7)

Summing over all i from 1 to ∞ in equation (1.7), and using equation (1.6) and (1.1), we get,
∞∑

i=1
|x̃iỹi| ≤

∞∑
i=1

(1
p
|x̃i|p + 1

q
|ỹi|q

)

=⇒
∞∑

i=1
|x̃iỹi| ≤

1
p

∞∑
i=1
|x̃i|p + 1

q

∞∑
i=1
|ỹi|q

=⇒
∞∑

i=1
|x̃iỹi| ≤

1
p

+ 1
q

= 1 (1.8)

Note that, we were able to take the sum to infinity since the series on the right hand side converges.
Hence, the series on the left converges by comparison test.

We now take nonzero x = {xi} and y = {yi} in ℓp and set,

x̃i = xi(∑∞
j=1 |xj |p

) 1
p

, ỹi = yi

(∑∞
k=1 |yk|q)

1
q

(1.9)

It is immediate that (1.9) satisfies the conditions of (1.6). Substituting (1.9) in (1.8), we get,∑∞
i=1 |xiyi|(∑∞

j=1 |xj |p
) 1

p (∑∞
k=1 |yk|q)

1
q

≤ 1

=⇒
∞∑

i=1
|xiyi| ≤

 ∞∑
j=1
|xj |p

 1
p ( ∞∑

k=1
|yk|q

) 1
q

■
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1 Recap of Real Analysis, Topology and Linear Algebra

Corollary 1.2 (Cauchy-Schawrz Inequality)
Let x = {xi} ∈ l2 and y = {yi} ∈ l2 be two sequences of complex numbers. Then the Cauchy-
Schawrz inequality states that:( ∞∑

i=1
|xiyi|

)2

≤

√√√√ ∞∑
j=1
|xj |2

√√√√ ∞∑
k=1
|yk|2 (1.10)

Proof. Setting p = q = 2 in the Hölder’s inequality (1.2), we get the Cauchy-Schawrz inequality. ■

Lemma 1.3 (Minkowski’s Inequality)
Let x = {xi} ∈ ℓp and y = {yi} ∈ ℓp be two sequences of complex numbers. Let p ≥ 1 be a real
number. Then the Minkowski’s inequality states that:

( ∞∑
i=1
|xi + yi|p

) 1
p

≤

 ∞∑
j=1
|xj |p

 1
p

+
( ∞∑

k=1
|yk|p

) 1
p

(1.11)

Proof. Let p = 1, then from triangle inequality we have,

|xi + yi| ≤ |xi|+ |yi| (1.12)

summing over all i from 1 to a fixed n, we get,
n∑

i=1
|xi + yi| ≤

n∑
i=1
|xi|+

n∑
i=1
|yi|

If we take the limit as n→∞, both series on the right converges since x, y ∈ ℓp. Hence, by comparison
test, infinite series on the left also converges and we get,( ∞∑

i=1
|xi + yi|

)
≤
( ∞∑

i=1
|xi|
)

+
( ∞∑

i=1
|yi|
)

Which is the Minkowski’s inequality for p = 1.

Let p > 1, and let zi = xi + yi for all i. If zi is the zero sequence, then the inequality is trivially true.
Hence, we assume that zi is not the zero sequence. Then from triangle inequality we have,

|zi|p = |zi| · |zi|p−1

= |xi + yi| · |zi|p−1

≤ (|xi|+ |yi|) · |zi|p−1 (Using equation (1.12))
= |xi| · |zi|p−1 + |yi| · |zi|p−1 (1.13)

Summing over all i from 1 to a fixed n, we get,
n∑

i=1
|zi|p ≤

n∑
i=1
|xi| · |zi|p−1 +

n∑
i=1
|yi| · |zi|p−1 (1.14)

Consider the finite sequnces (|xi|)n
i=1, which is an ℓp sequence and (|zi|p−1)n

i=1, which is an ℓq sequence
with q being the conjugate exponent of p. Hence,

1
p

+ 1
q

= 1

=⇒ pq = p + q

=⇒ pq − q = p

=⇒ (p− 1)q = p (1.15)
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1 Recap of Real Analysis, Topology and Linear Algebra

Using Hölder’s inequality (1.2) we get,

n∑
i=1
||xi| · |zi|p−1| ≤

 n∑
j=1
||xj ||p

 1
p ( n∑

k=1
||zk|(p−1)|q

) 1
q

=⇒
n∑

i=1
|xi| · |zi|p−1 ≤

 n∑
j=1
|xj |p

 1
p ( n∑

k=1
|zk|(p−1)q

) 1
q

=⇒
n∑

i=1
|xi| · |zi|p−1 ≤

 n∑
j=1
|xj |p

 1
p ( n∑

k=1
|zk|p

) 1
q

(1.16)

Similarly, for finite sequence (|yi|)n
i=1 and (|zi|p−1)n

i=1, we get,

n∑
i=1
|yi| · |zi|p−1 ≤

 n∑
j=1
|yj |p

 1
p ( n∑

k=1
|zk|p

) 1
q

(1.17)

Therefore, from equations (1.14), (1.16) and (1.17), we get,

n∑
i=1
|zi|p ≤

 n∑
j=1
|xj |p

 1
p ( n∑

k=1
|zk|p

) 1
q

+

 n∑
j=1
|yj |p

 1
p ( n∑

k=1
|zk|p

) 1
q

=⇒
n∑

i=1
|zi|p ≤


 n∑

j=1
|xj |p

 1
p

+

 n∑
j=1
|yj |p

 1
p

 · ( n∑
k=1
|zk|p

) 1
q

(1.18)

Since, zk is not the zero sequence, (∑n
k=1 |zk|p)

1
q is nonzero. Therefore we can divide both side by

(∑n
k=1 |zk|p)

1
q and get,

∑n
i=1 |zi|p

(∑n
k=1 |zk|p)

1
q

≤

 n∑
j=1
|xj |p

 1
p

+

 n∑
j=1
|yj |p

 1
p

=⇒
∑n

i=1 |zi|p

(∑n
i=1 |zi|p)

1
q

≤

 n∑
j=1
|xj |p

 1
p

+

 n∑
j=1
|yj |p

 1
p

=⇒
(

n∑
i=1
|zi|p

)1− 1
q

≤

 n∑
j=1
|xj |p

 1
p

+

 n∑
j=1
|yj |p

 1
p

=⇒
(

n∑
i=1
|zi|p

) 1
p

≤

 n∑
j=1
|xj |p

 1
p

+

 n∑
j=1
|yj |p

 1
p

[Since 1
p

+ 1
q

= 1] (1.19)

If we taking the limit as n → ∞, both series on the right converges since x, y ∈ ℓp. Hence, by
comparison test, infinite series on the left also converges and we get,( ∞∑

i=1
|zi|p

) 1
p

≤

 ∞∑
j=1
|xj |p

 1
p

+

 ∞∑
j=1
|yj |p

 1
p

=⇒
( ∞∑

i=1
|xi + yi|p

) 1
p

≤

 ∞∑
j=1
|xj |p

 1
p

+

 ∞∑
j=1
|yj |p

 1
p

=⇒
( ∞∑

i=1
|xi + yi|p

) 1
p

≤

 ∞∑
j=1
|xj |p

 1
p

+
( ∞∑

k=1
|yk|p

) 1
p

which is the Minkowski’s inequality for p > 1. ■
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1 Recap of Real Analysis, Topology and Linear Algebra

Now we will prove that ℓp is a metric space with the metric defined in example (1.7).

Proposition 1.4 (ℓp is a metric space)
Let p ≥ 1 be a fixed real number. Then the sequence space ℓp is a metric space with the metric
define as,

d(x, y) =
( ∞∑

i=1
|xi − yi|p

) 1
p

(1.20)

Proof. We need to show that d satisfies all four properties in definition (1.1).

Since, ∑∞
i=1 |xi − yi|p is a series of absolute values, it is non-negative. Hence, d(x, y) ≥ 0.

Since y ∈ ℓp, −y = {−yi} ∈ ℓp. Hence, using Minkowski’s inequality for sequences x and −y, we get,
( ∞∑

i=1
|xi + (−yi)|p

) 1
p

≤
( ∞∑

i=1
|xi|p

) 1
p

+
( ∞∑

i=1
| − yi|p

) 1
p

=⇒
( ∞∑

i=1
|xi − yi|p

) 1
p

≤
( ∞∑

i=1
|xi|p

) 1
p

+
( ∞∑

i=1
|yi|p

) 1
p

The series on the right converges since x, y ∈ ℓp. Hence, the series on the left also converges by
comparison test. Therefore 0 ≤ d(x, y) <∞, hence d satisfies property (M1).

Property (M2) and (M3) are trivially satisfied by the definition of d. We need to prove property
(M4), i.e. the triangle inequality. Given x, y, z ∈ ℓp, we have,

d(x, y) =
( ∞∑

i=1
|xi − yi|p

) 1
p

≤
( ∞∑

i=1
(|xi − zi|+ |zi − yi|)p

) 1
p

≤
( ∞∑

i=1
|xi − zi|p

) 1
p

+
( ∞∑

i=1
|zi − yi|p

) 1
p

[Using Minkowski’s inequality]

= d(x, z) + d(z, y)

Hence, d satisfies property (M4). Therefore, ℓp is a metric space. ■
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2 Normed Space and Banach Space

§2.1 Normed Space, Banach Space

Definition 2.1 (Normed Space, Banach Space). A Normed space (X, || · ||) is a vector space X
with a norm || · || defined on it. A Banach space is a complete metric space. A norm on a real
or a complex vector spaceX is a real valued function on X whose value at x ∈ X is denotes by

||x||

and which has the flowing properties,

• (N1) ||x|| ≥ 0

• (N2) ||x|| = 0 =⇒ x = 0

• (N3) ||αx|| = α||x||

• (N4) ||x + y|| ≤ ||x||+ ||y|| ( Triangle inequality)

Here X and y are arbitrary vectors in X and α is any scalar.

A norm on (X, || · ||) defines a metric on (X, d) which is defined by

d(x, y) = ||x− y|| (2.1)

and is called The metric induced by the norm. Thus the normed space (X, || · ||) is a topological
space w.r.t the metric induced from the norm. For later use, we note that

||x|| = ||x− y + y|| ≤ ||x− y||+ ||y|| by (N4)

So that

||x|| − ||y|| ≤ ||x− y|| (2.2)

also
||y|| = ||y − x + x|| ≤ ||y − x||+ ||x|| = ||x− y||+ ||x|| again by (N4)

Then,

−(||x|| − ||y||) ≤ ||x− y|| =⇒ ||x|| − ||y|| ≥ −||x− y|| (2.3)

(2.2) and (2.3) together imply

−||x− y|| ≤ ||x|| − ||y|| ≤ −||x− y|| (2.4)

equation (2.4) implies that ∣∣||x|| − ||y||∣∣ ≤ ||x− y|| (2.5)

Inequality (2.4) can be used to prove that the norm function

|| · || : (X, || · ||)→ R

i.e., x 7→ ||x|| is a continuous mapping.

10



2 Normed Space and Banach Space

§2.1.i Examples of normed spaces
Example 2.1. Euclidean space R and the unitary space C are normed spaces. In fact, they are normed
space defined by

||x|| =

 n∑
j=1
|ξj |2

 1
2

=
√
|ξ1|2 + .... + |ξn|2 (2.6)

Both of them are complete in the metric (2.1) defined by the norm given in (2.6):

d(x, y) = ||x− y|| =
√
|ξ1 − η1|2 + .... + |ξn − ηn|2 (2.7)

there, x = (ξ1, ..., ξn) and y = (η1, ..., ηn) are vectors of R or C, i.e., they are real or complex n-tuples
depending on if they are element of Rn or Cn , respectively. Note that here Rn or Cn are treated as
vector spaces over the field of real numbers or complex numbers, respectively in contract to bare sets
(Rn, dEuc) or (Cn, duni) . To reduce confusion, one can also denote the Banach space by (Rn, || · ||Euc)
to differentiate it from the metric space (Rn, || · ||Euc). In the former case Rn is a real vector space
while in the latter case we require Rn to be a bare set of n-tuples by real numbers.

Example 2.2. (Normed space ℓp) The set ℓp was introduced in the 5th example of the first lecture. It
is the set of p-summable sequences of complex numbers, i.e., if x = (ξi) ∈ ℓp, then

∞∑
j=1
|ξj |p <∞ (2.8)

ℓp has a complex vector space structure. Vector addition and scalar multiplication on ℓp is given by:

(ξ1, ξ2, ..) + (η1, η2, ...) = (ξ1 + η1, ξ2 + η2, ...)
α(ξ1, ξ2, ...) = (αξ1, αξ2, ...) (2.9)

where (ξj), (ηj) ∈ ℓp. You should verify that all the axioms of a vector space are fulfilled under definition
(2.9). It is actually a Banach space with the norm given by

||x|| =

 ∞∑
j=1
|ξj |p

 1
p

(2.10)

where x = (ξj) ∈ ℓp. This norm induces the metric

d(x, y) = ||x− y|| =

 ∞∑
j=1
|ξj − ηj |p

 1
p

(2.11)

With x = (ξj) and y = (ηj) are both elements of ℓp. This metric given by equation (2.9) of the first
lecture while discussing the metric space structure of ℓp. Here, we see that it is not just a bare set. It
has the structure of a complex vector space and the norm given by (2.10) induces the already known
metric space structure on it. And we know that it is complete with respect to that already known
metric which indicates that ℓp is a Banach space.

Example 2.3. (Normed space ℓ∞) The set has been introduced in example 2 of chapter 1. It
is the set of all bounded sequences of complex numbers, i.e., every element of it is a complex
sequencex = (ξ1, ξ2, . . . ), briefly x = (ξj), such that for all j = 1, 2, . . ., one has

|ξj | ≤ Cx, (2.12)

11



2 Normed Space and Banach Space

where Cx is a positive real number. The set ℓ∞ can be endowed with the structure of a complex vector
space by introducing the vector addition and scalar multiplication using (2.9). Then one defines a
norm on the vector space ℓ∞ by

||x|| = sup
j∈N
|ξj | (2.13)

for x = (ξj) ∈ ℓ∞.
The norm given by (2.13) induces the metric

d(x, y) = sup
j∈N
|ξj − ηj | (2.14)

for x = (ξj) ∈ ℓ∞ and y = (ηj) ∈ ℓ∞ as introduced in example 2 of lecture 1 while discussing the
metric space structure of ℓ∞. And of course ℓ∞ is complete with respect to the induced metric (2.15).
In other words, ℓ∞ is a Banach space.

§2.1.ii An Incomplete metric space and it’s completion
The set of all complex-valued continuous functions on the closed interval [a, b] can easily be endowed
with the structure of a complex vector space that we also denote by C[a, b]. The vector addition and
scalar multiplication on C[a, b] is pointwise:

(x + y)(t) = x(t) + y(t)
(αx)(t) = α · x(t) (2.15)

where x, y ∈ C[a, b], i.e., x, y : [a, b] → C and α is a complex number. One can define a norm on
C[a, b] by

∥x∥p =
(∫ b

a
|x(t)|p dt

) 1
p

(2.16)

The normed space (C[a, b], ∥ · ∥p) is not complete, as was seen in example 8 of lecture 1. The space
(C[a, b], ∥ · ∥p) can be completed by Theorem 2.6.

The completed metric space is actually a normed space that will follow from a more general completion
theorem for normed spaces (to be discussed in a while). The norm completion of (C[a, b], ∥ · ∥p) is
denoted by Lp[a, b] and is called the normed space of p-integrable functions. The case p = 2 is even
more interesting and ℓ2[a, b] has the structure of something called a Hilbert space to be discussed in
great detail later.

§2.1.iii Example of metric space (X, d) whose metric can not be induced from a norm
Suppose X is any vector space. Put the discrete metric ddis on it so that (X, ddis) is a metric space.
We show that there exists no norm on the vector space X that will induce the discrete metric on it in
the sense of equation (2.1). Suppose the contrary, i.e., there exists a norm denoted by ∥ · ∥dis that will
induce ddis on X:

ddis(x, y) = ∥x− y∥dis (2.17)

for all x, y ∈ X. Choose x, y ∈ X such that x ̸= y and α is a nonzero scalar. Then αx ̸= αy so that

ddis(αx, αy) = 1, [from the definition of discrete metric] (2.18)

But

ddis(αx, αy) = ∥αx− αy∥dis = ∥α(x− y)∥dis (2.19)
= |α|∥x− y∥dis [From (N3)] (2.20)
= |α|ddis(x, y) (2.21)
= |α| (2.22)

12



2 Normed Space and Banach Space

(2.18) and (2.19) are in contradiction with each other as |α| ̸= 1, by hypothesis. Hence, there exists
no norm on the vector space X that will induce ddis on X.

In the light of the discrete metric topology on any vector space, we thus see that there are metric
spaces that are not normed spaces. So far, we have found the following hierarchy:

Topological spaces

Metric spaces

Normed spaces

Lemma 2.1
(Translational invariance) A metric d induced by a norm on a normed space (X, ∥ · ∥) satisfies

(a) d(x + a, y + a) = d(x, y),
(b) d(αx, αy) = |α|d(x, y),

for all x, y, a ∈ X and for all scalars α.

Proof.

d(x + a, y + a) = ∥(x + a)− (y + a)∥ By eq. (2.1)
= ∥x− y∥ = d(x, y).

And

d(αx, αy) = ∥αx− αy∥ again by eq. (2.1)
= |α|∥x− y∥ by (N3) property of norm
= |α|d(x, y).

■

§2.2 Finite dimensional normed spaces and their subspaces

Lemma 2.2 (Linear combinations)
Let {x1, . . . , xn} be a linearly independent set of vectors in a normed space (X, ∥ · ∥). Then there
exists a real number c > 0 such that for every choice of scalars α1, . . . , αn, one has

∥α1x1 + · · ·+ αnxn∥ ≥ c(|α1|+ · · ·+ |αn|) (2.23)

the left side is the lower bound of this norm.

Theorem 2.3 (Completeness)
Every finite dimensional subspace (Y, ∥·∥Y ) of a normed space (X, ∥·∥X) is complete. In particular,
every finite dimensional normed space is complete.

13
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Theorem 2.4 (Closedness)
Every finite dimensional subspace (Y, ∥ · ∥Y ) of a normed space (X, ∥ · ∥X) is closed in (X, ∥ · ∥X).

Example 2.4. Consider the vector space of all complex-valued continuous functions defined on the
closed interval [0, 1] of R and equip it with the sup norm:

∥x∥∞ = sup
t∈[0,1]

|x(t)| (2.24)

Then (C[0, 1], ∥ · ∥∞) is a Banach space. Let Y = span{x0, x1, x2, . . .} where xj(t) = tj , so that Y is
the set of all polynomials. Then (Y, ∥ · ∥∞|Y ) is not closed in (C[0, 1], ∥ · ∥∞).

§2.3 Further Properties of a normed space
By a subspace of a normed space (X, ∥ · ∥X), we mean a vector subspace Y of the vector space X,
with the norm obtained by restricting the norm ∥ · ∥X to the subset Y . Let us denote this restriction
by ∥ · ∥X|Y , and the corresponding normed subspace by the pair (Y, ∥ · ∥X|Y ). The vector space X is
equipped with the metric topology with the metric induced from the norm ∥ · ∥X . When Y is closed in
X with respect to the above-mentioned metric topology, we say that (Y, ∥ · ∥X|Y ) is a closed subspace
of the normed space (X, ∥ · ∥X).

Theorem 2.5
(Subspace of a Banach space) A subspace (Y, ∥ · ∥XY

) of a Banach space (X, ∥ · ∥X) is complete if
and only if (Y, ∥ · ∥XY

) is a closed subspace of the normed space (X, ∥ · ∥X).

Proof. This proof actually follows from analogous results on metric space. ■

§2.3.i Convergence of sequences in normed spaces

Definition 2.2. A sequence (xn) in a normed space (X, ∥ · ∥) is convergent if X contains an x
such that

lim
n→∞

∥xn − x∥ = lim
n→∞

dX(xn, x) = 0 (2.25)

In (2.25), dX is the metric induced from the norm ∥ · ∥ of the normed space (X, ∥ · ∥). One then
writes xn → x and calls x the limit of (xn).

Definition 2.3. A sequence (xn) in a normed space (X, ∥ · ∥) is Cauchy if for every ϵ > 0, there
exists N ∈ N such that

∥xn − xm∥ = dX(xn, xm) < ϵ, ∀m, n ≥ N (2.26)

Sequences were available to us even in a general metric space. In a normed space, we have the
additional notion of series.

If (xk) is a sequence in a normed space (X, ∥ · ∥), then each xk is a vector in X, and we can associate
with (xk) the sequence (sn) of partial sums:

sn = x1 + x2 + · · ·+ xn (2.27)

Here, + denotes vector addition in (X, ∥ · ∥).
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If (sn) is convergent, say
Sn → s, that is, ∥sn − s∥ → 0,

then the infinite series, or briefly, series
∞∑

k=1
xk = x1 + x2 + . . . (2.28)

is said to converge or to be convergent; s is called the sum of the series, and we write

s =
∞∑

k=1
xk = x1 + x2 + . . . (2.29)

If ∥x1∥+ ∥x2∥+ . . . converges, the series (2.28) is said to be absolutely convergent.
The concept of convergence of series in a normed space (X, ∥ · ∥) helps us define a basis as follows.

Definition 2.4. If a normed space (X, ∥ · ∥) contains a sequence (en) with the property that for
every x ∈ X, there exists a sequence of scalars (αn) such that

lim
n→∞

∥x− (α1e1 + · · ·+ αnen)∥ = 0 (2.30)

then (en) is called a Schauder basis for (X, ∥ · ∥).

The series ∑∞
k=1 αkek, which has the sum x, is then called the expansion of x with respect to (en),

and we write
x =

∞∑
k=1

αkek (2.31)

For example, ℓp has a Schauder basis, namely (en), where

en = (δnj),

i.e., en is the sequence whose n-th term is 1 and all other terms are zero. Thus,

e1 = (1, 0, 0, 0, . . .),
e2 = (0, 1, 0, 0, . . .),
e3 = (0, 0, 1, 0, . . .),

etc.

Theorem 2.6 (Completion)
Let (X, ∥ · ∥X) be a normed space. Then there is a Banach space (X̂, ∥ · ∥X̂) and an isometry
J : (X, ∥ · ∥X)→ (W, ∥ · ∥X̂) of (X, ∥ · ∥X) to a dense subspace (W, ∥ · ∥X̂) of (X̂, ∥ · ∥X̂). The space
(X̂, ∥ · ∥X̂) is unique up to isometries.

§2.4 Finite dimensional normed spaces and their subspaces

Lemma 2.7 (Linear combinations)
Let {x1, . . . , xn} be a linearly independent set of vectors in a normed space (X, ∥ · ∥). Then there
exists a real number c > 0 such that for every choice of scalars α1, . . . , αn, one has

∥α1x1 + · · ·+ αnxn∥ ≥ c(|α1|+ · · ·+ |αn|), (2.32)

i.e. the right side is a lower bound of this norm.
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Theorem 2.8 (Completeness)
Every finite dimensional subspace (Y, ∥·∥Y ) of a normed space (X, ∥·∥X) is complete. In particular,
every finite dimensional normed space is complete.

Theorem 2.9 (Closedness)
Every finite dimensional subspace (Y, ∥ · ∥Y ) of a normed space (X, ∥ · ∥X) is closed in (X, ∥ · ∥X).

Example 2.5. Consider the vector space of all complex-valued continuous functions defined on the
closed interval [0, 1] of R and equip it with the sup norm:

∥x∥∞ = sup
t∈[0,1]

|x(t)| (2.33)

Then (C[0, 1], ∥ · ∥∞) is a Banach space. Let Y = span{x0, x1, x2, . . .} where xj(t) = tj , so that Y is
the set of all polynomials. Then (Y, ∥ · ∥∞|Y ) is not closed in (C[0, 1], ∥ · ∥∞).

§2.5 Compactness and Finite Dimensions

Definition 2.5. A metric space (X, dX) is said to be compact if every sequence in (X, dX) has a
convergent subsequence.

Lemma 2.10
A compact subset M of a metric space (X, dX) is closed and bounded.

The converse of Lemma 2.10 is not true. Consider the metric space ℓ2. Now, consider the sequence
(en) in ℓ2, where en = (δnj) ∈ ℓ2, i.e., the n-th term en of (en) is itself a sequence that has 1 in the
n-th term and 0 elsewhere. The sequence (en) is bounded. We know that ℓ2 is a normed space so that
the metric here is induced from the norm ∥ · ∥2 given by

∥x∥ =
( ∞∑

k=1
|xk|2

)1/2

(2.34)

with x = (xk) ∈ ℓ2. And ∥en∥ = 1, for each n. Also, the point set for the sequence (en) has its diameter
bounded by 1, and hence (en) is a bounded sequence in ℓ2.

Distinct points of the sequence are separated by a distance of 1, i.e., if m ̸= n, then

d(em, en) = 1,

so that every point of (en) has an ϵ-neighborhood that contains no other points of (en) except for the
point itself, meaning that none of the points of (en) is an accumulation point so that the point set of
(en) is closed and bounded in ℓ2. But it is not compact in ℓ2, as (en) itself, being a sequence in the
point set of (en), does not have a convergent subsequence.

For a finite dimensional normed space, we have the following nice result:

Theorem 2.11
In a finite dimensional normed space (X, ∥ · ∥X), any subset M ⊂ X is compact if and only if it is
closed and bounded.

Another important result is due to Riesz:
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2 Normed Space and Banach Space

Lemma 2.12 (Riesz’s Lemma)
Let (y, ∥ · ∥y) and (z, ∥ · ∥z) be subspaces of a normed space (X, ∥ · ∥X) of any dimension. And
suppose that Y ⊂ Z is closed. Then for every real number θ ∈ (0, 1), there exists z ∈ Z such that

∥z∥ = 1, ∥z − y∥ ≥ θ ∀y ∈ Y (2.35)

Proof. Consider v ∈ Z \ Y and denote its distance from Y by a,

a = inf
y∈Y
∥v − y∥ (2.36)

Since Y is closed, v can’t be in Y as v ∈ Z \ Y . Hence, a > 0.
We now choose θ ∈ (0, 1). By the definition of an infimum, ∃ y0 ∈ Y such that

a < ∥v − y0∥ ≤
a

θ
(note that 0 < θ < 1, one has a

θ
> a) (2.37)

Let z = c(v − y0) with c = 1
∥v − y0∥

, (2.38)

so that ∥z∥ = 1, and we show that

∥z − y∥ = ∥c(v − y0)− y∥ (2.39)
= c∥v − y0 − y∥ ≥ c · a (2.40)

= a

∥v − y0∥
(2.41)

Now, since y0, y ∈ Y , y0 + y
2 ∈ Y , i.e., y1 ∈ Y . Hence, by the definition (2.36) of a,

a ≤ ∥v − y1∥ (2.42)

Therefore, from (2.39), one obtains

∥z − y∥ = c∥v − y0∥ ≥ a = a

∥v − y0∥
(2.43)

Now, (2.37) yields,

∥v − y0∥ ≤
a

θ
(2.44)

=⇒ 1
∥v − y0∥

≥ 1
a
θ

(2.45)

=⇒ a

∥v − y0∥
≥ a

a
θ

= θ (2.46)

Now, combining (2.43) with (2.44), one obtains,

∥z − y∥ > 0.

Since y ∈ Y was arbitrary, it completes the proof. ■

Now, if one has a closed unit ball in a finite dimensional normed space, then the closed unit ball, being
closed and bounded, is also compact by Theorem 2.11. The converse of this statement can be proved
using Riesz’s Lemma.

Theorem 2.13
If a normed space (X, ∥ · ∥X) has the property that the closed unit ball M = {z ∈ X | ∥z∥X ≤ 1}
is compact, then X is finite dimensional.
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Proof. We assume that M is compact but X is infinite dimensional. Our goal would be to reach a
contradiction. First, take x1 from X of norm 1. This x1 then generates a 1-dimensional subspace
(X1, ∥ · ∥X1) where X1 = {cx1 | c is any scalar}. Now, by Theorem 2.9, X1, being finite dimensional, is
closed in (X, ∥ · ∥X). Since X is infinite dimensional, the containment X1 ⊂ X is proper. Then, by
Riesz’s Lemma, ∃x2 ∈ X of norm 1 such that

∥x2 − x1∥X ≥
1
2 (2.47)

Now, x1, x2 generate a 2-dimensional proper closed subspace (X2, ∥ · ∥X2) of (X, ∥ · ∥X), i.e.,

X2 = {c1x1 + c2x2 ∈ X | c1, c2 are any scalars} (2.48)
Then, by Riesz’s Lemma, there is x3 ∈ X with ∥x3∥ = 1 such that ∀z ∈ X2, one has

∥x3 − z∥X ≥
1
2 (2.49)

In particular,
∥x3 − x1∥X ≥

1
2 and ∥x3 − x2∥X ≥

1
2 (2.50)

Now, proceeding by induction, we obtain a sequence (xn) of elements xn ∈M s.t.

∥xm − xn∥ ≥
1
2 whenever m ̸= n.

Obviously (xn) can’t have a convergent subsequence. This contradicts the compactness of M . Hence,
our assumption dim X =∞ was false, and dim X <∞ ■

Remark 2.1. Theorem 2.13 has various applications. We’ll use it as a basic tool in the study of
compact operators.

Theorem 2.14
Let T : (X, dX)→ (Y, dY ) be a continuous mapping between metric spaces. Then the image of a
compact subset M of X under T is compact.

Corollary 2.15
(Maximum and minimum) A continuous mapping T of compact subset M of a metric space (X, dX)
to R assumes a maximum and a minimum at some points of M .

§2.6 Linear Operator

Definition 2.6 (Linear Operator). A linear operator T : D(T )→ Y is a mapping between vector
spaces where D(T ) ⊂ X is a vector subspace. The range R(T ) of T is contained in the vector space
Y . All the vector spaces considered are defined over the same field. The mapping T : D(T )→ Y
satisfies,

T (x + y) = Tx + Ty

T (αx) = αTx (2.51)

for all x, y ∈ D(T ) and scalars α.

Notation. D(T ) denotes the domain of the linear operator T . The domain R(T ) denotes the range.
The null space or the kernal of T is denoted by N (T ). That is, N (T ) = {x ∈ D(T ) : Tx = 0Y }.
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Theorem 2.16 (Range and Null Space)
If T is a linear operator then,

(a) The range R(T ) is a vector space.

(b) If dimD(T ) = n <∞, then dimR(T ) ≤ n.

(c) The null space N (T ) is a vector space.

Proof. (a) Let y1, y2 ∈ R(T ). We want to show that αy1 + βy2 ∈ R(T ) for any scalars α, β.
Since y1, y2 ∈ R(T ), we have y1 = Tx1, y2 = Tx2 for some x1, x2 ∈ D(T ). Since, D(T ) is a vector
space (by definition of linear operator), αx1 + βx2 ∈ D(T ) Then by linearity of T we have,

T (αx1 + βx2) = αTx1 + βTx2

= αy1 + βy2

Therefore, αy1 + βy2 ∈ R(T ). Hence, R(T ) is a vector space.

(b) Choose n + 1 arbitrary elements y1, y2, · · · yn+1 ∈ R(T ). Then, y1 = Tx1, y2 = Tx2, · · · yn+1 =
Txn+1 for some x1, x2, · · ·xn+1 ∈ D(T ). Since dimension of R(T ) is n, {x1, x2, · · ·xn+1} is
linearly dependent. Hence,

α1x1 + α2x2 + · · ·+ αn+1xn+1 = 0

for some scalars α1, α2, · · ·αn+1, not all zero. Then,

T (α1x1 + α2x2 + · · ·+ αn+1xn+1) = αTx1 + αTx2 + · · ·+ αTxn+1

= αy1 + αy2 + · · ·+ αyn+1 = 0

Therefore, {y1, y2, · · · yn+1 is linearly dependent. Since, the choice of elements were arbitrary, we
see that R(T ) has no linearly indepent set of cardinality greater than n. Hence, dimR(T ) ≤ n.

(c) Let x1, x2 ∈ N (T ). We want to show that αx1 + βx2 ∈ N (T ) for any scalars α, β. Since
x1, x2 ∈ N (T ), we have Tx1 = 0, Tx2 = 0. Then,

T (αx1 + βx2) = αTx1 + βTx2 = 0

Therefore, αx1 + βx2 ∈ N (T ). Hence, N (T ) is a vector space.
■

When, T : D(T )→ Y is injective linear operator, that is

Tx1 = Tx2 =⇒ x1 = x2 (2.52)

then there exists an inverse map T −1 : R(T )→ D(T ) defined by T −1y = x where y = Tx.

Theorem 2.17 (Inverse Operator)
Let X, Y be vector spaces, both real or both complex. Let T : D(T ) → Y be a linear operator
with domain D(T ) ⊂ X. Then:

(a) The inverse T −1 : R(T )→ D(T ) exists if and only if Tx = 0Y implies x = 0X .

(b) If T −1 exists, then T −1 is a linear operator.

(c) If dimD(T ) = n <∞ and T −1 exists, then dimR(T ) = dimDT .
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Proof. (a) Suppose that Tx = 0Y implies x = 0X . Let x1, x2 ∈ D(T ) such that Tx1 = Tx2. Then,

T (x1 − x2) = Tx1 − Tx2 = 0Y

Hence, x1 − x2 = 0X =⇒ x1 = x2. Therefore, T is injective. Hence, by equation (2.52), T −1

exists.

Conversely, suppose that T −1 exists. Then T is injective and equation (2.52) holds. Then
Tx = 0Y = T0X =⇒ x = 0X .

(b) Assume that T −1 exists. The domain of T −1, R(T ) is a vector space by theorem (2.16)-(a). Let
y1, y2 ∈ R(T ) and α be any scalar. We want to show that T −1(αy1 + y2) = αT −1y1 + T −1y2.

Since, y1, y2 ∈ R(T ), we have y1 = Tx1, y2 = Tx2 for some x1, x2 ∈ D(T ). Then, x1 =
T −1y1, x2 = T −1y2. Hence, αT −1y1 + T −1y2 = αx1 + x2 ∈ D(T ). We have,

T (αT −1y1 + T −1y2) = T (αx1 + x2)
= αTx1 + Tx2

= αy1 + y2

= T (T −1(αy1 + y2))

Since, T is injective, by equation (2.52), we have T −1(αy1 + y2) = αT −1y1 + T −1y2. Therefore,
T −1 is a linear operator.

(c) Assume that dimD(T ) = n <∞. Then by theorem (2.16)-(b), dimR(T ) ≤ n . Let dimR(T ) =
m. Then, m ≤ n. Since T −1 exists, and dimD(T −1) = dimR(T ) = m < ∞, we have
dimR(T −1) = dimD(T ) ≤ m. Hence n ≤ m. Therefore, m = n and dimR(T ) = dimD(T ).

■

§2.7 Bounded and Continuous Linear Operator

Definition 2.7 (Bounded Linear Operator). Let (X, ∥·∥X) and (Y, ∥·∥Y ) be normed spaces and
T : D(T )→ Y be a linear operator where D(T ) ⊆ X. The operator is said to be bounded if there
exists a real number c such that for all x ∈ D(T ), we have

∥Tx∥Y ≤ c ∥x∥X (2.53)

To emphasize that we are dealing with normed spaces, we write the map as T : (D(T ), ∥·∥D(T )) →
(Y, ∥·∥Y ). When there is no source of confusion, we simply write T : D(T )→ Y .

What is the smallest possible c that satisfies (2.53)?This is precisely supx∈D(T )\{0}
∥T x∥Y
∥x∥X

. Hence,
we define:

Definition 2.8 (Operator Norm). The operator norm of a bounded linear operator T : D(T )→ Y
is defined as

|||T ||| = sup
x∈D(T )\{0}

∥Tx∥Y
∥x∥X

(2.54)

Putting c = |||T ||| in equation (2.53), we get,

∥Tx∥Y ≤ |||T ||| ∥x∥X (2.55)
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Lemma 2.18 (Norm)
Let T : D(T )→ Y be a bounded linear operator. Then:

(a)

|||T ||| = sup
∥x∥X=1

∥Tx∥Y (2.56)

(b) |||T ||| defined in 2.8 satisfies (N1) to (N4) in definition 2.1.

Proof. (a) Let x = y
∥y∥X

. Then ∥x∥X =
∥∥∥ y

∥y∥X

∥∥∥ = 1
∥y∥X

∥y∥X = 1. Hence,

|||T ||| = sup
y∈D(T )\{0}

∥Ty∥Y
∥y∥X

= sup
y∈D(T )\{0}

∥∥∥∥∥ 1
∥y∥X

Ty

∥∥∥∥∥
Y

= sup
∥x∥X=1

∥Tx∥Y

(b)

|||T ||| = sup
x∈D(T )\{0}

∥Tx∥Y
∥x∥X

≥ sup
x∈D(T )\{0}

0

≥ 0

Hence, (N1) is satisfied.

Let Tx = 0 for all x. Then ∥Tx∥Y = 0 for all x. Hence, |||T ||| = 0. Conversely, if |||T ||| = 0, then
sup∥x∥=1 ∥Tx∥Y = 0. Hence, ∥Tx∥Y = 0 for all x. Hence, Tx = 0 for all x. Hence, (N2) is satisfied.

Let α be any scalar. Then (N3) is satisfied because:

∥T (αx)∥Y = sup ∥x∥X = 1 ∥T (αx)∥Y
= sup ∥x∥X = 1|α| ∥Tx∥Y
= |α| sup ∥x∥X = 1 ∥Tx∥Y
= |α||||T |||

Let T1, T2 both be bounded linear operators from D(T )→ Y . Then,

|||T1 + T2||| = sup
∥x∥=1

∥(T1 + T2)x∥Y

= sup
∥x∥=1

∥T1x + T2x∥Y

≤ sup
∥x∥=1

∥T1x∥Y + ∥T2x∥Y

= sup
∥x∥=1

∥T1x∥Y + sup
∥x∥=1

∥T2x∥Y

= |||T1|||+ |||T2|||

Hence, (N4) is satisfied. Therefore, |||T ||| defined in 2.8 satisfies (N1) to (N4) in Definition 2.1.
■
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§2.7.i Examples of Bounded Linear Operators
Example 2.6 (Identity Operator). Let (X, ∥·∥X) be a normed space. Then the identity operator
I : X → X defined by Ix = x is a bounded linear operator. If X ̸= {0}, then ∥Ix∥X = sup∥x∥=1 ∥x∥X .
Hence, |||I||| = 1.

Example 2.7 (Zero Operator). The zero operator 0̂ : X → Y defined by 0̂x = 0, ∀x ∈ X is bounded
and |||0||| = 0.

Example 2.8 (Differentiation Operator). Let (ρ[0, 1], ∥·∥ρ be the normed space of all complex valued
polynomials on J = [0, 1] and ∥·∥ρ be the max norm given by,

|||x|||ρ = max
t∈J
|x(t)| (2.57)

A differentatioin operator D : (ρ[0, 1], ∥·∥ρ) → (ρ[0, 1], ∥·∥ρ) is defined by Dx(t) = x′(t). Then D is
linear due to the linearity of differentiation. We claim that D is not bounded. Let xn(t) = tn with
n ∈ N. Then,

|||xn|||ρ = max
t∈J
|tn| = 1

and Dxn(t) = ntn−1. Hence,

∥Dxn∥ρ = max
t∈J
|ntn−1| = n

Then we have,

|||D||| = sup
∥x∥ρ=1

∥Dx∥ρ

≥
∥Dxn∥ρ
∥xn∥ρ

= n

1 = n

Hence, D is not bounded.

Example 2.9 (Matrix). A real matrix A = (αjk)j=1,...,r;k=1,...,n with r rows and n columns defines an
operator A : Rn → Rr by means of

y = Ax (2.58)

where x = (ξj)j=1,...,n and y = (ηj)j=1,...,r are column vectors with n and r components respectively.
In terms of components, 2.58 becomes,

ηj =
n∑

k=1
αjkξk, (j = 1, . . . , r) (2.59)

The operator A is linear because matrix multiplication is linear operation. Let us prove that A is
bounded. Recall that the norm on Rn is given by,

∥x∥Rn =
(

n∑
m=1
|ξm|2

)1/2

(2.60)

And the norm of y reads,

∥y∥Rr =

 r∑
j=1
|ηj |2

1/2

(2.61)
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By applying the Cauchy-Schwarz inequality to 2.59, one obtains,

∥Ax∥2Rr = ∥y∥2Rr

=
r∑

j=1
|ηj |2

=
r∑

j=1

(
n∑

k=1
αjkξk

)2

≤
r∑

j=1

(
n∑

k=1
|αjkξk|

)2

≤
r∑

j=1

[(
n∑

k=1
|αjk|2

)(
n∑

m=1
|ξm|2

)]

=
(

n∑
m=1
|ξm|2

) r∑
j=1

n∑
k=1

α2
jk


= ∥x∥2Rn

r∑
j=1

n∑
k=1

α2
jk

= ∥x∥2Rn c2 where c =

 r∑
j=1

n∑
k=1

α2
jk

1/2

Hence, ∥Ax∥Rr ≤ c ∥x∥Rn . Therefore, A is bounded linear operator.

Theorem 2.19 (Finite Dimension)
If a normed space X is finite dimensional, then every linear opeartor on X is bounded.

Proof. Let T : X → Y be any linear operator. Let dimX = n and {e1, . . . , en} be a basis for X. Let
x ∈ X, then x = ∑n

j=1 ξjej . Then,

∥Tx∥ =

∥∥∥∥∥∥
n∑

j=1
ξjTej

∥∥∥∥∥∥
≤

n∑
j=1
|ξj | ∥Tej∥

≤ nmax
k=1
∥Tek∥

n∑
j=1
|ξj |

Then using Lemma 2.2 with αj = ξj and xj = ej ,

n∑
j=1
|ξj | =

1
c

∥∥∥∥∥∥
n∑

j=1
ξj

∥∥∥∥∥∥ = 1
c
∥x∥

Let d = 1
c maxn

k=1 ∥Tek∥. Then we have,

∥Tx∥ ≤ d ∥x∥

Hence, T is bounded. ■
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Theorem 2.20 (Continuity and Boundedness)
Let T : D(T )→ Y be a linear operator where D(T ) ⊆ X and X, Y are normed spaces. Then:

(a) T is continuous if and only if T is bounded.

(b) If T is continuous at a single point, it is continuous everywhere.

Proof. (a) For T = 0̂, T is both bounded and continuous. Let T ̸= 0̂ be bounded. Let x0 ∈ D(T )
and ϵ > 0 be arbitrary. Let δ = ϵ

|||T ||| . Then for all x ∈ D(T ) such that ∥x− x0∥ < δ, we have,

∥Tx− Tx0∥ = ∥T (x− x0)∥
≤ |||T ||| ∥x− x0∥
< |||T |||δ
= ϵ

Therefore, T is continuous at x0. Since, x0 was arbitrary, T is continuous everywhere.

Conversely, assume that T is continuous. Choose an arbitrary x0 ∈ D(T ). Then for any
ϵ > 0, there exists a δ > 0 such that for all x ∈ D(T ) such that ∥x− x0∥ < δ, we have
∥Tx− Tx0∥ < ϵ.

Let y ∈ D(T ) \ {0} and set x = x0 + δ
∥y∥y. Then, x− x0 = δ

∥y∥y. Hence, ∥x− x0∥ = δ
∥y∥ ∥y∥ = δ.

Therefore, ∥Tx− Tx0∥ < ϵ. Hence,

∥Tx− Tx0∥ < ϵ

=⇒ ∥T (x− x0)∥ < ϵ

=⇒
∥∥∥∥T ( δ

∥y∥
y

)∥∥∥∥ < ϵ

=⇒ δ

∥y∥
∥Ty∥ < ϵ

=⇒ ∥Ty∥ <
ϵ

δ
∥y∥

=⇒ ∥Ty∥ < c ∥y∥

Where c = ϵ
δ . Therefore, T is bounded.

(b) Let T be continuous at a point x0 ∈ D(T ). Then using the second argument of part (a), T is
bounded. Then using part(a) again, T is continuous everywhere.

■

Corollary 2.21 (Continuity, null space)
Let T be a bounded linear operator. Then:

(a) xn → x where xn ∈ D(T ) implies Txn → Tx.

(b) The null space N (T ) is closed.

Proof. (a) Since T is bounded, T is continuous by Theorem 2.20-(a). Hence, xn → x implies
Txn → Tx.
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(b) Let (xn) be a sequence in N (T ) such that xn → x. Then Txn = 0 for all n. Hence Txn → 0.
Since T is continuous, Txn → Tx. Hence, Tx = 0. Therefore, x ∈ N (T ). Hence, N (T ) is closed.

■

Lemma 2.22
Let T2 : (X, ∥·∥X) → (Y, ∥·∥Y ), T1 : (Y, ∥·∥Y ) → (Z, ∥·∥Z) and T : (X, ∥·∥X) → (X, ∥·∥X) be
bounded linear operators. Show that

(a) |||T1T2||| ≤ |||T1||| · |||T2|||

(b) |||T n||| ≤ |||T |||n for any positive integer n

Proof. (a) Let x ∈ X, then

|||T1T2||| = sup
x0∈X

∥T1T2x0∥Z
∥x0∥X

≤ ∥T1T2x∥Z
∥x∥X

≤ |||T1||| · ∥T2x∥Y
∥x∥X

≤ |||T1||| · |||T2||| · ∥x∥X
∥x∥X

= |||T1||| · |||T2|||

(b) For n = 1, the claim is trivially true. Let us assume that the claim is true for some n = k ∈ N
where k ≥ 1. Then, ∣∣∣∣∣∣∣∣∣T k+1

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣T kT

∣∣∣∣∣∣∣∣∣
≤
∣∣∣∣∣∣∣∣∣T k

∣∣∣∣∣∣∣∣∣ · |||T ||| by part (a)

≤ |||T |||k · |||T |||
= |||T |||k+1

Therefore, by induction, the claim is true for all positive n ∈ N.
■

Definition 2.9 (Equality, Restriction and Extension). Two operators T1 and T2 are said to be equal,
written as T1 = T2 if they have the same domain, D(T1) = D(T2) and for all x ∈ D(T1), we have
T1x = T2x.

The restriction of an operator T : D(T ) → Y to a subset B ⊆ D(T ) is denoted by T |B
and is the operator defined by,

T |B : B → Y, T |Bx = Tx, ∀x ∈ B

An extension of T to a set M ⊇ D(T ) is an operator,

T̂ : M → Y, such that T̂ |D(T ) = T

Theorem 2.23 (Bounded Linear Extension)
Let T : D(T ) → Y be a bounded linear operator where D(T ) ⊆ X and (X, ∥·∥X) and (Y, ∥·∥Y )

25



2 Normed Space and Banach Space

are normed spaces. Then T has an extension

T̂ : D(T )→ Y

which is bounded and
∣∣∣∣∣∣∣∣∣T̂ ∣∣∣∣∣∣∣∣∣ = |||T |||

Proof. Let x ∈ D(T ). Then there exists a sequence (xn) in D(T ) such that xn → x. Since T is bounded
and linear,

∥Txn − Txm∥ = ∥T (xn − xm)∥
≤ |||T ||| ∥xn − xm∥

Since, ∥xn − xm∥ → 0 as n, m→∞, the sequence (Txn) is a Cauchy sequence in Y . Since Y is banach,
it is complete, hence (Txn) converges to some y ∈ Y . Define T̂ : D(T )→ Y by T̂ x = y. We need to
check well definedness of T̂ .

Let (zn) be another sequence inD(T ) such that zn → x. Consider (vn) be the sequence (x1, z1, x2, z2, . . .).
Then (vn) converges to x. Hence, the sequence Tvn converges to some y′ ∈ Y . Since, every subsequences
of a convergent sequence converges to the same limit, and Txn is a subsequence of Tvn, we have y = y′.
Since, Tzn is also a subsequence of Tvn, Tzn also converges to y. Hence, T̂ is well defined.

Let x1, x2 ∈ D(T ) and α be any scalar. Then,

T̂ (αx1 + x2) = lim
n→∞

T (αx1 + x2)

= lim
n→∞

αTx1 + Tx2

= α lim
n→∞

Tx1 + lim
n→∞

Tx2

= αT̂x1 + T̂ x2

Therefore, T̂ is linear. For every x ∈ D(T ), we have T̂ x = Tx. Hence, T̂ is an extension of T .

∥Txn∥ ≤ |||T ||| ∥xn∥ for all n. Since, ∥.∥ is a continuous mapping, we have after taking limit on
both sides as n→∞, ∥∥∥T̂ x

∥∥∥ ≤ |||T ||| ∥x∥
=⇒ sup

∥x∥=1

∥∥∥T̂ x
∥∥∥ ≤ |||T |||

=⇒
∣∣∣∣∣∣∣∣∣T̂ ∣∣∣∣∣∣∣∣∣ ≤ |||T |||

Hence, T̂ is bounded. Moreover,
∣∣∣∣∣∣∣∣∣T̂ ∣∣∣∣∣∣∣∣∣ ≥ |||T ||| because T̂ is an extension of T . Therefore,

∣∣∣∣∣∣∣∣∣T̂ ∣∣∣∣∣∣∣∣∣ =
|||T |||. ■

§2.8 Linear Functional

Definition 2.10 (Linear Functional). A linear functional f is a linear operator with domain in a
vector space X and codomain in the field K of X, that is

f : X → K

where K = R or C.
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Definition 2.11 (Bounded Linear Functional). A bounded linear functional f is a bounded linear
operator with domain in a normed space (X, ∥·∥) and codomain in the field K of X, such that
there exists a real number c such that for all x ∈ X,

|f(x)| ≤ c ∥x∥

Furthermore, the norm of f is defined as in 2.8,

|||f ||| = sup
x ̸=0

|f(x)|
∥x∥

= sup
∥x∥=1

|f(x)| (2.62)

And using 2.55, we can write

|f(x)| ≤ |||f ||| ∥x∥ (2.63)

Theorem 2.24 (Countinuity and Boundedness)
A linear functional f is continuous if and only if it is bounded.

Proof. This is a special case of 2.20. ■

Example 2.10. Consider the normed space (C[a, b], ∥·∥max) with respect to the max norm

∥x∥max = max
t∈[a,b]

|x(t)|

with x : [a, b]→ C being a complex valued continuous function on [a, b]. Fix t0 ∈ J = [a, b] and define
a linear functional f on all of (C[a, b], ∥·∥max), i.e f : (C[a, b], ∥·∥max)→ C as,

f(x) = x(t0)

where x ∈ C[a, b]. We will show that f is a bounded linear functional. Let x, y ∈ C[a, b] and α ∈ C,
then

f(αx + y) = (αx + y)(t0) = αx(t0) + y(t0) = αf(x) + f(y)

Hence, f is linear. ∥f(x)∥ = ∥x(t0)∥ ≤ ∥x∥max. Therefore, f is bounded. Moreover,

∥f(x)∥
∥x∥max

≤ 1

=⇒ sup
∥x∥max=1

∥f(x)∥ ≤ 1

=⇒ |||f ||| ≤ 1

Let x0 ∈ C[a, b] be the constant function such that x0(t) = 1 for all t ∈ [a, b]. Then,

|||f ||| ≥ ∥f(x0)∥ = ∥x0(t0)∥ = 1

Therefore, |||f ||| = 1.

Example 2.11. Consider the hilbert space ℓ2 (see 1.7). We define a linear functional f on ℓ2 by fixing
a = (αn) ∈ l2 and defining f as,

f(x) =
∞∑

n=1
αnξn (2.64)
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where x = (ξn) ∈ l2. The series in (2.64) converges absolutely. Then using the Cauchy-Schwarz
inequality, we have

∥f(x)∥ =
∣∣∣∣∣

∞∑
n=1

αnξn

∣∣∣∣∣
≤

∞∑
n=1
|αnξn|

≤
( ∞∑

n=1
|αn|2

)1/2( ∞∑
n=1
|ξn|2

)1/2

= ∥a∥ ∥x∥

Therefore, f is a bounded linear functional on ℓ2.

Definition 2.12 (Algebraic Dual Space). The algebraic dual space of a vector space X is the set of
all linear functionals on X and is denoted by X∗. That is,

X∗ = {f : X → K | f is linear}

Let f, g ∈ X∗ and α ∈ K, then f + g and αf are defined as,

(f + g)(x) = f(x) + g(x)
(αf)(x) = αf(x)

The algebraic dual space (X∗)∗ of X∗, denoted as X∗∗, is called the second algebraic dual space of X.
We can define an element of X∗∗, g for a fixed x ∈ X as,

g : X∗ → K
g(f) = gx(f) = f(x) ∀f ∈ X∗

The linearity of g can be seen from,

gx(αf + g) = (αf + g)(x) = αf(x) + g(x) = αgx(f) + gx(g)

for all f, g ∈ X∗ and α ∈ K. Hence, each x ∈ X corresponds to a gx ∈ X∗∗. This defined the following
mapping:

Definition 2.13 (Cannonical mapping or Cannonical Embedding). The cannonical mapping or
cannonical embedding of a vector space X into its second algebraic dual space X∗∗ is defined as,

C : X → X∗∗ C(x) = gx ∀x ∈ X

Let x, y ∈ X and α ∈ K, then for all f ∈ X∗,

C(αx + y)(f) = f(αx + y) = αf(x) + f(y) = αC(x)(f) + C(y)(f)

Therefore, C is linear. Assume that C(x) = C(y) then for all f ∈ X∗,

C(x) = C(y)
=⇒ gx = gy

=⇒ gx(f) = gy(f)
=⇒ f(x) = f(y)

Since, this is true for all f , we have x = y. Therefore, C is injective.
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Definition 2.14 (Isomorphism of Normed Space). Two normed spaces X and Y are said to be
isomorphic if there exists a bijective linear operator T : X → Y such that both T and T −1 are
isometric. That is,

T : X → Y and T −1 : Y → X

T (x + y) = Tx + Ty ∀x, y ∈ X

T (αx) = αT (x) ∀x ∈ X, α ∈ K
∥Tx∥Y = ∥x∥Y ∀x ∈ X∥∥∥T −1y

∥∥∥
X

= ∥y∥X ∀y ∈ Y

Definition 2.15 (Embeddable). A vector space X is said to be embeddable in a vector space Y if
X is (vector space) isomorphic to a subspace of Y .

Since, the cannonical map C is injective, X is (vector space) isomorphic to the range of C in X∗∗.
Therefore, X is embeddable in X∗∗. If X is such a space so that C is also surjective, that is Cc is
bijective linear operator, then X is isomorphic to X∗∗.

Definition 2.16 (Algebraic Reflexivity). A vector space X is said to be algebraically reflexive if it is
(vector space) isomorphic to its second algebraic dual space X∗∗.

Theorem 2.25 (Dimension of X∗)
Let X be an n-dimensional vector space and E = {e1, e2, . . . , en} be a basis of X. Then,
F = {f1, f2, . . . , fn} defined as,

fi(ej) = δij =
{

1 if i = j

0 if i ̸= j

is a basis of X∗ and dim X∗ = dim X = n.

Proof. Let βi be a set of scalars such that,
n∑

i=1
βifi(x) = 0

Then, for a fixed j ∈ {1, 2, . . . , n},
n∑

i=1
βifi(ej) =

n∑
i=1

βiδij = βj = 0

Therefore, βi = 0 for all i ∈ {1, 2, . . . , n}. Hence, F is linearly independent.

Let f ∈ X∗. Since f is linear, we can write f(ei) = αi for some αi ∈ K. Then,

f(x) =
n∑

i=1
ξiαi

Also,

fi(x) = fi

(
n∑

i=1
ξiei

)
=

n∑
i=1

ξifi(ei) = ξi

Hence, we have f(x) = ∑n
i=1 αifi(x). Therefore, F spans X∗, hence F is a basis of X∗. Therefore,

dim X∗ = n = dim X. ■
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Lemma 2.26 (Zero Vector)
Let X be a finite dimensional vector space. Let x0 ∈ X such that f(x0) = 0 for all f ∈ X∗. Then,
x0 = 0.

Proof. Let {e1, e2, . . . , en} be a basis of X. Then x0 = ∑n
i=1 ξiei. Let f ∈ X∗, then

f(x0) =
n∑

i=1
ξiαi = 0

This is 0 by assumption for all f , hence also for every choice of αi. Therefore, ξi must be 0 for all i.
Hence, x0 = 0. ■

Theorem 2.27 (Algebraic Reflexivity of Finite Dimensional Space)
A finite dimensional vector space X is algebraically reflexive.

Proof. Consider the cannonical mapping C : X → X∗∗ defined in 2.13. Assume that C(x0) = 0 for
some x0 ∈ X. Then for all f ∈ X∗,

(Cx0)(f) = gx(f) = f(x0) = 0

Then by lemma 2.26, x0 = 0. Hence, by theorem 2.17, C has an inverse C−1 : R(C) → X and
dimR(C) = dim X. By theorem 2.25, dim X∗∗ = dim X = dimR(C). Hence, R(C) is not a proper
subspace of X∗∗. Therefore C is surjective and X is algebraically reflexive. ■

§2.9 Normed spaces of operators
Take any two normed spaces X and Y (both over real or complex numbers) and consider the set

B(X, Y )

consisting of all bounded linear operators from X to Y . Each such operator is defined over all of X and
its range is contained in Y . We first want to see that B(X, Y ) itself can be made into a normed space.

Definition 2.17 (Vector Space Structure). Vector addition is defined as

(T1 + T2)x = T1x + T2x (2.65)

where T1, T2 ∈ B(X, Y ).
For any scalar α, the scalar multiplication is defined by

(αT )x = α(Tx) (2.66)

∀T ∈ B(X, Y ).

Definition 2.18 (Bounded Linear Operators form a Normed Space). The Vector Space B(X, Y ) of
all bounded linear operators from a normed space (X, ∥ · ∥X) to a normed space (Y, ∥ · ∥Y ) is itself
a normed space with norm defined by

∥T∥ = sup
x ̸=0

∥Tx∥Y
∥x∥X

= sup
∥x∥=1

∥Tx∥Y (2.67)

In what case B(X, Y ) will be a Banach space? The question is answered in the following theorem:
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Theorem 2.28 (The Space of Bounded Linear Operator is Banach)
If (Y, ∥ · ∥Y ) is a Banach space, then (B(X, Y ), ||| · |||) is a Banach space.

Proof. Consider an arbitrary Cauchy sequence (Tn) in B(X, Y ) and show that Tn → T in B(X, Y ).
Since (Tn) is Cauchy, ∀ϵ > 0, ∃N ∈ N such that

|||Tn − Tm||| < ϵ, whenever m, n > N (2.68)

Then for all x ∈ X and m, n > N , one has

∥Tnx− Tmx∥Y = ∥(Tn − Tm)x∥Y
≤ |||Tn − Tm||| ∥x∥X
< ϵ∥x∥X [By (2.68)] (2.69)

Tnx− Tmx ∈ Y ∀n ∈ N.
Now, fix x ∈ X. Given ϵ̃ > 0, we may choose ϵ = ϵ̃

∥x∥X
in (2.68) so that

ϵ∥x∥X < ϵ̃ (2.70)

Then from (2.69), one obtains, ∥Tnx− Tmx∥Y < ϵ̃ and from (2.68), one finds that (Tnx) is a Cauchy
sequence in (Y, ∥ · ∥Y ). Since (Y, ∥ · ∥Y ) is complete, (Tnx) converges in Y , say, Tnx→ y. We thus find
a vector y ∈ Y from a vector x ∈ X with the help of the Cauchy sequence (Tn) in B(X, Y ). In other
words, one has an operator T : X → Y defined by

y = lim
n→∞

Tnx =: Tx (2.71)

The operator T : X → Y is linear since

T (αx + βz) = lim
n→∞

Tn(αx + βz) = α lim
n→∞

Tnx + β lim
n→∞

Tnz

= αTx + βTz

∀x, z ∈ X and α, β scalars.
Now, let us prove that T : X → Y defined in (2.71) is bounded. In (2.68), we saw that ∀ϵ > 0∃n ∈ N

such that ∀x ∈ X and m, n > N ,
∥Tnx− Tmx∥Y < ϵ∥x∥X (2.72)

From the above, we see that for every n > N and all x ∈ X

∥Tnx− Tx∥Y = ∥Tnx− lim
m→∞

Tmx∥Y

= lim
m→∞

∥Tnx− Tmx∥Y [∥ · ∥Y is a continuous function on Y ]

< ϵ∥x∥X [By (2.72)]

One, therefore, finds that for all x ∈ X with n > N

∥(Tn − T )x∥Y ≤ ϵ∥x∥X (2.73)

which shows that Tn − T is a bounded linear operator for n > N . Since Tn is bounded for ∀n ∈ N
[Tn ∈ B(X, Y )], one must have Tn − (Tn − T ) = T is also bounded. In other words, T is a bounded
linear operator, i.e., T ∈ B(X, Y ). Take supremum over all x ∈ X with ∥x∥X = 1 on both sides of
(2.73) to obtain the following

sup
x∈X
∥(Tn − T )x∥Y ≤ ϵ

∥x∥X = 1
=⇒ |||Tn − T ||| ≤ ϵ (2.74)

(2.74) means that for all ϵ > 0, there exists N ∈ N, such that for all n > N , one has |||Tn − T ||| < ϵ.
Hence, |||Tn − T ||| → 0. In other words, Tn → T in B(X, Y ). ■
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2 Normed Space and Banach Space

Definition 2.19 (Dual Space). Let (X, ∥ · ∥X) be a normed space. Then the set of all bounded
linear functionals on X constitutes a normed space with norm defined by

∥f∥ = sup
x∈X
x ̸=0

|f(x)|
∥x∥X

= sup
∥x∥=1

|f(x)| (2.75)

which is called the dual space of X and is denoted by X ′.

Since a linear functional on a normed space (X, ∥ ·∥X) is a map from (X, ∥ ·∥X) to R or C (depending
on if X is a real or a complex vector space), we see that X ′ is simply B(X,K) with the complete space
K = R or C (with the Euclidean or unitary metric). Hence, Theorem 2.28 applies and we have the
following:

Theorem 2.29 (Dual of a Normed Space is a Banach Space)
The dual space X ′ of a normed space (X, ∥ · ∥X) is a Banach space (whether or not X is).

Definition 2.20. An isomorphism of a normed space (X, ∥ · ∥X) to a normed space (X̃, ∥ · ∥X̃) is
a bijective linear operator T : (X, ∥ · ∥X) → (X̃, ∥ · ∥X̃) which preserves the norm, i.e., ∀x ∈ X,
one has

∥Tx∥X̃ = ∥x∥X (2.76)

If dX is the metric on X induced by ∥ · ∥X and dX̃ is the metric on X̃ induced by ∥ · ∥X̃ , then it is
easy to verify that the following holds

dX̃(Tx, Ty) = dX(x, y) (2.77)

∀x, y ∈ X. In other words, T : (X, dX)→ (X̃, dX̃) is actually an isometry in the respective induced
metrics. Also, (2.76) tells us that the bijective linear operator T : (X, ∥ · ∥X)→ (X̃, ∥ · ∥X̃) is actually
bounded and hence continuous by Theorem 4.2.

Example 2.12 (Dual of Rn). The dual space of (Rn, ∥ · ∥2) is (Rn, ∥ · ∥2)

Proof. By Theorem 4.1, if a normed space (X, ∥ · ∥X) is finite-dimensional, then every linear operator
on (X, ∥ · ∥X) is bounded. Hence on Rn, the dual Rn∗ coincides with the dual Rn, i.e., Rn∗ = Rn.
Given a basis {e1, . . . , en} of Rn and f , for f ∈ Rn, one has

x =
n∑

k=1
ξkek

f(x) = f

(
n∑

k=1
ξkek

)
=

n∑
k=1

ξkf(ek) [By linearity of f ∈ Rn]

=
n∑

k=1
ξkγk, γk = f(ek) (2.78)

By Cauchy-Schwarz,

|f(x)| =
∣∣∣∣∣

n∑
k=1

ξkγk

∣∣∣∣∣ ≤
(

n∑
k=1
|ξk|2

)1/2( n∑
m=1
|γm|2

)1/2

= ∥x∥2
(

n∑
m=1
|γm|2

)1/2

(2.79)

32



2 Normed Space and Banach Space

Taking supremum over all x ∈ Rn with ∥x∥2 = 1 on both sides of (2.79), one obtains,

sup
x∈Rn

∥x∥2=1

|f(x)| ≤
(

n∑
m=1
|γm|2

)1/2

=⇒ ∥f∥ ≤
(

n∑
m=1
|γm|2

)1/2

(2.80)

When ξk = γk, ∀k ∈ {1, . . . , n}, (2.79) reads as

|f(x)| =
n∑

k=1
|γk|2 =

n∑
k=1

ξ2
k = ∥x∥22 when x = (γ1, . . . , γn)

In other words,
|f(x)|
∥x∥2

=
(

n∑
k=1

γ2
k

)1/2

when x = (γ1, . . . , γn) (2.81)

And, from (2.79),
|f(x)|
∥x∥2

≤
(

n∑
k=1

γ2
k

)1/2

, ∀x ∈ Rn and x ̸= 0 (2.82)

(2.81) together with (2.82) imply

sup
x∈Rn

x ̸=0

|f(x)|
∥x∥2

=
(

n∑
k=1

γ2
k

)1/2

∥f∥ =
(

n∑
k=1

γ2
k

)1/2

(2.83)

(2.83) shows that the norm of f is equal to the Euclidean norm ∥c∥2, where c = (γk) ∈ Rn, i.e.,

∥f∥ = ∥c∥2 (2.84)

with c = (γk)n
k=1 ∈ Rn. Hence, the mapping g : Rn′ → Rn defined by g(f) = c = (γk), with γk = f(ek),

{e1, . . . , en} being a basis of Rn is norm preserving. Indeed, (2.84) tells us that

∥g(f)∥2 = ∥f∥

In fact, the isomorphism is g : (Rn′
, ∥ · ∥)→ (Rn, ∥ · ∥2). ■

Example 2.13 (Other examples of Dual Spaces). 1. The dual space of ℓ1 is ℓ∞.

2. The dual space of ℓp is ℓq; here, 1 < p <∞ and q is the conjugate of p, i.e., 1
p + 1

q = 1.
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3 Inner Product Space and Hilbert Space

§3.1 Inner Product Space

Definition 3.1 (Inner product spaces and Hilbert spaces). An inner product space (X, ⟨·, ·⟩) is a
vector space X with an inner product ⟨·, ·⟩ defined on X. A Hilbert space is a complete inner
product space (complete in the metric induced by the inner product as mentioned below). Suppose
X is a vector space over K = R or C. Then ⟨·, ·⟩ is a mapping ⟨·, ·⟩ : X × X → K such that
∀x, y, z ∈ X and α ∈ K, one has

(IP1) ⟨x + y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩

(IP2) ⟨αx, y⟩ = α⟨x, y⟩

(IP3) ⟨x, y⟩ = ⟨y, x⟩

(IP4) ⟨x, x⟩ ≥ 0
⟨x, x⟩ = 0⇔ x = 0X

An inner product ⟨·, ·⟩ on X defines a norm on X given by

∥x∥in =
√
⟨x, x⟩ (3.1)

and a metric on X by
din(x, y) = ∥x− y∥in =

√
⟨x− y, x− y⟩ (3.2)

so that (X, ∥ · ∥in) becomes a normed space and (X, din) becomes a metric space. Hence, we easily see
that an inner product space is a normed space and thereby a metric space.

Remark 3.1. In IP3, the overbar denotes complex conjugation. Consequently, if X is a real vector
space, we simply have

⟨x, y⟩ = ⟨y, x⟩ (symmetry).

IP1 - IP3 imply
(a) ⟨αx + βy, z⟩ = α⟨x, z⟩+ β⟨y, z⟩
(b) ⟨x, αy + βz⟩ = α⟨x, y⟩+ β⟨x, z⟩

}
(3.3)

(a) tells us that the inner product is linear in the first factor and conjugate linear in the second factor.
Expressing them together, we say that the “inner product” is sesquilinear.

Now, if x, y ∈ X and (X, ⟨·, ·⟩) is an inner product space, then the induced norm ∥ · ∥in on X satisfies
the following

∥x− y∥2in + ∥x + y∥2in = ⟨x− y, x− y⟩+ ⟨x + y, x + y⟩
= ⟨x, x⟩+ ⟨y, y⟩+ ⟨x, x⟩+ ⟨y, y⟩
= 2(∥x∥2in + ∥y∥2in) (3.4)

The equality (3.4) is called the Parallelogram equality.

Definition 3.2 (Orthogonality). An element x of an inner product space (X, ⟨·, ·⟩) is said to be
orthogonal to an element y ∈ X if ⟨x, y⟩ = 0. We write it as x ⊥ y. Similarly, for subsets A, B ⊂ X
we write x ⊥ A if x ⊥ a, ∀a ∈ A, and A ⊥ B if a ⊥ b, ∀a ∈ A and ∀b ∈ B.

34



3 Inner Product Space and Hilbert Space

Example 3.1 (Some examples of Inner Product Spaces). 1. Euclidean space (Rn, ⟨·, ·⟩Euc) is a Hilbert
space with inner product defined by

⟨x, y⟩ = ξ1η1 + · · ·+ ξnηn (3.5)

where x = (ξj) = (ξ1, . . . , ξn) and y = (ηj) = (η1, . . . , ηn) are vectors in Rn.

2. Unitary space (Cn, ⟨·, ·⟩uni) is a Hilbert space with inner product given by

⟨z, w⟩ = ξ1η1 + · · ·+ ξnηn (3.6)

where z = (ξj) = (ξ1, . . . , ξn) and w = (ηj) = (η1, . . . , ηn) are vectors in Cn.

3. Square integrable function space L2[a, b]. The norm

∥x∥2 =
(∫ b

a
|x(t)|2dt

)1/2

(3.7)

has been introduced before which can be induced from the inner product

⟨x, y⟩2 =
∫ b

a
x(t)y(t)dt (3.8)

It can be shown that (L2[a, b], ⟨·, ·⟩2) is complete with respect to the metric induced from the
inner product (3.8). In other words, L2[a, b] is a Hilbert space.

4. The p-summable sequence space ℓp with p ≠ 2 is not an inner product space, hence not a Hilbert
space.

The last one is a quite illuminating and hence, its proof is given below.

Proof. The statement under tells us that the norm of ℓp with p ̸= 2 can’t be induced from an inner
product. Had the norm been induced from the inner product, it would satisfy the parallelogram
equality. Recall the ℓp norm

∥x∥p =
( ∞∑

k=1
|ξk|p

)1/p

(3.9)

for x = (ξj) ∈ ℓp. Now take y = (1, 1, 0, 0, . . . ) ∈ ℓp and z = (1,−1, 0, 0, . . . ) ∈ ℓp. Then one has,

∥y∥p = ∥z∥p = 21/p (3.10)

And y + z = (2, 0, 0, . . . ) and y − z = (0, 2, 0, . . . ), so that

∥y + z∥p = (2p)1/p = 2
∥y − z∥p = (2p)1/p = 2 (3.11)

(3.10) and (3.11) imply that
∥y + z∥2p + ∥y − z∥2p = 4 + 4 = 8 (3.12)

while

2(∥y∥2p + ∥z∥2p) = 2
[
(21/p)2 + (21/p)2

]
= 2 · 2 · 22/p

= 4 · 22/p (3.13)

From (3.12) and (3.13), one concludes that

∥y + z∥2p + ∥y − z∥2p ̸= 2(∥y∥2p + ∥z∥2p) if p ̸= 2

Hence, the ℓp norm ∥ · ∥p on the space of p-summable sequences is not induced from an inner product
for p ̸= 2. Hence, although (ℓp, ∥ · ∥p) for p ̸= 2 is a Banach space, it is not an inner product space and
hence not a Hilbert space. ■
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3 Inner Product Space and Hilbert Space

§3.2 Further properties of inner product spaces

Lemma 3.1 (Schwarz inequality, triangle inequality)
An inner product ⟨·, ·⟩ and the corresponding norm ∥ · ∥in associated with the inner product space
(X, ⟨·, ·⟩) satisfy the Schwarz inequality and the triangle inequality as follows.

(a) (Schwarz inequality) We have
|⟨x, y⟩| ≤ ∥x∥in∥y∥in (3.14)

where the equality sign holds if and only if {x, y} is a linearly dependent set.

(b) (Triangle inequality) The norm ∥ · ∥in also satisfies

∥x + y∥in ≤ ∥x∥in + ∥y∥in (3.15)

where the equality sign holds if and only if y = 0 or x = cy (c > 0).

Proof. (a) If y = 0, then (3.14) automatically holds. Let y ̸= 0x. For every scalar α, one has

0 ≤ ∥x− αy∥2in = ⟨x− αy, x− αy⟩
= ⟨x, x⟩ − ⟨x, αy⟩ − ⟨αy, x⟩+ ⟨αy, αy⟩
= ⟨x, x⟩ − α⟨x, y⟩ − α⟨y, x⟩+ αα⟨y, y⟩
= ⟨x, x⟩ − α⟨x, y⟩ − α⟨x, y⟩+ αα⟨y, y⟩

Now, if we choose α = ⟨x,y⟩
⟨y,y⟩ , then the term in the square bracket on the right side above vanishes.

The remaining inequality then is

0 ≤ ⟨x, x⟩ − ⟨x, y⟩
⟨y, y⟩

⟨y, x⟩

= ∥x∥2in −
|⟨x, y⟩|2

∥y∥2in
=⇒ |⟨x, y⟩|2 ≤ ∥x∥2in∥y∥2in

|⟨x, y⟩| ≤ ∥x∥in∥y∥in (3.16)

One, therefore, finds:

0 ≤ ∥x∥2in −
|⟨x, y⟩|2

∥y∥2in
=⇒ 0 ≤ ∥x∥2in∥y∥2in − |⟨x, y⟩|2 [By multiplying both sides of the above by ∥y∥2in]
=⇒ |⟨x, y⟩|2 ≤ ∥x∥2in∥y∥2in

Equality holds in this derivation if and only if y = 0 or 0 = ∥x− αy∥2in, so that x− αy = 0, i.e.,
x = αy or in other words, {x, y} is a linearly dependent set in X. (any set consisting of a zero
vector is always linearly dependent)

(b) One has

∥x + y∥2in = ⟨x + y, x + y⟩
= ⟨x, x⟩+ ⟨x, y⟩+ ⟨y, x⟩+ ⟨y, y⟩ (3.17)

Now, by the Cauchy-Schwarz inequality,

|⟨x, y⟩| = |⟨y, x⟩| ≤ ∥x∥in∥y∥in (3.18)
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By (3.17) and (3.18), one, therefore, obtains,

∥x + y∥2in = ⟨x, x⟩+ ⟨x, y⟩+ ⟨y, x⟩+ ⟨y, y⟩
≤ ∥x∥2in + |⟨x, y⟩|+ |⟨y, x⟩|+ ∥y∥2in [By triangle inequality of numbers]
≤ ∥x∥2in + 2∥x∥in∥y∥in + ∥y∥2in
= (∥x∥in + ∥y∥in)2 (3.19)

Taking square root on both sides of (3.19), one obtains,

∥x + y∥in ≤ ∥x∥in + ∥y∥in (3.20)

Equality holds in (3.20) if and only if

⟨x, y⟩+ ⟨y, x⟩ = 2∥x∥in∥y∥in (3.21)

But

⟨x, y⟩+ ⟨y, x⟩ = ⟨x, y⟩+ ⟨x, y⟩
= 2 Re⟨x, y⟩

Hence, the condition (3.21) reduces to

2 Re⟨x, y⟩ = 2∥x∥in∥y∥in
=⇒ Re⟨x, y⟩ = ∥x∥in∥y∥in ≥ |⟨x, y⟩| [By part (a)] (3.22)

Since the real part of a complex number can’t exceed the modulus of it, one must have an equality
in (3.22):

∥x∥in∥y∥in = |⟨x, y⟩| (3.23)

Then, by part (a), one has y = 0 or x = cy.
■

Lemma 3.2
If in an inner product space (X, ⟨·, ·⟩), one has xn → x and yn → y, then ⟨xn, yn⟩ → ⟨x, y⟩.

Proof.

|⟨xn, yn⟩ − ⟨x, y⟩| = |⟨xn, yn⟩ − ⟨xn, y⟩+ ⟨xn, y⟩ − ⟨x, y⟩|
= |⟨xn, yn − y⟩+ ⟨xn − x, y⟩|
≤ |⟨xn, yn − y⟩|+ |⟨xn − x, y⟩| [Triangle inequality of numbers]
≤ ∥xn∥in∥yn − y∥in + ∥xn − x∥in∥y∥in [By Schwarz inequality] (3.24)

Now, since xn → x and yn → y so that ∥xn − x∥in → 0 and ∥yn − y∥in → 0, one obtains from (3.24),

|⟨xn, yn⟩ − ⟨x, y⟩| → 0

■

Remark 3.2. Recall Theorem 2.28 in the context of the inner product map ⟨·, ·⟩ : X × X → C
(considering X is a complex vector space). din is the metric on X induced by the inner product.
Then Lemma 2 tells us that ⟨·, ·⟩ : (X × X, din × din) → (C, duni) is sequentially continuous at
(x, y) ∈ X × X. Indeed, one shows that for (xn, yn) converging to (x, y) in (X × X, din × din), one
has ⟨·, ·⟩(xn, yn) = ⟨xn, yn⟩ converging to ⟨·, ·⟩(x, y) = ⟨x, y⟩ in (C, duni). But in the context of metric
spaces sequential continuity at (x, y) ∈ X × X is equivalent to continuity of a given map at that
point. Hence, the inner product map ⟨·, ·⟩ : (X ×X, din × din) → (C, duni) is continuous at a given
(x, y) ∈ X ×X.

37
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An isomorphism T : (X, ⟨·, ·⟩X) → (X̃, ⟨·, ·⟩X̃) between inner product spaces (both X and X̃ are
vector spaces over the same field) is a bijective linear operator which preserves the inner product, i.e.,
∀x, y ∈ X,

⟨Tx, Ty⟩X̃ = ⟨x, y⟩X (3.25)

In fact, by (3.25), one sees that

⟨Tx, Tx⟩X̃ = ⟨x, x⟩X
∥Tx∥X̃,in = ∥x∥X,in (3.26)

where ∥ · ∥X,in is the norm induced from the inner product on X and ∥ · ∥X̃,in is the norm induced from
the inner product on X̃. Then (3.26) tells us that

T : (X, ∥ · ∥X,in)→ (X̃, ∥ · ∥X̃,in)

is actually a bounded linear operator defined by (3.25) and hence continuous by Theorem 4.2.

§3.3 Orthonormality

Definition 3.3 (Orthonormal Set). An orthonormal set M in an inner product space (X, ⟨·, ·⟩) is a
subset M ⊆ X whose elements are pairwise orthogonal. An orthonormal set is an orthogonal set
whose elements have a unit norm, i.e., ∀x, y ∈M

⟨x, y⟩ =
{

1 if x = y

0 if x ̸= y
(3.27)

If an orthogonal/orthonormal set M is countable, we can arrange it in a sequence (xn) and call
it orthogonal/orthonormal sequence.

More generally, an indexed family (xα)α∈I is called orthogonal if xα ⊥ xβ for all α, β ∈ I, α ≠ β.
The family (xα)α∈I is called orthonormal if it is orthogonal and ∥xα∥ = 1, α ∈ I, i.e.,

⟨xα, xβ⟩ = δαβ (3.28)

For orthogonal elements x, y, x ̸= y in the inner product space (X, ⟨·, ·⟩), one has ⟨x, y⟩ = 0 so that

∥x + y∥2 = ⟨x + y, x + y⟩
= ⟨x, x⟩+ ⟨y, y⟩ [∵ ⟨x, y⟩ = ⟨y, x⟩ = 0]
= ∥x∥2 + ∥y∥2 (3.29)

More generally, if {x1, . . . , xn} is an orthogonal set, then

∥x1 + · · ·+ xn∥2in = ∥x1∥2in + ∥x2∥2in + · · ·+ ∥xn∥2in (3.30)

Infact ⟨xi, xj⟩ = 0 if i ̸= j; consequently,∥∥∥∥ n∑
j=1

xj

∥∥∥∥2

in
=
〈 n∑

j=1
xj ,

n∑
k=1

xk

〉
=

n∑
j=1
⟨xj , xj⟩ =

n∑
j=1
∥x∥2in

Lemma 1 (Linear independence) An orthonormal set is linearly independent.

Proof. Let {e1, . . . , en} be an orthonormal set in the inner product space (X, ⟨·, ·⟩). Consider the
equation
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n∑
k=1

αkek = 0x (3.31)

Taking inner product with a fixed ej ∈ {e1, . . . , en} on both sides of (3.31) yields,

〈
n∑

k=1
αkek, ej

〉
= ⟨0, ej⟩ = 0

=⇒
n∑

k=1
αk⟨ek, ej⟩ = 0

=⇒ αj⟨ej , ej⟩ = 0 [using orthogonality of {e1, . . . , en}]
=⇒ αj = 0 ∵ ∥ej∥in = 1]

Since ej was arbitrarily chosen from {e1, . . . , en}, one has αj = 0 for all j ∈ {1, . . . , n}, proving linear
independence for any finite orthonormal set.

If the orthonormal set that one starts with is infinite, by choosing any finite subcollection, one can
prove that this finite subcollection is linearly independent as done above. In other words, one proves
that the infinite orthonormal set is also linearly independent (any arbitrary subset of a vector space is
linearly independent if every nonempty finite subset of it is linearly independent). ■

Example 3.2 (Unit Vectors of Euclidean Space). Euclidean space (R3, ⟨·, ·⟩Euc). Here, the three unit
vectors {(1, 0, 0), (0, 1, 0), (0, 0, 1)} form an orthonormal set.

Example 3.3 (Schauder Basis of an Orthonormal Sequence). The Schauder basis for the inner product
space ℓ2 is an orthonormal sequence (en), where en = (δnj) is a sequence whose n-th element is 1 and
all others are zero.

Example 3.4 (Prelude to Fourier Series). Real-valued continuous functions C[0, 2π] on [0, 2π] with
inner product defined by

⟨x, y⟩ =
∫ 2π

0
x(t)y(t)dt (3.32)

is an inner product space, as earlier (although incomplete).

An orthogonal sequence in (C[0, 2π], ⟨·, ·⟩) is (un), where

un(t) = cos nt, n = 0, 1, 2, . . .

Another orthogonal sequence in (C[0, 2π], ⟨·, ·⟩) is

un(t) = sin nt, n = 1, 2, . . .

Explicit computation of inner product leads us to the following when m ̸= n:

⟨um, un⟩ = 1
2

∫ 2π

0
[cos(m + n)t + cos(m− n)t]dt

= 1
2

[sin(m + n)t
m + n

+ sin(m− n)t
m− n

]2π

0
= 0 (3.33)

when m = n, one has
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⟨um, un⟩ = 1
2

∫ 2π

0
cos2 mtdt

= 1
2

∫ 2π

0

(1 + cos 2mt

2

)
dt

= π + 1
4m

[sin 2mt]2π
0

= π (3.34)

For m = n = 0, one has

⟨um, un⟩ =
∫ 2π

0
1dt = 2πt (3.35)

Combining (3.33), (3.34) and (3.35), one has

⟨um, un⟩ =


0 if m ̸= n

π if m = n ̸= 0
2π if m = n = 0

(3.36)

Similarly, one can go on to show that

⟨vm, vn⟩ =
{

0 if m ̸= n

π if m = n ̸= 0, m, n = 1, 2, . . .
(3.37)

Hence, from um, one can construct an orthonormal sequence (en) where

e0(t) = 1√
2π

cos 0t = 1√
2π

u0 = 1√
2π

en(t) = 1√
π

cos not = un(t)
∥un∥

n = 1, 2, . . .

 (3.38)

From (vn), one obtains the orthonormal sequence (ẽn) where

ẽn(t) = 1√
π

sin nt = vn(t)
∥vn∥

n = 1, 2, . . . (3.39)

When m ̸= n

⟨vm, vn⟩ = 1
2

∫ 2π

0
sin mt sin ntdt

= 1
2

∫ 2π

0
[cos(m− n)t− cos(m + n)t] dt

= 1
2

[sin(m− n)t
m− n

− sin(m + n)t
m + n

]2π

0
= 0 (3.40)

When m = n

⟨vm, vm⟩ = 1
2

∫ 2π

0
sin2 mtdt

= 1
2

∫ 2π

0
(1− cos 2mt) dt

= 1
2 (2π)− 1

2

∫ 2π

0
cos 2mtdt

= π − 1
4m

[sin 2mt]2π
0 = π

Exercise: Show that
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um ⊥ un for m ̸= n

A great advantage of orthonormal sequences over arbitrary linearly independent sequences is the
following:

If (e1, e2, . . . , en) is an orthonormal sequence in an inner product space (X, ⟨·, ·⟩) and we have
x ∈ span{e1, . . . , en} with n fixed, then one has

x =
n∑

k=1
αkek (3.41)

for some scalars αk. Now, take inner product of x with ej for some fixed j ∈ {1, . . . , n} on both
sides of (3.41) to obtain

⟨x, ej⟩ =
〈

n∑
k=1

αkek, ej

〉

=
n∑

k=1
αk⟨ek, ej⟩

= αj [using orthonormality of {e1, . . . , en}] (3.42)

With αj determined by (3.41), (3.42) now takes the following form:

x =
n∑

k=1
⟨x, ek⟩ek (3.43)

This shows that determination of the unknown coefficients αk’s is simpler for x ∈ span{e1, . . . , en}
given by (3.41). Another usefulness for orthonormality becomes apparent if in (3.41) or in (3.43), we
want to add another term αn+1en+1 to take care of an x ∈ span{e1, . . . , en+1}. In this case, one just
needs to compute αn+1 as α1, . . . , αn remain unchanged.

More generally, if we consider x ∈ X, not necessarily contained in Yn = span{e1, . . . , en}, one can
define a new y ∈ Yn by setting

y =
n∑

k=1
⟨x, ek⟩Xek (3.44)

and then define z ∈ X by setting

x = y + z (3.45)

i.e.,
z = x− y (3.46)

We, first of all, want to show that z given by (3.46) satisfies z ⊥ y.
First, note that by orthonormality, one has
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∥y∥2X = ⟨y, y⟩

=
〈

n∑
k=1
⟨x, ek⟩ek,

n∑
m=1
⟨x, em⟩em

〉
X

=
n∑

k=1

n∑
m=1
⟨x, ek⟩X⟨x, em⟩X⟨ek, em⟩X

=
n∑

k=1

n∑
m=1
⟨x, ek⟩X⟨x, em⟩Xδkm

=
n∑

k=1
⟨x, ek⟩X⟨x, ek⟩X

=
n∑

k=1
|⟨x, ek⟩X |2 (3.47)

Now,

⟨z, y⟩X = ⟨x− y, y⟩X = ⟨x, y⟩X − ∥y∥2X

=
〈

x,
n∑

k=1
⟨x, ek⟩Xek

〉
X

− ∥y∥2in

=
n∑

k=1
⟨x, ek⟩X⟨x, ek⟩X − ∥y∥2in

= 0 [by (3.47)]

Now, since z ⊥ y by Pythagorean relation on (3.45),

∥z∥2in = ∥y + z∥2in = ∥y∥2in + ∥z∥2in
∥z∥2in = ∥x∥2in − ∥y∥2in

= ∥x∥2in −
n∑

k=1
|⟨x, ek⟩X |2 (3.48)

Since ∥z∥2in ≥ 0 for every n = 1, 2, . . . , one has from (3.48),

∥x∥2in ≥
n∑

k=1
|⟨x, ek⟩X |2 (3.49)

Now,
(∑n

k=1 |⟨x, ek⟩X |2
)

is a monotone non-decreasing sequence that is bounded by ∥x∥2X given in
(3.49). Hence, the sequence of the partial sum of the series ∑∞

k=1 |⟨x, ek⟩X |2 converges and

sup
( n∑

k=1
|⟨x, ek⟩X |2

)∞

n=1
=

∞∑
k=1
|⟨x, ek⟩X |2 ≤ ∥x∥2X (3.50)

which is formally known as Bessel inequality.

Theorem 3.3 (Bessel Inequality)
Let (ek) be an orthonormal sequence in an inner product space (X, ⟨·, ·⟩X). Then for every x ∈ X,
one has

∞∑
k=1
|⟨x, ek⟩X |2 ≤ ∥x∥2X (Bessel inequality) (3.51)

The inner products ⟨x, ek⟩X in (3.51) are called Fourier coefficients of x ∈ X with the
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orthonormal sequence (ek).

• How to obtain an orthonormal sequence from an arbitrary linearly independent
sequence in an inner product space: This is accomplished by a constructive procedure, called the
Gram-Schmidt orthonormalization process.

Let (xi) be a given linearly independent sequence in an inner product space (X, ⟨·, ·⟩X). The resulting
orthonormal sequence (ei) will have the property that for every n ∈ N,

span{e1, . . . , en} = span{x1, . . . , xn} (3.52)

The process is as follows:
Step 1. The first element of the sequence (en) is

e1 = x1
∥x1∥in

(3.53)

2nd Step
Write x2 as:

x2 = ⟨x2, e1⟩Xe1 + v2 (3.54)

So that
v2 = x2 − ⟨x2, e1⟩Xe1 (3.55)

Now, (3.55) tells us that

v2 = x2 −
〈

x2,
x1
∥xin∥X

〉
X

x1
∥x1∥in

(3.56)

The right side of (3.56) is a nonzero linear combination of x1 and x2, i.e., the coefficients of the
linear combination above are not all zero. Hence, by linear independence of {x1, x2}, the right side of
(27), i.e., v2 can’t be zero, so that we can take

e2 = v2
∥v2∥X

(3.57)

Of course, ∥e2∥in = 1, and

⟨e2, e1⟩ = 1
∥v2∥in

⟨v2, e1⟩X

= 1
∥v2∥in

⟨x2 − ⟨x2, e1⟩Xe1, e1⟩X

= 1
∥v2∥in

[⟨x2, e1⟩X − ⟨x2, e1⟩X⟨e1, e1⟩X ]

= 1
∥v2∥in

[⟨x2, e1⟩X − ⟨x2, e1⟩X ] [∵ ∥e1∥2in = 1 by construction in (3.53)]

= 0

3rd Step Construct the vector

v3 = x3 − ⟨x3, e1⟩Xe1 − ⟨x3, e2⟩Xe2 (3.58)

Then v3 ≠ 0X follows from linear independence of {xj} and that v3 ⊥ e1 and v3 ⊥ e2 (verify!). Then

e3 = v3
∥v3∥in

(3.59)

4th Step
Construct the vector

vn = xn − ⟨xn, e1⟩Xe1 − · · · − ⟨xn, en−1⟩Xen−1
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using the orthonormal set {e1, . . . , en−1} obtained in the previous (n− 1) steps. Rewrite the above
compactly as,

vn = xn −
n−1∑
k=1
⟨xn, ek⟩Xek (3.60)

It is immediately seen that vn ̸= 0X and vn is orthogonal to ek for all k constructed up to (n− 1)
steps. Then, we take

en = vn

∥vn∥X
(3.61)

Series Related to Orthonormal Sequences

Example 3.5 (Fourier series). A trigonometric series is a series of the form

a0 +
∞∑

k=1
(ak cos kt + bk sin kt) (3.62)

A real-valued function x on R is said to be periodic if there is a positive number p (called a period
of x) such that

x(t + p) = x(t) (3.63)

Now, let x be of period 2π and continuous. By definition, the Fourier series of x is the trigonometric
series (3.62) with coefficients ak and bk given by the Euler formula:

a0 = 1
2π

∫ 2π

0
x(t)dt

ak = 1
π

∫ 2π

0
x(t) cos ktdt, k = 1, 2, . . .

bk = 1
π

∫ 2π

0
x(t) sin ktdt, k = 1, 2, . . .


(3.64)

The coefficients ak and bk are called Fourier coefficients of x. If the Fourier series of x converges
for each t and has the sum x(t), then we write

x(t) = a0 +
∞∑

k=0
(ak cos kt + bk sin kt) (3.65)

Since x is periodic of period 2π, in (3.64), we may replace the interval of integration [0, 2π] by any
other interval of length 2π, for instance [−π, π].

Now, consider the orthogonal sequences (uk)∞
k=0 and (vk)∞

k=1 studied in example 7.3. Using these
orthogonal sequences, (3.65) can be rewritten as

x(t) = a0u0(t) +
∞∑

k=1
[akuk(t) + bkvk(t)] (3.66)

Using the orthogonality of (un) and (vn) and the fact that ⟨uj , uk⟩ = ⟨vj , vk⟩ = 0 if j ̸= k,

⟨x, uj⟩ = a0⟨u0, uj⟩+
∞∑

k=1
[ak⟨uk, uj⟩+ bk⟨vk, uj⟩]

= aj⟨uj , uj⟩

= aj∥uj∥2 =
{

2πa0 if j = 0
πaj if j = 1, 2, . . .

[follows from (3.33) and (3.34)] (3.67)
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Similarly, if we multiply (3.66) with vj(t) on both sides and integrate over [0, 2π] and apply
orthogonality of (uk) and (vk) as well as uj ⊥ vj ,∀j, k,

⟨x, vj⟩ =
∞∑

k=1

[
ak⟨uj , vk⟩+ bk⟨vk, vj⟩

]
= bj∥vj∥2 (3.68)
= πbj [By the fact that ⟨ui, vj⟩ = π when m = n as was shown earlier] (3.69)

Here, (3.67) and (3.69) hold true for j = 0, 1, 2, . . . . Now, recall the orthonormal sequences (ej) and
(ẽj):

e0 = u0
∥u0∥

and ej = uj

∥uj∥
j = 1, 2, . . . (3.70)

and
ẽj = vj

∥vj∥
j = 1, 2, . . . (3.71)

Using (3.70) in (3.67) and (3.69), one obtains,

aj = ⟨x, ej⟩
∥uj∥

j = 0, 1, 2, . . .

bj = ⟨x, ẽj⟩
∥ṽj∥

j = 1, 2, . . .

 (3.72)

Therefore, in (3.72), one has

akuk(t) = 1
∥uk∥

⟨x, ek⟩uk(t) = ⟨x, ek⟩ek(t) [By (3.69) and (3.70)] (3.73)

for k = 0, 1, 2, . . . and

bkvk(t) = 1
∥vk∥

⟨x, ẽk⟩vk(t) = ⟨x, ẽk⟩ẽk(t) [Again by (3.69) and (3.70)] (3.74)

for k = 1, 2, . . .
Hence, using these orthonormal sequences, (3.66) can be written as

x = ⟨x, e0⟩e0 +
∞∑

k=1
[⟨x, ek⟩ek + ⟨x, ẽk⟩ẽk] (3.75)

The Fourier series expansion of x given by (3.75) explains why the inner products ⟨x, ek⟩ are called
Fourier coefficients w.r.t. the orthonormal sequence {xk}.

Convergence of Fourier Series: Given any orthonormal sequence (en) in a Hilbert space H, we
may consider infinite series of the form

∞∑
k=1

αkek (3.76)

where α1, α2, . . . are any scalars. We say that the series (3.76) converges and has the sum

S =
∞∑

k=1
αkek

if there exists an S ∈ H such that the sequence (Sn) of the partial sums

Sn = α1e1 + · · ·+ αnen (3.77)

converges to S, i.e., ∥Sn − S∥ → 0 as n→∞.
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Theorem 3.4 (Convergence of Fourier Series)
Let (ek) be an orthonormal sequence in a Hilbert space H. Then:

(a) The series (45) converges (in the norm on H) if and only if the following series converges:
∞∑

k=1
|αk|2 (3.78)

(b) If the series (3.76) converges, then the coefficients αk are the Fourier coefficients ⟨x, ek⟩
where

x =
∞∑

k=1
αkek (3.79)

Hence, in this case the finite sum (3.76) can be written as

x =
∞∑

k=1
⟨x, ek⟩ek (3.80)

with xk = ⟨x, ek⟩.

(c) Convergence of (b): For any x ∈ H, the series (3.76) with αk = ⟨x, ek⟩ converges (in the
norm of H).

Proof. (a) Let Sn = α1e1 + · · ·+ αnen and σn = |α1|2 + · · ·+ |αn|2. Then due to orthonormality for
any m and n > m,

∥Sn − Sm∥2 = ∥αm+1em+1 + · · ·+ αnen∥2

= |αm+1|2∥em+1∥2 + · · ·+ |αn|2∥en∥2

= |αm+1|2 + · · ·+ |αn|2

= σn − σm (3.81)

From (3.81), it’s clear that (Sn) is Cauchy in H if and only if (σn) is Cauchy in R. Since both H
and R are complete, it follows that the sequence (Sn) of the partial sums converges if and only
if the sequence (σn) converges. In other words, ∑∞

k=1 αkek converges if and only if ∑∞
k=1 |αk|2

converges.

(b) Let ∑∞
k=1 αkek converges. Set

x =
∞∑

k=1
αkek

We know ∑∞
k=1 αkek is the limit of the sequence (Sn) of partial sums, where

Sn =
n∑

k=1
αkek = α1e1 + · · ·+ αnen

And
⟨Sn, ej⟩ = αj , for j = 1, . . . , k (k fixed) (3.82)

By assumption, Sn → x, i.e., limn→∞ Sn = x. Then (k fixed)

lim
n→∞

⟨Sn, ej⟩ = ⟨ lim
n→∞

Sn, ej⟩ [From the continuity of the inner product]

= ⟨x, ej⟩

i.e., limn→∞ αj = ⟨x, ej⟩
=⇒ αj = ⟨x, ej⟩ (j ≤ k)
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The crux of the matter is that one can take k(n) as large as one pleases because n→∞. Hence,
k can be taken as large as possible and one has

αj = ⟨x, ej⟩, for every j = 1, 2, . . . (3.83)

(c) From Bessel inequality, for x ∈ H, one knows that
∞∑

k=1
|⟨x, ek⟩|2 ≤ ∥x∥2,

which tells us that the series ∑∞
k=1 |⟨x, ek⟩|2 is convergent. Then by part (a), one has

x =
∞∑

k=1
⟨x, ek⟩ek

to be convergent, as well.
■

Lemma 3.5
Any x in an inner product space (x, ⟨·, ·⟩x) can have at most countably many non-zero Fourier
coefficients ⟨x, eK⟩ with respect to an orthonormal family (possibly uncountable) (eK)K∈I in X.

Remark 3.3. Lemma 3.5 will enable us to write (3.80) even when we have an uncountable orthonormal
sequence (eK)K∈I in X.
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§4.1 Zorn’s Lemma

Definition 4.1. A partial ordering on a partially ordered set M is a binary relation ≤ that satisfies
the following conditions:

(P01) a ≤ a for all a ∈M (reflexivity)

(P02) If a ≤ b and b ≤ a, then a = b (antisymmetry)

(P03) If a ≤ b and b ≤ c, then a ≤ c (transitivity)

Remark 4.1. (P02) means that two unequal or distinct elements a and b can’t both satisfy a ≤ b and
b ≤ a. Note that there can be elements in a partially ordered set that are not comparable. To phrase
differently, M can contain elements a and b for which neither a ≤ b nor b ≤ a holds. In such situation,
we say that a and b are incomparable. On the contrary, 2 element a and b of M are called comparable
elements if they satisfy a ≤ b or b ≤ a (or both, which are the same thing according to antisymmetry).

Definition 4.2 (Totally ordered set or Chain). A Totally ordered set or Chain is a partially
ordered set such that every 2 elements of the set are comparable. In other words, a chain is a
partially ordered set that has no incomparable elements.

Definition 4.3 (Upper bound). An upper bound of a subset W of a partially ordered set M is an
element u ∈M such that

x ≤ u for all x ∈W (4.1)

Definition 4.4 (Maximal element). A maximal element of a partially ordered set M is an element
m ∈M such that

m ≤ x =⇒ m = x (4.2)

i.e, there is no x in M different from m satisfying m ≤ x. In other words, if x and m are distinct
in M , then either x ≤ m or x and m are incomparable.

Axiom 1 (Zorn’s Lemma). Let M be a partially ordered set in which every chain has an upper bound.
Then M has a maximal element.

Theorem 4.1 (Hamel Basis)
Every vector space X ̸= {0} has a Hamel basis.

Proof. We take M to be the set of all linearly independent subsets of X. Since X ̸= {0}, there
exists x ≠ 0 such that x ∈ X so that {x} ∈ M and hence M ̸= ∅. Set inclusion defines a partial
ordering on M . Note that there may be pair of elements of M that are incomparable under set
inclusion. Now, every chain C ⊂ M has an upper bound, namely, the union of elements of C. By
zorn’s lemma M has a maximal element that we denote by B. We now show that B is a Hamel basis of X.
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Let Y = span B. Then Y is a subspace of X. In fact Y = X. Suppose the contrary, i.e, Y is
a proper subspace of X so that there exists a z ∈ X such that z /∈ Y = span B. Since z is not in span
B, B ∪ {z} is linearly independent subset of X so that {z} ∪ B belongs to M . One, therefore, has
B ⊂ {z} ∪B with B ≠ {z} ∪B. This is a contradiction to the maximality of B. Hence span B = X,
proving that B is a Hamel basis of X. ■

Theorem 4.2 (Total Orthonormal Set)
In every Hilbert space H ̸= {0}, there exists a total orthonormal set.

Proof. Let M be the set of all orthonormal subsets of H. Since H ̸= {0}, there exists x ∈ H with
x ̸= 0. Let y = x

∥x∥ . Then {y} ∈ M so that M ̸= ∅. Set inclusion defines a partial ordering on M .
Every chain C ⊂ M has an upper bound, namely, the union of all elements of C. Then by Zorn’s
lemma, M has a maximal element that we denote by F . We prove that F is total in H.

Assume for contradiction that F is not total in H. Since F is not total in H, there exists a noonzero
vector z ∈ H such that z ⊥ F . Take e = z

∥z∥ so that F1 = F ∪ {e} is an orthonormal set in H. Since
F ⊆ F1 with F ̸= F1, F is not maximal, which is a contradiction. Hence F is total in H. ■

§4.2 Hahn-Banach Theorem

Definition 4.5 (Real Sublinear Functional). Let X be a real vector space. A function p : X → R is
called a sublinear functional if it satisfies the following properties:

1. p(x + y) ≤ p(x) + p(y) for all x, y ∈ X.

2. p(αx) = αp(x) for all x ∈ X and α ≥ 0.

Theorem 4.3 (Hahn-Banach Theorem for Real Vector Spaces)
Let X be a real vector space and p be a sublinear functional. Let f : Z → R be a linear functional
defined on subspace Z of X and satisfies,

f(x) ≤ p(x) ∀x ∈ Z.

Then, f has a linear extension f̃ : X → R such that,

f̃(x) ≤ p(x) ∀x ∈ X.

Proof. Let E be the set of all linear extensions g of f satisfying g(x) ≤ p(x) for all x ∈ D(g) Since
f ∈ E, E is non-empty. Define a partial order on E by g1 ≤ g2 iff D(g1) ⊂ D(g2) and g2(x) = g1(x)
for all x ∈ D(g1). Let C ⊂ E be any chain in E.

Define ĝ : ⋃g∈C D(g) → R by ĝ(x) = g(x) for all x ∈ D(g) for some g ∈ C If g1, g2 ∈ C such
that D(g1) ∩ D(g2) ̸= ∅. Since C is totally ordered, either g1 ≤ g2 or g2 ≤ g1. In any of these cases,
g1(x) = g2(x)∀x ∈ D(g1) ∩D(g2). Thus, ĝ is well-defined. The domain of ĝ is a vector space since C is
a chain. Let x, y ∈ D(ĝ) and α be any scalar. Then,

ĝ(αx + y) = g(αx + y) for some g ∈ C

= αg(x) + g(y)
= αĝ(x) + ĝ(y).

Therefore, ĝ is a linear functional such that g ≤ ĝ∀g ∈ C. Therefore C has an upper bound in E.
Since, C was arbitrary chain, by Zorn’s Lemma, E has a maximal element f̃ . By definition of E, f̃ is
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a linear extension of f and f̃(x) ≤ p(x), ∀x ∈ D(f̂).

We want to show that D(f̂) = X. Suppose the contrary. Then, D(f̂ is a proper subspace of X.
Let y1 ∈ X − D(f̂). y1 ̸= 0 since 0 ∈ D(f̂). Let Y1 = span{y1,D(f̂)}. Let x ∈ Y1. Then, x can be
uniquely written as,

x = y + αy1 for some y ∈ D(f̂) and α ∈ R.

Define g : Y1 → R by

g(y + αy1) = f̂(y) + αc (4.3)

For some real constant c. Since f̂ is linear and αc can also be seen as a linear functional, g is a also
linear. For all y ∈ D(f̂), g(y + 0 · y1) = f̂(y) = g(y). Therefore, g is a linear extension of f̂ on Y1.

Let y, z ∈ D(f̂). We have,

f̂(y)− f̂(z) = f̂(y − z) ≤ p(y − z)
= p(y + y1 − y1 − z)
≤ p(y + y1) + p(−y1 − z)

Hence, we have,

−p(−y1 − z)− f̂(z) ≤ p(y + y1)− f̂(y) (4.4)

Left hand side of (4.4) does not depend on y and right hand side does not depend on z. Let m1 be the
supremum of Left Hand side over z and m2 be the infimum of Right Hand side over y. Then, we have,

−p(−y1 − z)− f̂(z) ≤ c ∀z ∈ D(f̂) (4.5)
p(y + y1)− f̂(y) ≥ c ∀y ∈ D(f̂) (4.6)

where m1 ≤ c ≤ m2. Let g be a linear extension of f̂ defined in (4.3) using this particular c. We now
show that g(x) ≤ p(x) for all x ∈ Y1. Let x = y + αy1 ∈ Y1 where α ∈ R.

Case 1: α < 0. Let z = y
α . Then, from equation (4.5), we have,

− p

(
−y1 −

y

α

)
− f̂

(
y

α

)
≤ c

Multiplying by −α > 0 on both sides, we get,

αp

(
−y1 −

y

α

)
− f̂(y) ≤ −αc

=⇒ f̂(y) + αc ≤ −αp

(
−y1 −

y

α

)
=⇒ g(y + αy1) ≤ p(y + αy1)
=⇒ g(x) ≤ p(x).

Case 2: α = 0. Then x = y.

g(x) = g(y) = f̂(y) ≤ p(y) = p(x).

Case 3: α > 0. Let y = y
α . Then, from equation (4.6), we have,

c ≤ p

(
y

α
+ y1

)
− f̂

(
y

α

)
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4 Fundamental Theorems of Normed Spaces

Multiplying by α > 0 on both sides, we get

αc ≤ αp

(
y

α
+ y1

)
− f̂(y)

=⇒ f̂(y) + αc ≤ αp

(
y

α
+ y1

)
=⇒ g(y + αy1) ≤ p(y + αy1)
=⇒ g(x) ≤ p(x).

Therefore, g(x) ≤ p(x) for all x ∈ Y1. Hence, g ∈ E and f̂ ≤ g. This contradicts the maximality of f̂ .
Therefore, D(f̂) = X. Hence f̂ is the desired linear extension of f . ■

Definition 4.6 (Sublinear Functional). Let X be a real or a complex vector space. A function
p : X → R is called a sublinear functional if it satisfies the following properties:

p(x + y) ≤ p(x) + p(y) ∀x, y ∈ X

p(αx) = |α|p(x) ∀x ∈ X and α ∈ R.

Theorem 4.4 (Generalized Hann-Banach Theorem)
Let X be a real or complex vector space and p be sublinear functional on X as defined in 4.6. Let
f : Z → K be a linear functional defined on subspace Z of X and satisfies,

|f(x)| ≤ p(x) ∀x ∈ Z.

There there exists a linear extension f̃ : X → K of f such that,

|f̂(x)| ≤ p(x) ∀x ∈ X.

Proof. Let X be a real vector space. Then |f(x)| ≤ p(x) =⇒ f(x) ≤ p(x) for all x ∈ Z. By Theorem
4.3, there exists a linear extension f̂ : X → R of f such that f̂(x) ≤ p(x) for all x ∈ X.

−f̂(x) = f̂(−x) ≤ p(−x) = p(x) ∀x ∈ X.

Hence, |f̂(x)| ≤ p(x) for all x ∈ X.

Let X be a complex vector space. Then Z is also a complex vector space. Hence f(x) can be
written as,

f(x) = f1(x) + if2(x) where f1, f2 : Z → R.

Let Xr and Zr be real vector spaces by restricting scalar multiplication of X and Z to real scalars.
Hence, X and Xr are same as sets and addition, but different only in scalar multiplication, and same
goes for Z and Zr. Since, f is linear in Z, f1 and f2 are real valued linear functionals on Zr. Also,
f1(x) ≤ |f(x)|. Hence, we have

f1(x) ≤ p(x) ∀x ∈ Zr.

Therefore, by Hann-Banach theorem of Real vector space, there exists a linear extension f̂1 of f such
that,

f̂1(x) ≤ p(x) ∀x ∈ Xr.
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4 Fundamental Theorems of Normed Spaces

For every x ∈ Z, we have,

i(f1(x) + if2(x)) = if(x) = f(ix) = f1(ix) + if2(ix)
=⇒ if1(x)− f2(x) = f1(ix) + if2(ix)

Taking real part on both sides, we get f1(ix) = −f2(x) for all x ∈ Z. Hence, we can define f̂ : X → C
by

f̂(x) = f̂1(x)− if̂1(ix) ∀x ∈ X.

So that, f̂(x) = f(x) for all x ∈ Z. Since, f̂1 is linear, f̂ is linear on additivity, that is f̂(x + y) =
f̂(x) + f̂(y) for all x, y ∈ X. Let a + ib be any scalar. Then,

f̂((a + ib)x) = f̂1((a + ib)x)− if̂1((a + ib)ix)
= (a + ib)f̂1(x)− i(a + ib)f̂1(ix)
= (a + ib)(f̂1(x)− if̂1(ix))
= (a + ib)f̂(x).

Therefore, f̂ is linear. Hence f̂ is a linear extension of f .

If f̂(x) = 0, then f̂(x) = 0 = |f̂1(0)| ≤ p(0). Let x ∈ X such that f̂(x) ̸= 0. Then, writting in
polar form, we have,

f̂(x) = |f̂(x)|eiθ

=⇒ |f̂(x)| = e−iθf̂(x)

Hence, we have,

|f̂(x)| = e−iθf̂(x)
= f̂(e−iθx)
≤ p(e−iθx)
= |e−iθ|p(x)
= p(x).

Therefore, |f̂(x)| ≤ p(x) for all x ∈ X. Hence f̂ is the desired linear extension of f . ■

Theorem 4.5 (Hann-Banach Theorem for Normed Spaces)
Let f be a bounded linear functional on a subspace Z of a normed space X. Then there exists a
bounded linear functional f̂ on X, which is a linear extension of f and∥∥∥f̂∥∥∥

X
= ∥f∥Z .

Proof. Let Z = {0}. Then f must be the zero function on Z. Hence, the zero function on X is a
bounded linear functional on X with same norm as f that is a linear extension of f . Hence, the
theorem holds.

Assume that Z ̸= {0}. Define p : X → K by,

p(x) = ∥f∥Z ∥x∥ .
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4 Fundamental Theorems of Normed Spaces

Then, |f(x)| ≤ p(x) for all x ∈ Z. We want to show that p is a sublinear functional. Let x, y ∈ X and
α be any scalar. Then we have,

p(x + y) = ∥f∥Z ∥x + y∥
≤ ∥f∥Z (∥x∥+ ∥y∥)
= ∥f∥Z ∥x∥+ ∥f∥Z ∥y∥
= p(x) + p(y).

And,

p(αx) = ∥f∥Z ∥αx∥
= |α| ∥f∥Z ∥x∥
= |α|p(x).

Hence, p is a sublinear functional and |f(x)| ≤ p(x) for all x ∈ Z. By Theorem 4.4, there exists a
linear extension f̂ of f such that |f̂(x)| ≤ p(x) for all x ∈ X.

∥∥∥f̂∥∥∥
X

= sup
∥x∥=1

|f̂(x)| ≤ p(x) = ∥f∥Z ∥x∥ = ∥f∥Z .

Hence,
∥∥∥f̂∥∥∥

X
≤ ∥f∥Z . Also,

∥∥∥f̂∥∥∥
X
≥ ∥f∥Z since f̂ is a linear extension of f . Hence,

∥∥∥f̂∥∥∥
X

= ∥f∥Z .
Therefore, f̂ is the desired linear extension of f . ■

Theorem 4.6 (Bounded Linear Functionals)
Let X be a non-trivial normed space and let x0 ̸= 0 be any element of X. Then there exists a
bounded linear functional f̂ on X such that∥∥∥f̂∥∥∥ = 1,

f̂(x0) = ∥x0∥ .

Proof. Let Z = span {x0} be a subspace of X. Then any x ∈ Z can be written as x = αx0 for some
scalar α. Define f : Z → K by,

f(αx0) = α ∥x0∥ ∀α ∈ K.

Then, f is a linear functional on Z.

|f(x)| = |f(αx0)| = |α| ∥x0∥ = ∥αx0∥ = ∥x∥ ∀x ∈ Z.

Therefore, ∥f∥Z = 1. By Theorem 4.5, there exists a bounded linear functional f̂ on X such that∥∥∥f̂∥∥∥ = 1. Since x0 ∈ Z, we have,

f̂(x0) = f(x0) = f(1 · x0) = 1 · ∥x0∥ = ∥x0∥ .

Hence, f̂ is the desired bounded linear functional. ■

Corollary 4.7 (Norm, Zero vector)
For every x in a non-trivial normed space X,

∥x∥ = sup
f∈X∗,f ̸=0

|f(x)|
∥f∥

.

If for some x0 ∈ X, f(x0) = 0 for all f ∈ X∗, then x0 = 0.
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Proof. Let x ∈ X. If x = 0, then it trivially holds. Asume that x ̸= 0. By Theorem 4.6, there exists a
bounded linear functional f̂ on X such that

∥∥∥f̂∥∥∥ = 1 and f̂(x0) = ∥x0∥. Then,

sup
f∈X∗,f ̸=0

|f(x)|
∥f∥

≥ |f̂(x)|∥∥∥f̂∥∥∥
= ∥x∥1
= 1

Also, |f(x)| ≤ ∥f∥ ∥x∥. Hence,

sup
f∈X∗,f ̸=0

|f(x)|
∥f∥

≤ ∥x∥ .

Hence, supf∈X∗,f ̸=0
|f(x)|
∥f∥ = ∥x∥.

Let x0 ∈ X such that f(x0) = 0 for all f ∈ X∗. Then,

∥x0∥ = sup
f∈X∗,f ̸=0

|f(x0)|
∥f∥

= 0.

Therefore, x0 = 0. ■

§4.3 The Adjoint Operator
Definition of the adjoint operator. Suppose we pick any bounded linear functional g on Y (that
is, g ∈ Y ′). We can define a linear functional f on X by

f(x) = g
(
Tx
)
, x ∈ X. (4.7)

Clearly, f is linear because it is the composition of the linear map T with the linear functional g.
Moreover, f is bounded since

|f(x)| =
∣∣g(Tx)

∣∣ ≤ ∥g∥ ∥Tx∥ ≤ ∥g∥ ∥T∥ ∥x∥.

By taking the supremum over all x with ∥x∥ = 1, we find

∥f∥ ≤ ∥g∥ |||T |||. (4.8)

Hence f belongs to X ′. Because g ∈ Y ′ was arbitrary, the formula (4.7) actually defines an operator

T × : Y ′ −→ X ′,

called the adjoint operator of T . Thus we have the diagram:

T : X −→ Y,

T × : Y ′ −→ X ′.

Note that T × acts on elements of Y ′, whereas T itself is defined on X.

Definition 4.7 (Adjoint operator T ×). If T : X → Y is a bounded linear operator between normed
spaces X and Y, then the adjoint operator T × : Y ′ −→ X ′ is given by

(T ×g)(x) = g
(
Tx
)
, g ∈ Y ′, x ∈ X. (4.9)

Our main objective is to show that T × is itself linear and bounded, and has the same norm as T .
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4 Fundamental Theorems of Normed Spaces

Theorem 4.8 (Norm of the adjoint)
For the adjoint operator T × from Definition 4.7, we have:∣∣∣∣∣∣T ×∣∣∣∣∣∣ = |||T |||.

Proof. First, it is straightforward to check that T × is linear: if g1, g2 ∈ Y ′ and α, β are scalars, then(
T ×(α g1 + β g2)

)
(x) = (α g1 + β g2)

(
Tx
)

= α g1(Tx) + β g2(Tx) = α (T ×g1)(x) + β (T ×g2)(x).

Next, from (4.8) we know that for any g ∈ Y ′, if we set f = T ×g, then

∥f∥ ≤ ∥g∥ |||T |||.

Taking the supremum over all g with ∥g∥ = 1 shows that∣∣∣∣∣∣T ×∣∣∣∣∣∣ ≤ |||T |||. (4.10)

To prove the reverse inequality, |||T ×||| ≥ |||T |||, we use Theorem 4.6: given any nonzero x0 ∈ X, there
exists a functional g0 ∈ Y ′ with ∥g0∥ = 1 such that

g0
(
Tx0

)
= ∥Tx0∥.

Define f0 = T ×g0, so f0(x0) = g0(Tx0) = ∥Tx0∥. It follows that

∥Tx0∥ =
∣∣f0(x0)

∣∣ ≤ ∥f0∥ ∥x0∥ = ∥T ×g0∥ ∥x0∥ ≤
∣∣∣∣∣∣T ×∣∣∣∣∣∣ ∥g0∥ ∥x0∥ =

∣∣∣∣∣∣T ×∣∣∣∣∣∣ ∥x0∥.

Since ∥Tx0∥ ≤ |||T ||| ∥x0∥ always, we deduce

|||T ||| = sup
x0 ̸=0

∥Tx0∥
∥x0∥

≤
∣∣∣∣∣∣T ×∣∣∣∣∣∣

Combining this with (4.10) yields |||T ||| = |||T ×|||, as desired. ■

§4.4 Additional Properties of the Adjoint Operator
Let T : X → Y be a bounded linear operator between normed spaces X and Y . Recall from earlier
that the adjoint operator

T × : Y ′ −→ X ′

is defined by
(T ×g)(x) = g(Tx), for all g ∈ Y ′, x ∈ X.

In finite dimensions (over R), this corresponds to taking the transpose of the matrix that represents
T . Over C, one must distinguish T × from the usual “conjugate transpose” (the Hilbert-adjoint), as
explained below.

Linear Operations on the Adjoint
If S, T ∈ B(X, Y ) (the space of bounded linear maps X → Y ), then:

(S + T )× = S× + T ×, (9)
(αT )× = α T ×, (10)

for any scalar α. These properties mirror the usual linearity of the adjoint.
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4 Fundamental Theorems of Normed Spaces

Product of Operators
Suppose T ∈ B(X, Y ) and S ∈ B(Y, Z) for normed spaces X, Y, Z. Then their product ST ∈ B(X, Z)
has adjoint satisfying

(ST )× = T × S×, (11)

as shown below:
X

T−→ Y
S−→ Z 7−→ X ′ T ×

←−− Y ′ S×
←−− Z ′.

Inverse of the Adjoint
If T is invertible, i.e. T ∈ B(X, Y ) and T −1 ∈ B(Y, X), then the adjoint T × is invertible too, and

(T ×)−1 =
(
T −1)×, (12)

meaning invertibility of T carries over to its adjoint on dual spaces.

Adjoint vs. Hilbert-Adjoint
In the special case where X = H1 and Y = H2 are Hilbert spaces, the operator T ∗ defined in Section 3.9
is the Hilbert-adjoint of T . Meanwhile, T × is again the map Y ′ → X ′. Via the Riesz representation
theorem, each bounded functional on a Hilbert space corresponds to a unique vector, and one can show
that

T ∗ = A1 T × A−1
2 ,

where A1 and A2 are conjugate-linear isometries implementing the Riesz representation on H ′
1 and H ′

2
respectively. Thus for all x ∈ H1 and y0 ∈ H2,

⟨Tx, y0⟩H2 = ⟨x, T ∗y0⟩H1 .

Since T ∗ is essentially T × composed with conjugate-linear isomorphisms, in a complex Hilbert space we
get the usual formula (αT )∗ = α T ∗, whereas in the adjoint on normed spaces we have (αT )× = α T ×.
Moreover, ∥T ∗∥ = ∥T∥ follows immediately (Theorem 3.9-2) by combining ∥T ×∥ = ∥T∥ with the
isometric nature of the Riesz maps A1 and A2.

Remarks
• T × acts on the dual space Y ′ (the space of functionals on Y ) rather than on Y itself.

• T ∗ in a Hilbert space is the “usual” adjoint that satisfies ⟨Tx, y⟩ = ⟨x, T ∗y⟩.

• In finite dimensions over R, T × is represented by the transpose of the matrix of T , whereas in
the complex case, T ∗ is given by the conjugate transpose (also called the Hermitian adjoint).

§4.5 Reflexive Spaces
We previously examined the notion of algebraic reflexivity in Section 2.8, where we introduced the
second algebraic dual space X∗∗ = (X∗)∗ of a vector space X. There, X was called algebraically reflexive
if the canonical map

C : X −→ X∗∗

is surjective. This map is defined by sending each x ∈ X to the functional gx ∈ X∗∗ given by

gx(f) = f(x), (f ∈ X∗).

Hence for each x ∈ X, gx is the linear functional that evaluates any f ∈ X∗ at x. In the finite-
dimensional case, X is indeed algebraically reflexive (Theorem 2.27).
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4 Fundamental Theorems of Normed Spaces

Here, we focus on normed spaces. Let X be a normed space with dual X ′, as defined in Section 2.10–3,
and let (X ′)′ (the dual of X ′) be denoted by X ′′. We call X ′′ the second dual or bidual of X. For each
fixed x ∈ X, define gx on X ′ by

gx(f) = f(x), (f ∈ X ′).

Although this resembles the algebraic version (1), here f is necessarily a bounded functional. That gx

is itself a bounded linear functional follows from the next lemma.

Lemma 4.9 (Norm of gx)
If x is any element of a normed space X, the map gx defined by (2) is in X ′′ and satisfies

∥gx∥ = ∥x∥.

Proof. Linearity of gx can be verified by the same argument used in Section 2.8. Observe that

∥gx∥ = sup
f∈X′, f ̸=0

|gx(f)|
∥f∥

= sup
f∈X′, f ̸=0

|f(x)|
∥f∥

= ∥x∥,

where the last equality follows from a standard dual-norm argument (Corollary 4.7). ■

From each x ∈ X, we thus get a unique gx ∈ X ′′, and we can define the canonical map

C : X −→ X ′′, x 7→ gx. (4.11)

Since it is injective and preserves norms (as seen below), C is an isometric embedding.

Lemma 4.10 (Canonical mapping)
The map C from (4.11) is an isomorphism of X onto its image R(C) ⊂ X ′′, meaning it is linear,
norm-preserving (isometric), and bijective onto R(C).

Proof. Linearity follows by checking

gαx+βy(f) = f(αx + βy) = αf(x) + βf(y) = α gx(f) + β gy(f),

implying gαx+βy = α gx + β gy. Furthermore,

∥gx − gy∥ = ∥gx−y∥ = ∥x− y∥,

so C is an isometry, which forces injectivity. Surjectivity onto R(C) is clear by definition of “range,”
so C is indeed an isomorphism onto its image. ■

In other words, X can be embedded into X ′′. However, C need not be surjective onto all of X ′′. We
call X reflexive precisely when C is onto X ′′:

Definition 4.8 (Reflexivity). A normed space X is called reflexive if its canonical map

C : X → X ′′, x 7→ gx

is onto, i.e. R(C) = X ′′.

This concept dates back to H. Hahn (1927) and was named “reflexivity” by E. R. Lorch (1939). If X
is reflexive, then by Lemma 4.10, X and X ′′ are isomorphic and isometric. However, the converse does
not hold in full generality, as shown by R. C. James.

Moreover, reflexivity does not simply follow from completeness, although there is a partial converse:
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4 Fundamental Theorems of Normed Spaces

Theorem 4.11 (Completeness implies Banach)
If a normed space X is reflexive, then X must be complete (hence is a Banach space).

Proof. Since X ′′ is the dual of X ′, it is known (Theorem 2.10-4) to be complete. If X is reflexive, we
have X ′′ = R(C), and the isomorphism then yields completeness of X from that of X ′′. ■

Examples and Non-Examples. Every finite-dimensional normed space is reflexive (Theorem 2.27),
since all linear functionals are bounded in finite dimensions, and the algebraic reflexivity implies the
normed version. In particular, Rn is reflexive.

For 1 < p < ∞, the spaces ℓp and Lp[a, b] can also be shown to be reflexive. By contrast, many
classical Banach spaces fail to be reflexive, e.g. C[a, b], L1[a, b], and ℓ∞. Nonetheless, every Hilbert
space is reflexive:

Theorem 4.12 (Hilbert spaces are reflexive)
Every Hilbert space H is reflexive.

Sketch of proof. We show the canonical map C : H → H ′′ is onto. For any g ∈ H ′′, one wants an
x ∈ H so that g = Cx. A key step uses the Riesz representation theorem to construct a conjugate-linear
isometric map A : H ′ → H and then carry out a second representation argument to identify g with
evaluation at some x ∈ H. Thus each g is in the range of C. ■

Remark 4.2. A normed space X that is separable but has a nonseparable dual X ′ cannot be reflexive.
Indeed, if X were reflexive, then X ′′ ∼= X by Lemma 4.10, and thus the separability of X would force
X ′′ (and hence X ′) to be separable as well, which is a contradiction.

Example 4.1. ℓ1 is not reflexive.

Proof. ℓ1 is separable, but its dual ℓ∞ is not separable. Hence ℓ1 fails to be reflexive. ■

We next prove a lemma (often illustrated by a geometric argument in R3) that enables us to construct
a functional with norm 1 that vanishes on a given closed subspace.

Lemma 4.13 (Existence of a functional)
Suppose Y is a proper closed subspace of a normed space X, and let x0 ∈ X \ Y . Define

δ = inf
y∈Y
∥y − x0∥.

Then there is an f ∈ X ′ with ∥f∥ = 1, such that f(y) = 0 for all y ∈ Y and f(x0) = δ.

Sketch of proof. Let Z be the linear span of Y and x0. One first defines a linear functional f on Z by

f(y + α x0) = α δ,

and checks f is bounded with norm at most 1, and that f attains the value δ at x0 while vanishing on
Y . A standard argument shows ∥f∥ ≥ 1, so in fact ∥f∥ = 1 on Z. Finally, the Hann-Banach Theorem
for Normed Spaces extends f from Z to all of X without increasing its norm, giving the required
functional. ■

With Lemma 4.13 in place, we can establish a well-known separability criterion:

Theorem 4.14 (Separability)
If the dual X ′ of a normed space X is separable, then X itself must also be separable.
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Proof. Assume X ′ is separable. Consider its unit sphere

U ′ = { f ∈ X ′ : ∥f∥ = 1}.

This set inherits a countable dense subset, say {fn}∞n=1, because X ′ is separable. Each fn has norm 1,
so by definition of the supremum that yields ∥fn∥ = 1, we can choose xn ∈ X with ∥xn∥ = 1 and
|fn(xn)| ≥ 1

2 .
Let Y be the closure of the linear span of {xn}. This subspace Y is separable because it has a

countable dense set (rational combinations of the xn). If Y were strictly smaller than X, then by
Lemma 4.13 there would be some f ∈ X ′ with ∥f∥ = 1 that is zero on Y but nonzero at a point outside
Y . In particular, f(xn) = 0 for every n, while |fn(xn)| ≥ 1

2 . Hence

1
2 ≤ |fn(xn)| = |fn(xn)− f(xn)| ≤ ∥fn − f∥ ∥xn∥ = ∥fn − f∥.

So ∥fn − f∥ ≥ 1
2 for all n. But this contradicts the assumption that {fn} is dense in the unit sphere

(since f is also on that sphere with ∥f∥ = 1). Therefore, our assumption Y ̸= X must fail, so Y = X.
Hence X is generated (densely) by the countable set {xn}, proving that X is separable. ■

§4.6 Baire’s Category Theorem in Complete Metric Spaces

Definition 4.9 (Category in a Metric Space). Let X be a metric space. A subset M ⊂ X is called

• nowhere dense (or rare) in X if the closure of M , denoted M , has empty interior (see also
Sec. 1.3);

• meager (or of first category) in X if it can be expressed as a countable union of nowhere
dense sets;

• nonmeager (or of second category) in X if it is not meager in X.

Theorem 4.15 (Baire’s Category Theorem for Complete Metric Spaces)
Suppose X is a nonempty, complete metric space. Then X cannot be meager in itself (i.e. X is of
second category in X).

Consequently, if X ̸= ∅ is complete and can be written as

X =
∞⋃

k=1
Ak (each Ak closed in X),

then at least one of the closed sets Ak contains a nonempty open subset of X.

Proof. Contradiction argument. Assume instead that X is meager in itself, despite being nonempty
and complete. Then there exist sets Mk, each nowhere dense in X, such that

X =
∞⋃

k=1
Mk.

We will construct a Cauchy sequence (pk) within X converging to some p ∈ X that does not lie in any
Mk, contradicting X = ⋃

Mk.
Step 1: Choosing a point and ball outside each Mk. Since M1 is nowhere dense, its closure M1 has no
interior, so there is an open set in X that stays entirely outside M1. Call that open set M c

1 , and pick
p1 ∈M c

1 along with a small ball
B1 = B(p1; ε1) ⊂ M c

1 .
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For M2, again its closure M2 lacks any nonempty open set, so it cannot include B(p1; 1
2ε1) in its

entirety. Hence there is a point p2 and a ball

B2 = B(p2; ε2) ⊂ M c
2 ∩ B

(
p1; 1

2ε1
)
,

with ε2 < 1
2ε1.

Step 2: Inductive construction. Continuing inductively, we obtain a sequence of balls

Bk = B
(
pk; εk

)
where each Bk stays outside Mk and also lies inside the previous ball (shrunk by half),

Bk ⊂ M c
k and Bk ⊂ B

(
pk−1; 1

2εk−1
)
.

Additionally, choose εk so that εk < 2−k.
Step 3: Cauchy sequence and limit point. Because εk tends to zero (faster than 2−k), the centers pk

form a Cauchy sequence in the complete space X. Let pk → p ∈ X. By construction, p remains within
each ball Bk, and thus p never belongs to Mk since Bk ⊂M c

k . This contradicts the assumption that
every point of X lies in some Mk.

Thus X cannot be meager in itself. The statement about closed sets Ak follows by a similar argument,
ensuring that one Ak must admit a nonempty open subset. ■

§4.7 Strong and Weak Convergence
§4.7.i Strong Convergence

Definition 4.10 (Strong convergence). A sequence (xn) in a normed space X converges strongly
(or in the norm) to an element x ∈ X if

lim
n→∞

∥xn − x ∥ = 0.

We typically write xn → x or lim xn = x, and we refer to x as the strong limit of (xn).

Intuitively, strong convergence means that xn approaches x in the norm sense, so ∥xn − x∥ becomes
arbitrarily small.

§4.7.ii Weak Convergence

Definition 4.11 (Weak convergence). A sequence (xn) in a normed space X converges weakly to
an element x ∈ X if, for every bounded linear functional f in the dual space X ′, we have

lim
n→∞

f(xn) = f(x).

We denote this by xn
w−→ x, and call x the weak limit of (xn).

Thus, weak convergence can be understood as pointwise convergence of the sequence
(
f(xn)

)
for all

f in X ′.

Lemma 4.16 (Basic properties of weak convergence)
Suppose (xn) is a weakly convergent sequence in a normed space X, so xn

w→ x. Then:

(a) The weak limit x is unique.

(b) Every subsequence of (xn) also converges weakly to x.
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(c) The sequence
∥∥xn

∥∥ is bounded.

Proof. (a) If we also had xn
w→ y for some y ∈ X, then for all f ∈ X ′ the sequence f(xn) would

converge to both f(x) and f(y). Uniqueness of the limit for scalars implies f(x) = f(y). Since this
holds for all f ∈ X ′, one deduces x = y by a standard separation argument (Corollary 4.3-4).
(b) Since f(xn) converges (as a sequence of scalars) for every f ∈ X ′, the same limit must apply to
every subsequence, hence each subsequence converges weakly to x.
(c) Each

(
f(xn)

)
is a convergent (thus bounded) sequence of scalars. By the Uniform Boundedness

Theorem, the family of functionals gn ∈ X ′′ defined by gn(f) := f(xn) has bounded norms ∥gn∥. But
from the canonical identification (Section 4.6-1), ∥gn∥ = ∥xn∥. Hence (∥xn∥) is bounded. ■

§4.7.iii Comparison of Strong and Weak Convergence

Theorem 4.17 (Strong vs. weak convergence)
Let (xn) be a sequence in a normed space X. Then the following statements hold:

(a) If xn → x strongly (i.e. ∥xn − x∥ → 0), then xn
w→ x weakly, with the same limit.

(b) The converse does not hold in general: weak convergence need not imply strong convergence.

(c) If dim X <∞, then weak convergence does imply strong convergence.

Proof. (a) Strong convergence ∥xn − x∥ → 0 directly forces f(xn) → f(x) for every f ∈ X ′, simply
because

|f(xn)− f(x)| = |f(xn − x)| ≤ ∥f∥ ∥xn − x∥ −→ 0.

Hence xn
w→ x.

(b) A classical example arises in a Hilbert space with an orthonormal sequence (en). One can show
en

w−→ 0 (since ⟨en, z⟩ → 0 for every z ∈ H), but ∥en − 0∥ = 1 never goes to 0. So weak convergence
need not imply strong convergence in infinite dimensions.
(c) In a finite-dimensional space X, all norms are equivalent, and a finite number of linear functionals
(the “dual basis”) can distinguish any point in X. If xn converges weakly to x, then componentwise
(with respect to a basis) we see ∥xn − x∥ → 0, hence strong convergence as well. ■

Moreover, there are particular infinite-dimensional spaces—such as ℓ1 under a result of I. Schur
(1921)—in which strong and weak convergence coincide. However, this is the exception rather than the
rule.

Example 4.2 (Hilbert space). If H is a Hilbert space, then xn
w→ x if and only if

⟨xn, z⟩ −→ ⟨x, z⟩ for all z ∈ H.

This equivalence relies on the Riesz Representation Theorem, which identifies every functional f ∈ H ′

with an inner product ⟨·, z⟩ for some unique z ∈ H.

Example 4.3 (ℓp with 1 < p < ∞). For a sequence (xn) in ℓp, write xn = (ξ(n)
j )∞

j=1 and x = (ξj)∞
j=1.

Then xn converges weakly to x precisely if

(A)
∥∥xn

∥∥ is bounded, and

(B) For every coordinate j, ξ
(n)
j → ξj .

Since the dual of ℓp is ℓq (where 1/p + 1/q = 1), the bounded linear functionals on ℓp come from
sequences in ℓq whose standard basis picks out individual coordinates.
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Lemma 4.18 (Weak convergence criterion)
In a normed space X, a sequence (xn) converges weakly to x if and only if

(A) (∥xn∥) remains bounded, and

(B) f(xn)→ f(x) for every f in some total subset M ⊂ X ′, where “total” means that the linear
span of M is dense in X ′.

Proof. (⇒) From Lemma 4.16(c) we get that ∥xn∥ is bounded. And trivially, if f(xn)→ f(x) for all
f ∈ X ′, it is true in particular for a total subset M ⊂ X ′.
(⇐) Assume (A) and (B). Fix any f ∈ X ′. By denseness, there is a sequence (fj) ⊂ span M approaching
f in the norm of X ′. Moreover, from (B) one sees fj(xn)→ fj(x). Carefully choosing large j and n

makes |f(xn)− f(x)| as small as desired. Thus f(xn)→ f(x) for all f ∈ X ′, i.e. xn
w→ x. ■

§4.8 Convergence of Sequences of Operators and Functionals

Definition 4.12 (Operator convergence). Let X and Y be normed spaces, and let {Tn} ⊂ B(X, Y )
be a sequence of bounded operators. We say (Tn) converges uniformly (or in norm) to an operator
T ∈ B(X, Y ) if

|||Tn − T ||| −→ 0 in B(X, Y ).

It converges strongly to T if

∥Tnx− Tx ∥ −→ 0 for every x ∈ X.

It converges weakly to T if

f
(
Tnx

)
−→ f

(
Tx
)

for all x ∈ X and f ∈ Y ′.

One shows readily that

(uniform convergence) =⇒ (strong convergence) =⇒ (weak convergence),

but the converses fail in general, as illustrated by classical examples in ℓ2:

Example 4.4 (Strong, but not uniform, operator convergence). Define Tn : ℓ2 → ℓ2 by

Tn(x1, x2, . . .) =
(
0, 0, . . . , 0, xn+1, xn+2, . . .

)
,

where the first n entries are replaced by zeros. Each Tn is bounded with operator norm ∥Tn∥ = 1.
For any fixed x ∈ ℓ2, the tail (xn+1, xn+2, . . . ) goes to zero in ℓ2, so Tnx→ 0. Hence {Tn} converges
strongly to the zero operator. It does not converge uniformly, however, since ∥Tn − 0∥ = ∥Tn∥ = 1 ̸→ 0.

Example 4.5 (Weak, but not strong, operator convergence). Again in ℓ2, define Tn : ℓ2 → ℓ2 by
shifting the first n components to zero:

Tn(x1, x2, . . . ) =
(
0, 0, . . . , 0, x1, x2, . . .

)
.

Then for any linear functional f ∈ (ℓ2)′ ∼= ℓ2 (by Riesz representation), we find f(Tnx) → 0 by a
tail argument in the inner product, implying Tnx converges weakly to 0 in ℓ2. However, choosing
x = (1, 0, 0, . . . ) shows that ∥Tnx∥ does not tend to 0, so {Tn} cannot converge strongly to 0.

Definition 4.13 (Strong and weak* convergence for functionals). Suppose {fn} is a sequence of
bounded linear functionals on a normed space X.

• Strong convergence: There is an f ∈ X ′ such that ∥fn − f∥ → 0. One writes fn → f in
norm.
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• Weak* convergence: There is an f ∈ X ′ such that fn(x)→ f(x) for all x ∈ X. We denote
this fn

w∗
−→ f .

These two notions coincide exactly with the strong vs. weak operator convergence in the finite-
dimensional codomain F.

Lemma 4.19 (Strong limit is bounded)
Suppose X is a Banach space, Y is a normed space, and Tn ∈ B(X, Y ) are such that Tnx→ Tx
pointwise in Y . Then T is automatically a bounded linear operator in B(X, Y ).

Proof. Linearity of T follows from that of Tn. Boundedness is ensured by the Uniform Boundedness
Theorem: since X is complete, the maps Tn cannot all be large on different x’s without violating uniform
boundedness. Formally, supn |||Tn||| ≤ c <∞ implies ∥Tx∥ ≤ c∥x∥ for each x, so T ∈ B(X, Y ). ■

Theorem 4.20 (Strong operator convergence criterion)
Let X and Y be Banach spaces, and let {Tn} ⊂ B(X, Y ). Then Tn → T strongly (i.e. Tnx→ Tx
for all x ∈ X) if and only if :

(A) {|||Tn|||} remains bounded;

(B) For every x in a total subset M ⊂ X, the sequence {Tnx} is Cauchy in Y .

Proof. (⇒) If Tnx→ Tx for all x, by uniform boundedness we get a bound on ∥Tn∥, giving (A). And
trivially (Tnx) is Cauchy in Y for every x (particularly those x in M).

(⇐) Assume (A) and (B). Fix x ∈ X, and choose y in the span of M with ∥x− y∥<ε/(3c). Since
(Tny) is Cauchy in Y , there is N so that for m, n>N , ∥Tny− Tmy∥<ε/3. A short argument bounding
∥Tnx−Tmx∥ by ∥Tnx−Tny∥+∥Tny−Tmy∥+∥Tmy−Tmx∥ shows (Tnx) is also Cauchy. Completeness
of Y then ensures Tnx→ Tx, and Lemma 4.19 confirms T ∈ B(X, Y ). ■

Corollary 4.21 (Weak∗ convergence of functionals)

For a sequence of bounded functionals {fn} on a Banach space X, the condition fn
w∗
−→ f holds if

and only if

(A) {∥fn∥} is bounded,

(B) For every x in some total subset M ⊂ X,
{
fn(x)

}
is Cauchy in the scalar field.

In other words, this “weak∗” convergence of functionals parallels the strong convergence of operators
in a one-dimensional codomain.

§4.9 Open Mapping Thoerem
If V is a vector space over the field F and A ⊆ V , then for v ∈ V and α ∈ F, the sets A + v and αA
are defined as

A + v = {a + v | a ∈ A} and αA = {αa | a ∈ A} . (4.12)

Lemma 4.22
A bounded linear operator T from a Banach space X onto another Banach space Y has the
property that T (B (0, 1)) contains an open ball centred at 0 ∈ Y .
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Proof. Let Bn = B (0, 2−n). So B1 = B
(
0, 1

2

)
. For any x ∈ X, x ∈ kB1 for some k > 2 ∥x∥. Therefore,

X = ⋃
k∈N kB1. Since T is surjective and linear,

Y = T (X) = T

⋃
k∈N

kB1

 =
∞⋃

k=1
kT (B1) . (4.13)

kT (B1) ⊆ kT (B1) ⊆ Y , so

Y =
∞⋃

k=1
kT (B1) =

∞⋃
k=1

kT (B1). (4.14)

Since Y is complete, by Baire’s Category Theorem for Complete Metric Spaces, kT (B1) contains an
open ball B (a0, r) for some k. Let y0 = a0

k and ε = r
k .

B (a0, r) ⊆ kT (B1) = kT (B1) =⇒ B (y0, ε) = B

(
a0
k

,
r

k

)
⊆ T (B1). (4.15)

Let B∗ = B (y0, ε). By translating, B∗ − y0 = B (0, ε) ⊆ T (B1) − y0. Now we want to show that
B∗ − y0 ⊆ T (B0). It suffices to show that T (B1)− y0 ⊆ T (B0).

Let y ∈ T (B1)−y0. Then y + y0 ∈ T (B1). y0 is also in T (B1) as B (y0, ε) ⊆ T (B1). Then there are
sequences un, vn ∈ T (B1) converging to y + y0 and y0 respectively. Since un, vn ∈ T (B1), un = Twn

and vn = Tzn for some wn, zn ∈ B1.

∥wn − zn∥ ≤ ∥wn∥+ ∥zn∥ <
1
2 + 1

2 = 1 =⇒ wn − zn ∈ B0. (4.16)

T (wn − zn) = un− vn converges to y + y0− y0 = y. Therefore, y ∈ T (B0), proving that T (B1)− y0 ⊆
T (B0). As a result, B∗ − y0 = B (0, ε) ⊆ T (B0).

Bn = B (0, 2−n) = 2−nB (0, 1) = 2−nB0, so

T (Bn) = T (2−nB0) = 2−nT (B0). (4.17)

Since B (0, ε) ⊆ T (B0), scaling by 2−n gives us B (0, 2−nε) ⊆ T (Bn). Now, finally, we shall prove
that B

(
0, 1

2ε
)
⊆ T (B0). Take y ∈ B

(
0, 1

2ε
)
. B

(
0, 2−1ε

)
⊆ T (B1), so y ∈ T (B1). Then there exists

v = Tx1 ∈ T (B1) such that
∥y − v∥ = ∥y − Tx1∥ <

ε

4 . (4.18)

So y − Tx1 ∈ B
(
0, 2−2ε

)
⊆ T (B2). Similar as before, there exists x2 ∈ B2 such that

∥y − Tx1 − Tx2∥ <
ε

8 . (4.19)

Continuing this way, in the n-th step, we shall find xn ∈ Bn such that∥∥∥∥∥y −
n∑

i=1
Txi

∥∥∥∥∥ <
ε

2n+1 . (4.20)

xi ∈ Bi, so ∥xi∥ < 2−i. Set zn = x1 + x2 + · · ·+ xn. We claim that (zn) is a Cauchy sequence. Fix
ε > 0 and take N ∈ N such that 2N ε > 1. Now, for n > m ≥ N ,

∥zn − zm∥ =

∥∥∥∥∥∥
n∑

i=m+1
xi

∥∥∥∥∥∥ ≤
n∑

i=m+1
∥xi∥ <

n∑
i=m+1

2−i = 2−m ≤ 2−N < ε. (4.21)

So (zn) is a Cauchy sequence, and hence it converges to some x ∈ X since X is complete.

∥x∥ =
∥∥∥∥∥ lim

n→∞

n∑
i=1

xi

∥∥∥∥∥ = lim
n→∞

∥∥∥∥∥
n∑

i=1
xi

∥∥∥∥∥ ≤ lim
n→∞

n∑
i=1
∥xi∥ =

∞∑
i=1
∥xi∥ . (4.22)
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Therefore,

∥x∥ ≤ ∥x1∥+
∞∑

i=2
∥xi∥ <

1
2 +

∞∑
i=2
∥xi∥ ≤

1
2 +

∞∑
i=2

2−i = 1 =⇒ x ∈ B0 = B (0, 1) . (4.23)

Since T is bounded, it is continuous. zn converges to x, so Tzn must converge to Tx due to continuity.
However, from (4.20),

∥y − Tzn∥ =
∥∥∥∥∥y −

n∑
i=1

Txi

∥∥∥∥∥ <
ε

2n+1 (4.24)

gives us that Tzn converges to y. Therefore, Tx = y. Since x ∈ B0, y ∈ T (B0), proving that
B
(
0, 1

2ε
)
⊆ T (B0) = T (B (0, 1)). ■

Theorem 4.23 (Open Mapping Theorem)
A bounded linear map T from a Banach space X onto another Banach space Y is an open mapping,
i.e. it maps open sets to open sets.

Proof. Let A ⊆ X be open. We need to show that T (A) ⊆ Y is open. Take y = Tx ∈ T (A). We need
to find r > 0 such that B (y, r) ⊆ T (A).

A is open and x ∈ A, so B (x, ε) ⊆ A for some ε > 0.

B (x, ε) ⊆ A =⇒ B (0, ε) ⊆ A− x =⇒ B (0, 1) ⊆ 1
ε

(A− x) . (4.25)

By Lemma 4.22, T (B (0, 1)) contains an open ball B (0, r0). T (B (0, 1)) is contained in T
(

1
ε (A− x)

)
.

Therefore,

B (0, r0) ⊆ T

(1
ε

(A− x)
)

= 1
ε

T (A− x) = 1
ε

[T (A)− Tx] = 1
ε

[T (A)− y] . (4.26)

Therefore,
εB (0, r0) ⊆ T (A)− y =⇒ εB (0, r0) + y = B (y, r0ε) ⊆ T (A) . (4.27)

Since y ∈ T (A) was arbitrary, T (A) is open. ■

Corollary 4.24 (Bounded Inverse Theorem)
If a bounded linear operator T : X → Y between Banach spaces is bijective, then T −1 is continuous
bounded.

Proof. Firstly, we will show that T −1 is linear. If Tx1 = y1 and Tx2 = y2, then T (αx1 + βx2) =
αy1 + βy2 by the linearity of T . As a result,

T −1 (αy1 + βy2) = αx1 + βx2 = αT −1y1 + βT −1y2. (4.28)

Now we will show that T −1 : Y → X is continuous. If A ⊆ X is open,
(
T −1)−1 (A) = T (A) is

also open by Open Mapping Theorem. Therefore, T −1 is continuous, and hence it is bounded by
Theorem 2.20. ■

§4.10 Closed Linear Operators

Lemma 4.25
Let X and Y be Banach spaces. Then X × Y is also a Banach space with respect to the norm

∥(x, y)∥ = ∥x∥+ ∥y∥ . (4.29)
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Proof. One can check that the abovementioned norm on X × Y satisfies the properties of a norm. Let
zn = (xn, yn) be a Cauchy sequence in X × Y . Given ε > 0, there is N ∈ N such that for m, n ≥ N ,

∥zn − zm∥ = ∥xn − xm∥+ ∥yn − ym∥ < ε =⇒ ∥xn − xm∥ < ε and ∥yn − ym∥ < ε. (4.30)

So, both xn and yn are Cauchy sequences in X and Y , respectively. Since X and Y be Banach spaces,
xn and yn converge to x ∈ X and y ∈ Y respectively. We claim that zn converges to z = (x, y).

Given ε > 0, there are positive integers N1 and N2 such that for n ≥ N1 and m ≥ N2,

∥xn − x∥ <
ε

2 and ∥ym − y∥ <
ε

2 . (4.31)

Now, for n ≥ max {N1, N2},

∥zn − z∥ = ∥xn − x∥+ ∥yn − y∥ <
ε

2 + ε

2 = ε. (4.32)

Therefore, zn converges to z proving that X × Y is complete. ■

Definition 4.14 (Closed Linear Operator). Let X and Y be normed spaces, and T : D (T ) ⊆ X → Y
a linear operator. T is called a closed linear operator if its graph

G (T ) = {(x, Tx) | x ∈ D (T )} (4.33)

is closed in the normed space X × Y equipped with the norm defined in (4.29).

Theorem 4.26 (Closed Graph Theorem)
Let X and Y be Banach spaces, and T : D (T ) ⊆ X → Y a closed linear operator. If D (T ) is
closed in X, T is bounded.

Proof. By Lemma 4.25, X × Y is a Banach space. Closed subsets of complete metric spaces are also
complete. Therefore, both G (T ) and D (T ) are complete. Let P : G (T ) → D (T ) be the projection
map.

P (x, Tx) = x. (4.34)

P is linear since it maps α (x, Tx) + β (y, Ty) to αx + βy. P is also bounded, since

∥P (x, Tx)∥ = ∥x∥ ≤ ∥x∥+ ∥Tx∥ = ∥(x, Tx)∥ . (4.35)

P is bijective. Therefore, by Bounded Inverse Theorem, P −1 is bounded. So, we have ∥(x, Tx)∥ ≤∣∣∣∣∣∣P −1∣∣∣∣∣∣ ∥x∥. Therefore,

∥Tx∥ ≤ ∥Tx∥+ ∥x∥ = ∥(x, Tx)∥ ≤
∣∣∣∣∣∣∣∣∣P −1

∣∣∣∣∣∣∣∣∣ ∥x∥ . (4.36)

Hence, T is bounded. ■

Theorem 4.27 (Closed linear operator)
A linear operator T : D(T ) ⊂ X → Y is closed precisely when the condition below is satisfied:

If xn ∈ D(T ) and xn → x, while Txn → y, then x ∈ D(T ) and Tx = y.

Proof. (⇒) Suppose T is closed. By definition, its graph

G(T ) = {(x, Tx) : x ∈ D(T )}
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is a closed subset of X × Y . Now assume xn ∈ D(T ) with xn → x in X and Txn → y in Y .
Then (xn, Txn) → (x, y) in X × Y . Since G(T ) is closed and each (xn, Txn) ∈ G(T ), it follows that
(x, y) ∈ G(T ), so x ∈ D(T ) and Tx = y.

(⇐) Conversely, suppose that whenever xn ∈ D(T ), xn → x, and Txn → y, we conclude x ∈ D(T )
and Tx = y. We claim that G(T ) is closed. Take any sequence (xn, Txn) → (x, y) in X × Y . Then
xn → x and Txn → y, so by hypothesis we must have x ∈ D(T ) and Tx = y. Hence (x, y) ∈ G(T ),
proving G(T ) is closed.

This completes the proof. ■

This property is not the same as the property that a bounded linear operator T automatically has:
for a bounded linear map, the domain is all of X and it is already guaranteed to be continuous, so
sequences in X with xn → x imply (Txn) → Tx. In contrast, an unbounded operator on a proper
domain may fail to be closed, or may be closed but unbounded, as the next example illustrates.

Example (Differential operator)
Take X = C[0, 1] (continuous functions on [0, 1]), and define

T : D(T ) → X, T (x) = x′,

where D(T ) is the set of all x ∈ C[0, 1] that are continuously differentiable. Then T is not bounded
but is indeed closed.

Proof. We check closedness using Theorem 4.27. Suppose (xn) ⊂ D(T ) with xn → x in the uniform
norm on C[0, 1], and (Txn) = x′

n → y for some y ∈ C[0, 1]. Since uniform convergence on [0, 1] implies
x′

n → y also in the uniform norm, we can write

xn(t) = xn(0) +
∫ t

0
x′

n(τ) dτ.

Passing to the limit, we see
x(t) = x(0) +

∫ t

0
y(τ) dτ,

so x′(t) = y(t) and x ∈ D(T ). Consequently, Tx = x′ = y, showing T is closed. ■

Observe that in this example the set D(T ) of differentiable functions is not closed in X, so T cannot
be bounded (the Closed Graph Theorem would have forced boundedness otherwise).

Closedness versus boundedness. Closed does not imply bounded, and bounded does not imply
closed.

• A closed operator can be unbounded (e.g. the differentiation operator above).

• Conversely, one can have a (trivially) bounded operator that is not closed if its domain is a proper
dense subspace, as in the identity on a dense but smaller domain of X. Then by extending that
operator to a limit point not in the domain, one breaks the condition in Theorem 4.27.

Lemma 4.28 (Two criteria for closedness:)
Let T : D(T ) → Y be a bounded linear operator with D(T ) ⊂ X, where X and Y are normed
spaces. Then:

(a) If D(T ) is a closed subset of X, then T itself is closed.

(b) If T is closed and Y is complete, then D(T ) is a closed subset of X.
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4 Fundamental Theorems of Normed Spaces

Proof. (a) Suppose (xn) ⊂ D(T ) and xn → x. If (Txn) → y as well, we must show x ∈ D(T ) and
Tx = y. Since D(T ) is closed and xn → x, it follows x ∈ D(T ). Also, because T is bounded, Txn → Tx
(i.e. T is continuous). Thus y = Tx, establishing that T is closed.
(b) Pick x ∈ D(T ), so there is a sequence (xn) ⊂ D(T ) with xn → x. By boundedness,

∥Txn − Txm∥ = |||T ||| ∥xn − xm∥,

so (Txn) is Cauchy in Y . Completeness of Y ensures Txn → y in Y . Since T is closed, x ∈ D(T ) and
Tx = y. Hence x was already in D(T ), showing D(T ) is closed. ■
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